推挽开关电源

推挽开关电源
推挽开关电源

推挽式开关电源

开关电源的推挽拓扑结构

★新手入门拓扑结构推挽篇

推挽式开关电源设计中基础拓扑结构之一

推挽电路就是两个不同极性晶体管连接的输出电路。推挽电路采用两个参数相同的功率BJT管或MOSFET管,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率管每次只有一个导通,所以导通损耗小效率高。推挽输出既可以向负载灌电流,也可以从负载抽取电流。

如果输出级有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三极管推挽相连,这样的电路结构称为推挽式电路或图腾柱(Totem-pole)输出电路。

上图为推挽变换器原理图。推挽变压器有两个三极管在交替开关,已达到比单管工作电路的输出功率,由于初级线圈的中心抽头接在输入电源的正极,这样当一边三极管导通时,另一边的三极管要承受耐压与两倍的电源电压,这对晶体管要求较高。

优点:

结构简单,开关变压器磁芯利用率高,推挽电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小。

缺点:

变压器带有中心抽头,而且开关管的承受电压较高;由于变压器原边漏感的存在,功率开关管关断的瞬间,漏感极会产生较大的电压尖峰,另外输入电流纹波较大,因而输入滤波器的体积较大。

★主流IC

SG3525是美国硅通用半导体公司推出的一种性能优良、功能齐全和通用性强的单片集成PWM控制芯片,它简单可靠、方便灵活,输出驱动我推拉输出形式,增加了驱动能力;内部含有欠压锁定电路、软启动控制电路、PWM锁存器,有过流保护功能,频率可调,同时能限制最大占空比。

IR2110 是美国IR公司生产的一款驱动器。它兼有光耦隔离(体积小)和电磁隔离(速度快)的优点,是中小功率变换器装置中驱动器件的首选品种。

UC3846 采用定频电流模式控制,改善了系统的线电压调节率和负载响应特性,简化了控制环路的设计。

IR2112S 是IR公司一款推挽式驱动器,它是高电压、高放大率MOSFET和带独立的推挽放大器,为了自举工作方式,门驱动器供电范围从10V到20V。

★工程师推荐:电流馈电推挽式逆变电路图设计

电流馈电推挽式逆变电路如图1所示,图中直流电压经电感L1送到变压器Tr的中心抽头,L1与跨接余Tr初级绕组两端的电容C2组成手续谐振电路,R1、R2、C1组成启动电路,其原理同图2,由于Np与Nb的正反馈作用,驱动VT1、VT2轮流交替导通。

图一

在这个电路中,开关晶体管集电极所承受的最高电压约为直流电压VDC的π倍。对于市电压为110V/120V/127V的地区,采用这种电路是合适的。本电路晶体管输出亦为正弦电压。即使负载开路式短路,负载变化很大,逆变器任然可以连续工作,如图1、2中即使一个灯管失效,电路仍能正常工作。

Motorola公司1996年生产的一带二灯的电子整流器就是采用这种电路模式,器具体电路如图2所示。

图二

图中C1、R1及VD组成启动电路,高频逆变电路由VT1、VT2、变压器Tr、C2等组成,由变压器提供正反馈,使得VT1、VT2轮流交替导通与截止。

ST公司基于MOSFET的自激式(RCC)开关电源设计(整合)

ST公司自激式开关电源设计 1 Power Transformer Design Calculations l The specifications: –V AC= 85~265V l Line frequency: 50~65Hz –V O= 5V –I O= 0.4A Taking transient load into account, the maximum output current is set as I O(m a x)= 1.2I O= 4.8 A 1.1Switching Frequency The system is a variable switching frequency system (the RCC switching frequency varies with the input voltage and output load), so there is some degree of freedom in switching frequency selection. However, the frequency must be at least 25kHz to minimize audible noise. Higher switching frequencies will decrease the transformer noise, but will also increase the level of switching power dissipated by the power devices. The minimum switching frequency and maximum duty cycle at full load is expressed as f S(m i n)= 50 kHz D m a x= 0.5 where the minimum input voltage is 50kHz and 0.5, respectively. 1.2 STD1LNK60Z MOSFET Turn Ratio The maximum MOSFET drain voltage must be below its breakdown voltage. The maximum drain voltage is the sum of: l input bus voltage, l secondary reflected voltage, and voltage spike (caused by the primary parasitic inductance at maximum input voltage). The maximum input bus voltage is 375V and the STD1LNK60Z MOSFET breakdown voltage is 600V. Assuming that the voltage drop of output diode is 0.7V, the voltage spike is 95V, and the margin is at least 50V, the reflected voltage is given as: V fl= V(B R)DS S–V m arg i n–V D C(ma x)–V s p k= 600 –50 –375 –95 = 80 V The Turn Ratio is given as where, V fl= Secondary reflected voltage V(BR)DSS= MOSFET breakdown voltage V margin= Voltage margin

推挽式DC-DC开关恒压源的设计)

闽江学院 本科毕业论文(设计) 题目推挽式DC-DC开关恒压源的设计 学生姓名 学号120061007081 系别物理学与电子信息工程系 专业电子信息工程(2)班 指导老师 职称讲师 完成日期2010年4月

闽江学院毕业论文(设计)诚信声明书 本人郑重声明: 兹提交的毕业论文(设计)《推挽式DC-DC开关恒压源的设计》,是本人在指导老师沈耀国的指导下独立研究、撰写的成果;论文(设计)未剽窃、抄袭他人的学术观点、思想和成果,未篡改研究数据,论文(设计)中所引用的文字、研究成果均已在论文(设计)中以明确的方式标明;在毕业论文(设计)工作过程中,本人恪守学术规范,遵守学校有关规定,依法享有和承担由此论文(设计)产生的权利和责任。 声明人(签名): 年月日

摘要 开关电源作为一种新式的电源,具有体积小、质量轻和节约能源等特点,逐渐在计算机,通信等方面得到广泛的应用。本文中介绍了开关电源的组成、分类和控制等方面,随着电力电子技术的发展,特别是大功率器件的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。 在本设计中,开关电源是一种采用推挽式的高频电源变换电路,主要组成有: PWM电路,这部分电路采用KA3525芯片,并通过输出电压的采样电压加在误差放大器的反相输入端桑实现稳压;推挽式变换器,实现DC-DC变换;整流滤波电路,通过整流滤波得到最终的稳定无干扰的电压;反馈补偿电路,通过反馈电压,以改变KA3525的输出,从而使输出电压保持稳定。 关键词:推挽式;PWM;电源

Abstract As a new power source ,the switching power supply ,taking on such features as small volume、light weigh and economical energy, is used gradually and widely in computer and communication ,etc. The paper introduces the consistence, the classification and the control of the switching power supply ,with the development of power electronic technology, especially the rapid development of the high power compoments , the operating frequency of the switching power supply is enhanced to a realitive high level, owning such features as high stability and high performance-to-price. In this design, the switching power supply is one kind of push-pull the high frequency power source transfer network, the main composition includes: The PWM electric circuit, this part of electric circuits use the KA3525 chip, and adds through output voltage's sampling voltage in the erroneous amplifier's opposition input end mulberry realizes the constant voltage; The push-pull converter, realizes the DC-DC transformation; The rectification filter circuit, obtains the final stable non-disturbance voltage through the rectification filter; Feedback compensation circuit. Changing the output KA3525 through to feedback voltage , thus output voltage is stability. Key words:push-pull; pulse width modulation; power supply

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

自激振荡开关电源

自激振荡(RCC)开关电源 中山市技师学院 一、概述 目前市场上销售的手机充电器,从电路结构和充电方式上可分为两大类:第一类是“机充式”充电器,另一类是“直充式”充电器(也叫座充)。所谓“机充式”充电器,就是电源进入手机后由充电管理IC 控制预充电、恒流充电、恒压充电、电池状态检测、温度监控、充电结束低泄漏、充电状态指示等(比SL1051、BQ241010/2/3等),输出电压一般在5.5~6.5V;而“直充式”充电器也叫万能充电器,直接对电池充电,由于锂电池(充)满电压为4.2V,所以这类充电器输出电压一定要稍小或等于4.2V。 手机充电器输出功率都比较小,一般在5W以下,国内厂商生产的充电器1更是小到2-3W。为了节约成本,国内许多厂商都采用RCC(Ringing Chock Converter)开关电源设计方案。RCC设计方案理论技术成熟、电路结构简单、元器件常见、成本低廉,所以深受国内厂商青睐。然而,读者可能耳闻目睹许多充电器质量事故频频发生,原因不是产品原理有问题,而是制造厂家为了追求利润使用了质量较差元件或二次回收元件造成的;更有甚者部分厂商为了能在激烈的市场竞争环境下生存,不得不使出最下策——只要能输出电压,尽其所能地节省元件! 另外,国内厂商生产的充电器初、次级通常没有设计光藕(反馈),因此输出电压很难控制,负载能力较差,空载时输出电压偏高,带上负载后电压才正常。从目前市场上流通的充电器来看,成本基本在2-3元之间。国外知名公司出于市场定位和维护自身品牌形象考量,一般采用集成电路设计方案,电路结构完善、生产用料考究、产品可靠性高,成本通常是国内厂商的3-5倍,质量当然要好。 由于手机充电器输出功率较小(对电网干扰小)、产品受体积所限(消费者审美要求和拼比心理把厂家“逼上梁山”),无论国内厂商还是国外知名公司出品的手机充电器,输入侧电源滤波器(与EMC测试有关的元器件)都一概省去,部分国内厂商更是把“热地”与“冷地”之间的安规电容(Y电容)也节省掉了,所以,几乎没有任何一个厂家的手机充电器能通过EMC测试。既然通不过EMC测试,依照中国法律就不能销售,因此厂家就打“擦边球”,把充电器定位为赠品,国家对电器赠品并没有强制安规要求。再则,质量认证部门考虑到手机充电器输出功率小、对电网干扰小,在对手机作认证时对充电器“睁一只眼、闭一只眼”,于是,不符合国家标准的手机充电器就堂而皇之地进入市场了。当然,对于用户来说这些元器件的存在与否与充电的电性能几无关系,并不会影响消费者正常使用,只是与国家标准要求不符而已! RCC充电器电路结构简单,工作频率由输入电压与输出电流(自适应)改变,控制方式为频率调制(PFM),工作频率较高,如图1是RCC充电器原理框图。 1由于许多国外知名公司的手机充电几乎都由国内厂商代工,所以该处应理解为国内厂商生产的自主品牌的内销充电器,下同。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程 建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。 二、参数设置 相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。 如图:

三、元器件布局 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路: (1)电源开关交流回路 (2)输出整流交流回路 (3)输入信号源电流回路 (4)输出负载电流回路输入回路 通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回

自激式开关电源有关问题的探讨

3-3 自激式开关电源有关问题的探讨 1.如何通过电压波形的数据,粗略计算出变压器的匝数比? 自激式开关电源的功率管“从开到关”或“从关到开”转换都要经一段过度时间,因此功率管完全导通的时间小于ON t ,完全截止时间的小于OFF t ,如图1所示,这是HP1018打印机开关管漏极和次级绕组的电压波形(此时“热地”与“冷地”连在一起,测量之后断开)。 图1 测量次级绕组(CH 2)电压波形 当功率管导通时,初级绕组因有电流流过而发生自感,自感电动势等于输入电源整流滤电压。根据变压器的工作原理,次级绕组会因互感作用产生负脉冲电压。这期间,初级绕组是主动绕组,次级绕组是被动绕组。 启用数字示波器“幅度”功能,测量的次级绕组负脉冲电压为23.2V (此时,整流二极管反偏截止)。若忽略初级绕组因由有电流流过引起的电动势的损耗,则初、次级绕组的匝数之比等于它们的电压之比,即 21N N =) (21-U U (3-1) 式中,1N 、2N 分别是初、次级绕组匝数。1U 是输入电源为AC110V 时整流滤电压,实测值为165V ,把1U =165V ,)(2-U =23.2V 代入上式,得 功率管完 全截止区 功率管完 全导通区 t ON t OFF 26V 23.2V

21N N =)(21-U U =2 .23165≈7.11 设N =2 1N N ,取整数N ≈7。 2.如何计算功率管截止时初级绕组感应电动势? 当功率管截止时,次级绕组因有电流流过而发生自感,自感电动势等于整流元件导通压降与输出直流电压的叠加。根据变压器的工作原理,初级绕组会因互感作用产生正脉冲电压。这期间,初级绕组是被动绕组,次级绕组是主动绕组。 当功率管截止时初、次级绕组的感应电动势之比仍然等于它们匝数之比,即 )(2'1+U U =2 1N N (3-2) 启用数字示波器“幅度”功能,测量的次级绕组正脉冲电压为26V ,即)(2+U =26V ,代入上式,得 '1U =N ?)(2+U =7?26≈182V 即,功率管截止时初级绕组感应正脉冲电压等于182V 。 考虑到当前电源电压为165V ,则当功率管截止时,漏极电压是电源电压与初级绕组自感电动势的叠加,即 '11U U U D S += (3-3) 把1U =165V ,' 1U =182V 代入上式,得 DS U =165+182≈347(V ) 注:该电压不含漏感尖峰电压。 需要指出的是,'1U (=182V )这个数据是基于当前电源电压110V 和输出24.5V 稳定电压的状况而得出的,该电压与负载基本无关;若负载加重、输出电流增大,功率管会自动延长导通时间,从电源吸收更大的功率,维持输出电压稳定,反之亦反。 3.如何根据输入、输出电压计算占空比?

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

推挽式开关电源优缺点

推挽式开关电源优缺点 1、推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,开关电源的工作效率跟高。 推挽式开关电源的变压器属于双极性磁化极,磁感应变压范围是单极性磁化极的两倍多,并且变压器铁芯不需要气隙,因此,推挽式开关电源变压器铁芯的磁导率比单极性磁化极的正激或反激开关电源的变压器铁芯的磁导率高很多倍,这样推挽式开关电源变压器的初级、次级的线圈的匝数可比单极性磁化极变压器初级、次级的线圈的匝数少一倍以上。所以,推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,所以开关电源的工作效率跟高。 2、推挽式、半桥式、全桥式转换器属于直流-交流-直流转换器。由于直流-交流转换器提高了工作频率,所以,变压器和输出滤波器的体积和重量都可以减小。 3、推挽式开关电源的变压器有两组初级线圈,对于小功率输出的推挽式开关电源是个缺点,对于大功率输出的推挽式开关电源是个优点。因为大功率变压器的线圈一般都是多股线来绕制的,因此,推挽式开关电源的变压器的两组初级线圈与用多股线绕制根本没有区别,并且两个线圈与单个线圈相比可以减低一半电流密度。 4、推挽式开关电源输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。 由于推挽式开关电源中的两个控制开关轮流交替工作,其输出电压波形非常对称,并且开关电源在整个周期之内都向负载提供功率的输出,因此,其输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。它在输入电压很低的情况下,仍然能维持很大的输出功率,所以推挽式开关电源被广泛的应用于低输入电压的DC/AC逆变器,活DC/DC转换器电路中。 5、推挽式开关电源的驱动电路简单。 推挽式开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式开关电源来说,驱动电路简单的多。

推挽式开关电源设计

洛阳理工学院毕业设计(论文) 题目_推挽式开关电源的设计 2013年5月30 日

推挽式直流电源开关的设计 摘要 电源是实现电能变换和功率传递的主要设备。在信息时代,农业、能源、交通运输、信息、国防、教育等领域的迅猛发展,对电源产业提出了更多、更高的要求、如节能、节电、节材、缩体、减重、环保、可靠、安全等。这就迫使电源工作者在电源研发过程中不断探索,寻求各种相关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型电源设备,较之于传统的线性电源,其技术含量高,耗能低,使用方便,并取得了较好的经济效益。开关电源具有功耗小、效率高、稳压范围宽、体积小、等突出优点,在通信设备、数控装置、仪器仪表、影音设备、家用电器等电子电路中得到了广泛应用。本文首先介绍开关电源的基本原理,而后介绍广泛应用于开关电源的双端输出驱动器UC3524,并以驱动器UC3524为基础,通过打印机电源电路,讲述推挽式开关电源工作原理。 关键词:电能变换,开关电源,UC3524,推挽式开关电源

Design of a push-pull DC switching power supply ABSTRACT Power is to achieve power conversion and power transmission major equipment. In the information age, the rapid development of agriculture, energy, transportation, information, national defense, education and other fields, for the power industry made more, higher requirements, such as energy saving, energy saving, material saving, reduced body weight loss, environmental protection, reliable, safety etc.. This has forced the power workers continue to explore in the power development process, to seek a variety of related technology, the power to make the best products, to meet the requirements of all walks of life. Switching power supply is a new type of power supply equipment, compared to traditional linear power supply, high technological content, low energy consumption, easy to use, and has achieved good economic benefit. Switching power supply with low power consumption, high efficiency, wide voltage range, small size, and other advantages, is widely used in communication equipment, numerical control equipment, instrumentation, audio and video equipment, household appliances and other electronic circuits. This paper first introduces the basic principle of switching power supply, then introduce dual output driver UC3524 is widely used in switching power supply, and to drive UC3524 as the foundation, through the printer power supply circuit, on the working principle of push-pull switching power supply. KEY WORDS: transformation of electrical energy,transformation of electrical energy,UC3524, transformation of electrical energy

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

简单的推挽式开关电源

[南京理工大学 现代开关器件 结课论文 [推挽式开关电源分析] 姓名: [王佳琪] 学号: [0810190140] 指导教师: [吕广强] 2011.11

目录 作业要求 (2) 电路原理图 (2) 电路原理分析 (3) 控制方法分析 (4) 基本电路的仿真 (4) 多路直流输出电路仿真 (7) 工频输入直流输出实现 (11) 总结与体会 (14) 参考文献 (15)

作业要求: 1)画出电路图,分析原理和控制方法 2)工频220V电源输入,能够输出3路直流电源(24V30W,12V20W,5V5W),考虑交流侧谐波和直流侧文波 电路基本原理图: 推挽电路的理想化波形

推挽电路的工作原理: 整流输出推挽式变压器开关电源,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,推挽式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,仅需要很小的滤波电感和电容,其输出电压纹波就可以达到非常小。推挽电路中两个开关S1和S2交替导通,在绕组N1和N’1两端分别形成相位相反的交流电压,改变占空比就可以改变输出电压。S1导通时,二极管VD1处于通态,电感L 的电流逐渐上升。S2导通时,二极管VD2处于通态,电感L 的电流也逐渐上升。当两个开关都关断时,VD1和VD2都处于通态,各分担一半的电流。S1和S2断态时承受的峰值电压均为2倍Ui 。S1和S2同时导通,相当于变压器一次侧绕组短路,因此应避免两个开关同时导通。每个开关的占空比不能超过50%,还要留有死区。 输出电压: 滤波电感L 电流连续时: T t N N U U on i 2120= 输出电感电流不连续时,输出电压Uo 将高于上式的计算值,并随负载减小而升高,在负载为零的极限情况下,i o U N N U 1 2=. 由于推挽式变压器开关电源中的两个控制开关K1和K2轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性很好。推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于低输入电压的DC/AC 逆变器,或DC/DC 转换器电路中。 推挽式开关电源经桥式整流或全波整流后,其输出电压的电压脉动系数Sv 和电流脉动系数Si 都很小,因此只需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。因此,推挽式开关电源是一个输出电压特性非常好的开关电源。 另外,推挽式开关电源的变压器属于双极性磁极化,磁感应变化范围是单极性磁极化的两倍多,并且变压器铁心不需要留气隙,因此,推挽式开关电源变压器铁心的导磁率比单极性磁极化的正激或反式开关电源变压器铁心的导磁率高很多倍;这样,推挽式开关电源变压器初、次级的线圈匝数可比单极性磁极化变压器初、次级的线圈匝数少一倍以上。所以,推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁极化变压器小很多,开关电源的工作效率很高。 推挽式开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式开关电源来说,驱动电路要简单很多,这也是推挽式开关电源的一个优点。 半桥式以及全桥式开关电源都有一个共同缺点,就是当两个控制开关K1和K2处于交替转换工作状态的时候,两个开关器件会同时出现一个半导通区,即两个控制开关同时处于接通状态;这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通状态转换到截止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程;当两个开关器件分别处于导通和截止的过渡期间,就会同时出现半导通状态,此时,相当于两个控制开关同时接通,会对电源电压产生短路,在两个控制开关的串联回路中将出现很大的电流,而这个电流并没有通过变压器负载。因此,在两个控制开关K1和K2分别处于导通和截止的过渡期间,两个开关器件

相关文档
最新文档