岩石可钻性测试实验

岩石可钻性测试实验
岩石可钻性测试实验

中国石油大学(岩石可钻性的测定)实验报告

实验日期: 2014.10.21 成绩:

班级: 石工11-11 学号:11021525 姓名: 徐银亮 教师: 郭辛阳 同组者: 夏平 张栋 杜顺明 刘磊

岩石可钻性的测定

一、实验目的

1、了解岩石的可钻性;

2、掌握岩石可钻性的测量方法。

二、实验原理

1、实验设备

实验中使用岩石可钻性测试仪来测量岩石的可钻性,如下图1所示。设备的具体技术指标参见《岩石可钻性测定及分级方法-SY/T 5426-2000》。

2、测量原理

使用特制微钻头(牙轮钻头或PDC 钻头),以一定的钻压(牙轮钻头为890N±20N ,PDC 钻头为500N±10N )和转速(55r/min±1r/min )在岩样上钻三个特定深度的孔(牙轮钻头为2.4mm ,PDC 钻头为3mm ),取三个孔钻进时间的平均值为岩样的钻时(d t ),对d t 取以2为底的对数值作为该岩样的可钻性级值d K ,计算

公式如下所示:

t K d 2l o g

求得可钻性级值后,再查岩石可钻性分级标准对照表(如下表1所示)进行定级。

测量原理详见《岩石可钻性测定及分级方法-SY/T 5426-2000》。

三、实验步骤

1、试样用石油钻井所取井下岩心或地面采的岩石,岩样制备成圆柱体(直径40-100mm ,高度30-80mm )或长方体(长宽各100mm ,高度20-100mm ),端面平行度公差值≦0.2mm ,试验前将试样放在温度设定为105-110℃的干燥箱内烘烤24小时;

2、将手轮上移至最上端,取下岩心支架、钻头和接屑盘并清扫干净;

3、装上接屑盘,将所选的微型钻头安装在花键轴上端(注意:钻头上键槽应对准花键轴上端的键!),安装好钻头后,将岩心支架回归原位;

4、关闭所有钻井模式(牙轮模式和PDC 模式),打开总电源 ,打开相应钻进模式开关(牙轮模式或PDC 模式,开关如图2所示),打开电机调速器上的电机开关,开动电机,调电机至规定转速55转/分(注意:教师进行此项调速操作,学生请不要调电机转速,避免产生危险!),然后关闭电机开关;

5、选择好相应的钻压砝码(牙轮钻头用两个砝码,PDC 钻头只用一个下部大砝码),放在砝码支架上;

6、将准备好的试样放在岩心支架上,手轮下移,稍用力夹紧岩样,如果钻头高出岩心支架,应在轻轻夹紧岩样的同时,逆时针转动小手摇泵手轮,卸掉液压系统压力(注意:要确保岩样的钻井面一定为平面!)。

7、转动手摇泵给活塞缸和储能器加压,先使钻头上移顶在岩样底面上,后顶砝码至最高点(注意:该过程中应特别注意观察压力表,不能使压力表超过0.9MPa !),然后,回摇手摇泵,使砝码下行,观察压力表,停摇手摇泵后,压力能够反弹至试验规定值后即可;

8、待压力稳定后,按清零按钮,待位移、时间清零后,再按清零按钮复位;

9、打开电机开关进行实验;

10、当位移显示至规定值(牙轮钻头模式2.6mm,PDC钻头模式4mm),电机停转后立即关闭电机开关;

11、记录钻进时间;

12、逆时针转动手摇泵手柄,先后使砝码和钻头下行至最底部(注意:当压力降至将近零点时,应缓慢斜压,不要使压力表承受过大负压!);

13、松开手轮,卸下岩样;

14、取下岩心支架,抱住接屑盘外圈,向上同时取下接屑盘和钻头(注意:不要直接抓着钻头向上拔出,以免撞伤手部!);

15、清理后,将接屑盘和钻头装回原位;

16、应及时对手轮和手摇泵丝杠、砝码支架活塞、液缸活塞、花键轴加油和维护,保证活动顺畅。

四、实验数据

钻头模式牙轮模式

钻时/s

1 73

2 65

3 57

4 83 平均钻时/s 69.5

五、数据处理(需列出详细计算过程)

根据实验中测得的钻进时间,结合实验原理中岩石可钻性的计算方法及分级标准,计算岩石可钻性并将结果填入表2中(注意:要求列出计算过程!)。

表2 岩石可钻性试验记录表

钻头模式牙轮模式

钻时/s

1 73

2 65

3 57

4 83 平均钻时/s 69.

5 岩石可钻性等级中6

12.65.69log log 22===t K d

六、思考题

1.实验过程中哪些步骤对测量结果精度影响较大,如何操作才能提高测量 结果的精度?

答:岩样,桌面平整光滑度,手轮转动力度,钻速的调整,钻压的施加,未清零或未复位等环节,应该如下操作1,将准备好的试样放在岩心支架上,手轮下移,稍用力夹紧岩样,如果钻头高出岩心支架,应在轻轻夹紧岩样的同时,逆时针转动小手摇泵手轮,卸掉液压系统压力(注意:要确保岩样的钻井面一定为平面!)。,2,转动手摇泵给活塞缸和储能器加压,先使钻头上移顶在岩样底面上,后顶砝码至最高点(注意:该过程中应特别注意观察压力表,不能使压力表超过0.9MPa !),然后,回摇手摇泵,使砝码下行,观察压力表,停摇手摇泵后,压力能够反弹至试验规定值后即可;,3待压力稳定后,按清零按钮,待位移、时间清零后,再按清零按钮复位;

2.调研并简要介绍岩石可钻性是如何应用于工程实践? 思考岩石可钻性的 其它应用?

答;在岩土钻掘工程设计与实践中,人们常常希望能事先知道所施工岩石的破碎难易程度,以便正确选择合理的钻(掘)进方法、钻(钎)头的结构及工艺规程参数,制定出切合实际的岩土钻掘工程生产定额。岩石的可钻性及坚固性指标,在实际应用中占有重要地位。其外岩石可钻性在凿岩,破岩和钻头选取也有广泛的应用。

岩石的坚固性系数

岩石的坚固性系数 由俄罗斯学者于1926年提出的岩石坚固性系数(又称普氏系数)至今仍在矿山开采业和勘探掘进中得到广范应用。岩石的坚固性区别于岩石的强度,强度值必定与某种变形方式(单轴压缩、拉伸、剪切)相联系,而坚固性反映的是岩石在几种变形方式的组合作用下抵抗破坏的能力。因为在钻掘施工中往往不是采用纯压入或纯回转的方法破碎岩石,因此这种反映在组合作用下岩石破碎难易程度的指标比较贴近生产实际情况。岩石坚固性系数 f表征的是岩石抵抗破碎的相对值。因为岩石的抗压能力最强,故把岩石单轴抗压强度极限的1/10作为岩石的坚固性系数,即 / =耳口0( 1-19) 式中:--岩石的单轴抗压强度,MPa f是个无量纲的值,它表明某种岩石的坚固性比致密的粘土坚固多少倍,因为致密粘土的抗压强度为 10MPa岩石坚固性系数的计算公式简洁明了,f 值可用于预计岩石抵抗破碎的能力及其钻掘以后的稳定性。根据岩石的坚固性系数(f)可把岩石分成10级(表1-9),等级越高的岩石越容易破碎。为了方便使用又在第川,叽V, W ,叫级的中间加了半级。考虑到生产中不会大量遇到抗压强度大于200MPa勺岩石,故把凡是抗压强度大于 200MPa勺岩石都归入I级。 这种方法比较简单,而且在一定程度上反映了岩石的客观性质。但它也还存在着一些缺点: (1)岩石的坚固性虽概括了岩石的各种属性(如岩石的凿岩性、爆破性,稳定性等),但在有些情况下这些属性并不是完全一致的。 (2)普氏分级法采用实验室测定来代替现场测定,这就不可避免 地带来因应力状态的改变而造成的坚固程度上的误差。

表1-9按坚固性系数对岩石可钻性分级表

中国石油大学华东-润湿性

中国石油大学 渗流物理 实验报告 实验日期: 2017.9.12 成绩: 班级: 石工1504 学号: 1502010404 姓名: 张蕾 教师: 张俨彬 同组者: 宋学玲 岩石润湿性测定实验 一.实验目的 1.了解光学投影法测定岩石润湿角的原理及方法; 2.了解界面张力的测定原理及方法; 3.加深对岩石润湿性、界面张力的认识。 二.实验原理 1.光学投影法测定岩石润湿角 液体对固体表面的润湿情况可以通过直接测定接触角来确定。将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ: D h tg 22= θ 式中, θ—润湿角,°; h —液滴高度,mm ; D —液滴和固体表面接触的弦长,mm 。 图1 投影法润湿角示意图 2.悬滴法测定液滴界面张力 悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为 10-1~10-2 mN/m 。 液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。测量液滴的相关参数,利用下式计算界面张力: , 21ρρρ-=Δ , e sn n d d S = 式中,σ—界面张力,mN/m ; 2 e gd H ρσ?=

21ρρ、—待测两相流体的密度,g/cm3; ρ?—两相待测试样的密度差,g/cm3; e d —实际液滴的最大水平直径,cm ; sn d —从液滴底部算起,高度为e d n 10高度处液滴的直径,cm ; n S —液滴e d n 10高度处的直径与最大直径的比值; H —液滴形态的修正值,由n S 查表得到。 a )烧杯中气泡或液滴形状 ( b ) 气泡或液滴放大图 图2 悬滴法测界面张力示意图 三.实验仪器 图3 HARKE-SPCA 接触角测定仪器

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

岩石物理试验实施细则

土工作业指导书岩石物理试验实施细则 文件编号: 版本号: 编制: 批准: 生效日期:

岩石物理试验实施细则 一、含水率试验 1.试验方法 岩石含水率试验应采用烘干法,并适用于不含结晶水矿物的岩石。 2. 试件应符合下列要求: 2.1保持天然含水率的试件应在现场采取,不得采用爆破或湿钻法。试件在采取、运输、储存和制备过程中,含水率的变化不应超过1%。 2.2每个试件的尺寸应大于组成岩石最大颗粒的10倍。 2.3每个试件的质量不得小于40g。 2.4每组试验试件的数量不宜少于5个。 3.试件描述应包括下列内容: 3.1岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等。 3.2为保持试件含水状态所采取的措施。 4. 主要仪器和设备应包括下列各项: 4.1烘箱和干燥器。 4.2天平。 5. 试验应按下列步骤进行: 5.1称制备好的试件质量。 5.2将试件置于烘箱内,在105~110℃的恒温下烘干试件。 5.3将试件从烘箱中取出,放入干燥器内冷却至室温,称试件质量。 5.4重复本条5.2、5.3程序,直到将试件烘干至恒量为止,即相邻24h两次称量之差不超过后一次称量的0.1%。 5.5称量精确至0.01g。 6. 试验成果整理应符合下列要求:

6.1按下列公式计算岩石含水率: 0100s s m m m ω-= ? 式中ω-----岩石含水率(%); 0m -----试样烘干前的质量(g ); s m -----干试样的质量。 6.2计算值精确至0.1。 6.3含水率试验记录应包括工程名称、试件编号、试件描述、试件烘干前后的质量。 二、颗粒密度试验 1.试验方法 岩石颗粒密度试验应采用比重瓶法,并适用于各类岩石。 2.试件应符合下列要求: 2.1将岩石用粉碎机粉碎成岩粉,使之全部通过0.25mm 筛孔,用磁铁吸去铁屑。 2.2对含有磁性矿物的岩石,ω应采用瓷研钵或玛瑙研钵粉碎岩石,使全部通过0.25mm 筛孔。 3.试件描述应包括下列内容: 3.1粉碎前应描述岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等。 3.2岩石的粉碎方法。 4. 主要仪器和设备应包括下列各项: 4.1粉碎机、瓷研钵或玛瑙研钵、磁铁块和孔径为0.25mm 的筛。 4.2天平。 4.3烘箱和干燥器。 4.4真空抽气设备和煮沸设备。 4.5恒温水槽。

第二章岩石物性分析方法2

第二章
第二章 储层岩石物性参数的确定 及应用
第三节
特殊岩心分析
1、油水界面张力
研究内容
第一节 取心及分析方法 第二节 常规岩心分析 第三节 特殊岩心分析
2、岩石润湿性 3、岩石毛管力曲线 4、岩石相对渗透率曲线
第三节 特殊岩心分析
第二章
第三节 特殊岩心分析
第二章
1、油水界面张力测定
1)界面张力定义
1、油水界面张力测定
σ
a
(1)吊板法:
吊板平衡时受到的拉力为:
定义1:界面单位面积上所具有的界面能的大 小。 U σ = s 焦耳= 1牛? m = 牛 m A m2 m2
b
F = σ1.2COS ? L θ
L——吊板的周长;
定义2: 作用于单位界面长度上的
收缩力,亦称为界面张力。 注:吊板为亲水的表 面光滑的人造或天然 材料;所用油、水及 温度应保持与油藏条 件相同。
2)界面张力测定
界面张力的测定方法很多,如液滴(气泡)最大压力法、 吊板法,悬滴法等。
第三节 特殊岩心分析
第二章
第三节 特殊岩心分析
第二章
(2)最大气泡法原理:
2、岩石润湿性测定 (1)吊板法测润湿角 Pc = 2 δ cos θ r (2)光学投影法测润湿角
Pc max =
2δ r
P max = ρghamx c
Pcmax-液滴形成过程中的最大压差,达因/厘米2 测量时控制分液漏斗的开关,控制气泡或液珠形成的速 度,记录压差计的最大压力。 如何设计测定高温高压下的界面张力?
tg
θ
2
=
2h D
?矿物表面要求十分光滑、洁净,液体必须模拟油藏条件;常用 石英代表砂岩;用方解石表面代表碳酸岩。 ?液滴要有一定的稳定时间(几天,甚至数月),否则润湿角相差很 大。
1

岩石硬度分级标准

岩石硬度分级标准 岩石级别坚固程度代表性岩石 Ⅰ最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他 各种特别坚固的岩石。(f=20) Ⅱ很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固 的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿 脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁 矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾 石。(f=4) Ⅴa中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏, 无烟煤,破碎的砂岩和石质土壤.(f=2) Ⅵa比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎 石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6)

Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤. (f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A 表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。 坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f值)。 坚固性系数f=R/100 (R单位 kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用的普氏岩石分及法就是根据坚固性系数来进行岩石分级的。 如: ① 极坚固岩石 f=15~20(坚固的花岗岩,石灰岩,石英岩等) ② 坚硬岩石 f=8 ~10(如不坚固的花岗岩,坚固的砂岩等) ③ 中等坚固岩石 f=4 ~6 (如普通砂岩,铁矿等) ④ 不坚固岩石 f=0.8~3 (如黄土、仅为0.3) 矿岩的坚固性也是一种抵抗外力的性质,但它与矿岩的强度却是两种不同的概念。 强度是指矿岩抵抗压缩,拉伸,弯曲及剪切等单向作用的性能。而坚固性所抵抗的外力却是一种综合的外力。(如抵抗锹,稿,机械碎破,炸药的综合作用力)。

岩石软硬界定

岩石按岩体分级标准GB50218-94是如何进行工程分类的? 岩石级别坚固程度代表性岩石 Ⅰ最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他 各种特别坚固的岩石。(f=20) Ⅱ很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固 的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿 脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa 坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁 矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa 比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾 石。(f=4) Ⅴa 中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏, 无烟煤,破碎的砂岩和石质土壤.(f=2) Ⅵa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎 石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa 软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6) Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤. (f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A 表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f值)。 坚固性系数f=R/100 (R单位kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用的普氏岩石分及法就是根据坚固性系数来进行岩石分级的。 如: ①极坚固岩石f=15~20(坚固的花岗岩,石灰岩,石英岩等) ②坚硬岩石f=8 ~10(如不坚固的花岗岩,坚固的砂岩等) ③中等坚固岩石f=4 ~6 (如普通砂岩,铁矿等) ④不坚固岩石f=0.8~3 (如黄土、仅为0.3) 矿岩的坚固性也是一种抵抗外力的性质,但它与矿岩的强度却是两种不同的概念。

岩石的吸水性试验作业指导书

岩石的吸水性试验作业指导书 1依据标准:《公路工程岩石试验规程》JTG E41-2005; 2试验目的及试验范围: 2.1吸水性用吸水率和饱水率来表示。岩石的吸水率和饱水率能有效地反映岩石微裂隙的发育程度,可以用判断岩石的抗冻和抗风化性能。 2.2岩石的吸水率采用自由吸水法测定,饱和吸水率采用煮沸法或真空抽气法测定。 2.3本试验适用于遇水不崩解,不溶解或不干缩湿胀的岩石。3试验环境:进入试验室内先检查温湿度仪,并在记录中注明试验时室内的温湿度。 4试验准备: 4.1试验仪器

4.2试样制备 4.2.1规则试样制备 4.2.1.1建筑地基的岩石试验,采用圆柱体作为标准试件,直径为50mm±2mm、高径比为2:1。每组试件共6个。 4.2.1.2桥梁工程用的石料试验,采用立方体作为标准试件,直径为70mm±2mm、每组试件共6个。 4.2.1.3路面工程用的石料试验,采用圆柱体或立方体作为标准试件,直径或边长均为50mm±2mm、每组试件共6个。 4.2.2不规则试样宜采用边长或直径为40mm—50mm的浑圆形岩块。 5.试验步骤:依据《公路工程岩石试验规程JTG E41-2005》T0205-2005试验方法进行试验。 6.试验结果整理: 6.1岩石的吸水率和饱水率分别按公式(T0205-1)、(T0205-2)计算:精确到0.1% m1-m

w a= ————×100 (T0205-1) m m2-m w sa= ————×100 (T0205-2) m 式中w a—岩石吸水率,%; W sa—岩石饱和吸水率,%; m1—烘至恒量时的试件质量,g; m2—强制饱和后的试件质量,g; m—烘至恒量时的试件质量,g; 冻融后岩石的质量损失率取3个试件试验结果的算术平均值。 6.2岩石的饱水系数按公式(T0205-3)计算:精确到0.01% w a K w= ————(T0205-3) W sa 式中K w—饱水系数; 7.试验记录及报告:吸水性试验记录应包括岩石名称、试验编号、试件编号、试件描述、试验方法、干试件质量、试件浸水后质量、试件强制饱水后质量。 8.试验注意事项: 9.1试件形状可采用规则的或不规则的,如是不规则的要近似立方体。 9.2吸水时间是本试验的关键。试验证明,浸水12小时,一般可达到绝对吸水率的85%,浸水48小时,一般可达到绝

岩石力学实验方案

实验方案 实验一单轴压缩试验 一、实验得目得 以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比. 本次试验主要测定饱与状态下试样得单轴抗压强度。 二、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。 (2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。 (3)试样制备得精度应満足如下要求: a沿试样高度,直径得误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0、25°; d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。 三、主要仪器设备 1、制样设备:钻石机、切石机及磨石机. 2、测量平台、角尺、游标卡尺、放大镜、低温箱等。

3、压力试验机。 四、实验步骤 1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h; 2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息; b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4); 3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况. 五.成果整理与计算 1、按下式计算岩石得单轴抗压强度: -———-岩石单轴抗压强度,MPa; ———-最大破坏荷载,N; -—-—垂直于加载方向得试样横截面积,mm2。 2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单

岩石力学习题

岩石的物理力学性质习题 1、某岩样试件,测得容量3/9.1cm kg =γ,比重69.2=?,含水量0029=d ω试求该岩样的孔隙比v ε,孔隙度n ,饱和度s r 和干容量d γ。 2、某岩样测得其容量3/2厘米克=γ,天然含水量为W 0024=d ,及比重71.2=?,试计算该岩样的孔隙度n ,孔隙比v ε,水下容量/γ及饱和度S r 。 3、设岩石的容量 3/0025.0cm kg =γ,孔隙度n=2.5%,求其密度及比重。 4、在岩石力学中,测定岩石的抗拉强度,目前常用的是劈裂法,其计算公式为 S dt P t π2= 。拟请证明上式。 5、三块3555cm ?? 立方体试件,分别作倾角为48°,55°,64°的抗剪强度试验,其施加的最大载荷分别为4.5T,2.8T 和2T ,求岩石的C 、Φ值,并绘出抗剪强度的曲线图。 6、试用莫尔应力圆画出: (1)单向拉伸;(2)纯剪切;(3)单向压缩;(4)双向拉伸;(5)双向压缩 7、有一块几何尺寸为7×7×7cm 3的石英岩立方体试块。当试块承受20吨压力后,试块轴向缩短了0.003cm ,横向增长了0.000238cm.试求石英岩试块的弹性模量和泊松比。 8、推导马克斯威尔模型应变与时间的函数关系。 9、已知石灰岩的比重23/1048.2cm kg -?=?,容重33/102.2cm kg -?=γ,孔隙度005=n 。试求该岩石的孔隙比,单位体积的岩石孔隙体积,岩石颗粒体积和水的体积。 10、有三块几何尺寸()cm 555??相同的花岗岩试件,在自然状态下称的重量分别为312.5克,337.5克和325克。经过烘干后的恒重分别为290.4克,332.1克和311.25克。将烘干试件放入水中后测得孔隙的体积为0.753cm ,0.53cm 和0.6253cm .试求该花岗岩的容重γ,比重?,孔隙度n ,孔隙比v ε,含水量d W 和饱和度Sr 。 11、6块玄武岩试件,有3块几何尺寸是3555cm ??的立方体试件,破坏时施加最大受压载荷分别为t P 401=,t P 372=,t P 35 3=。另外3块试件,由于加工不准,几何尺寸变为31077cm ??,破坏时施加最大受压荷载分别为t P 704=,t P 675=,t P 586=,试求玄武岩的单向抗压强度。 12、已知大理岩单向抗压强度2/800cm kg s c =,内摩擦角 25=Φ,试计算侧压力为2/400cm kg 时,其三轴抗压强度为多少? 13、已知岩石的抗剪强度的C 和Φ值。试求应力圆与强度曲线的关系,求该岩石的单向抗压强度和

岩石分类及硬度级别

岩石分类及硬度级别 岩石级别坚固程度代表性岩石 Ⅰ最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他 各种特别坚固的岩石。(f=20) Ⅱ很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固 的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿 脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa 坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁 矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa 比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾 石。(f=4) Ⅴa 中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏, 无烟煤,破碎的砂岩和石质土壤.(f=2) Ⅵa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎 石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa 软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6) Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤. (f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A

表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f值)。 坚固性系数f=R/100 (R单位kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用的普氏岩石分及法就是根据坚固性系数来进行岩石分级的。 如: ①极坚固岩石f=15~20(坚固的花岗岩,石灰岩,石英岩等) ②坚硬岩石f=8 ~10(如不坚固的花岗岩,坚固的砂岩等) ③中等坚固岩石f=4 ~6 (如普通砂岩,铁矿等) ④不坚固岩石f=0.8~3 (如黄土、仅为0.3) 矿岩的坚固性也是一种抵抗外力的性质,但它与矿岩的强度却是两种不同的概念。强度是指矿岩抵抗压缩,拉伸,弯曲及剪切等单向作用的性能。而坚固性所抵抗的外力却是一种综合的外力。(如抵抗锹,稿,机械碎破,炸药的综合作用力)。

吸水率试验

吸水率试验(T 0205-2005) 4.5.1 目的与适用范围 4.5.1.1 岩石的吸水性用吸水率和饱和吸水率表示。岩石的吸水率和饱和吸水率能有效地放放映岩石微裂隙的发育程度,可用来判断岩石的抗冻和抗风化等性能。 4.5.1.2 岩石吸水率采用自由吸水法测定,饱和吸水率采用沸煮法或真空抽气法测定。 4.5.1.3 本试验适用于遇水不崩解、不溶解或不干缩湿胀的岩石。 4.5.2 仪器设备 切石机、钻石机、磨石机等岩石试件加工设备。 天平、烘箱、抽气设备、沸煮水槽 4.5.3 试件步骤 4.5.3.1 将试件放入温度为105℃~110℃的烘箱内烘至恒重,烘干时间为12h~24h,取出置于干燥器内冷却至室温(20℃±2℃),称其质量,精确至0.01g (后同) 4.5.3.2 将称量后的试件置于盛水容器内,先注水至试件高度的1/4处,以后每隔2h分别注水至试件高度的1/2和3/4处,6h后将水加至高出试件顶面20mm,以利试件内空气逸出。试件全部被水淹没后再自由吸水48h.。 4.5.3.3 取出浸水试件,用纱布擦去试件表面水分,立即称其质量。 4.5.3.4 试件强制饱和,任选如下一种方法: 用沸煮法饱和试件:将称量后的试件放入水槽中,注水至试件高度的一半,静置2h,再加水使试件浸没,煮沸6h以上,并保持水的深度不变。煮沸停止后静置水槽,待其冷却,取出试件,用湿纱布擦去表面水分,立即称其质量。 用真空抽气法饱和试件:将称量后的试件置于真空干燥器中,注入洁净水,睡眠高出试件顶面20mm,开动抽气机,抽气时真空压力需达100kPa,保持此真空状态直至无气泡发生为止(不小于4h)。经真空抽气的试件应放置在原容器中,在大气压力下静置4h,取出试件,用湿纱布擦去表面水分,立即称其质量。

润湿性的测量方法

润湿性的测量方法 测量润湿性的方法很多,按测量目的的不同可分为两大类,即定性方法和定量方法。其中定量方法主要有接触角法、渗吸与排驱法(Amott方法)和USBM(美国矿物局)方法。定性测量方法种类很多,包括渗吸率、显微镜检测、浮选法、玻璃滑动法、相对渗透率曲线法、渗透率与饱和度关系曲线、毛管压力曲线、毛细测量法、排驱毛管压力、油藏测井曲线、核磁共振法以及染色吸附法。 一润湿性的定量测量方法 一般定量测量常用以下三种方法:(1)接触角法;(2)Amott方法(渗吸和排驱);(3)USBM 方法。 1.接触角法: 接触角法测量的是一个特定表面的润湿性。在油水系统中就是测量光滑矿物表面上油和水的润湿性。 石油工业中一般用悬滴法测量接触角,第一步要全部彻底的清洗仪器,因为即使微量的杂质也能改变润湿性。当用纯净流体和人造岩心时接触角法是最好的测量方法。此法也用来检验实验条件对润湿性的影响,如压力、温度和水的化学性质。 润湿角测量的一个问题是滞后现象。测量的接触角有前进角和后退角两种,前进角是向前推液滴边缘测得的,而后退角是向后拉测得的,二者之差就是接触角滞后。引起滞后的原因有三种:a、表面粗糙度;b、表面非均质性;c、大分子水垢的表面固定性。 将接触角用于油藏岩石的第二个问题是它仅仅反映岩石局部的润湿性,不能考虑岩石表面的非均质性。第三个限制是得不到有关岩石上是否存在永久连接有机覆盖物的信息。2.Amott方法 USBM方法和Amott方法测量的是岩心的平均润湿性。当测量天然状态岩心或恢复原态岩心时,这两种方法要好于接触角法。确定岩心是否清洗完全必须用USBM方法或Amott方法。USBM方法有时要优于Amott方法,因为后者在中性润湿附近不敏感。改进的USBM 方法可以进行USBM和Amott两种方法的指数计算。 Amott方法是把渗吸和驱替结合起来测量岩石的平均润湿性。测量之前,所用的岩心先要在水中通过离心作用直至达到残余油饱和度(ROS),然后才可进行Amott方法实验。 Amott方法主要由以下四步组成: ①将岩心浸入油中,20小时后测量被油的自发吸入所排出的水的体积; ②岩心在油中离心达到束缚水饱和度(IWS),测量排出的水的总量; ③将岩心浸入水中,20小时后测量被水的自吸排出的油的体积; ④在水中离心直至达到残余油饱和度,测量排出的油的总量。 注意:岩心可能是通过流动而不是离心达到ROS和IWS,尤其对于不能用离心机的非固态物质必须如此。 分别引入油驱比和水驱比的定义如下: 油驱比: 水驱比: 其中δo--- 油驱比 δw--- 水驱比 Vwsp--- 通过油的自吸所排出的水的体积 V osp--- 通过水的自吸所排出的油的体积

中国石油大学(华东)岩石润湿性测定实验

岩石润湿性测定实验 一、实验目的 1、了解光学投影法测定岩石润湿角的原理和方法; 2、了解界面张力的测定原理和方法; 3、加深对岩石润湿性、界面张力的认识。 二.实验原理 1.光学投影法测定岩石润湿角 液体对固体表面的润湿情况可以通过直接测定接触角来确定。将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h和它与岩石接触处的长度D,按下式计算接触角θ: 2h tg= 2D 式中,θ—润湿角,°; h—液滴高度,mm; D—液滴和固体表面接触的弦长,mm。 图1 投影法润湿角示意图 2.悬滴法测定液滴界面张力 悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为10-1~10-2mN m。

液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。测量液滴的相关参数,利用下式计算界面张力: 2 gd =H ερσ? ,12=ρρρ?- ,sn n d =d S ε 式中,σ—界面张力,mN m ; 12ρρ、 —待测两相流体的密度,3 g cm ; ρ?—两相待测试样的密度差,3g cm ; d ε—实际液滴的最大水平直径,cm ; sn d —从液滴底部算起,高度为n d 10 ε高度处液滴的直径,cm ; n S —液滴 n d 10 ε高度处的直径与最大直径的比值; H —液滴形态的修正值,由n S 查表得到。 (a )烧杯中气泡或液滴形状 (b )气泡或液滴放大图 图2 悬滴法测界面张力示意图 三、实验仪器

岩石作业指导书详解

参照规程编号JTG E41-2005 文件编号HNHW-ZD-002-13 T 0221一2005岩石单轴抗压强度试验 1目的和适用范围 单轴抗压强度试验是测定规则形状岩石试件单轴抗压强度的方法,主要用于岩石的分级和岩性描述。 本法采用饱和状态下的岩石立方体(或圆住体)试件一的抗压强度来评定岩石强度(包括碎石或卵石的原始岩石强度)。 在某些情况下,试件含水状态还可根据需要选择天然状态、烘干状态或冻融循环后状态。试件的含水状态要在试验报告中注明。 2 仪器设备 (1)压力试验机或万能试验机。 (2)钻石机、切石机、磨石机等岩石试件加工设备。 (3)烘箱、于燥器、游标卡尺、角尺及水池等。 3试件制备 3.1建筑地基的岩石试验,采用圆柱体作为标准试件,直径为50mm±2mm、高径比为2:1. 每组试件共6个. 3.2 桥梁工程用的石料试验,采用立方体试件,边长为70mm±2mm。每组试件共6个 3.3 路面工程用的石料试验,采用圆柱体或立方体试件,其直径或边长和高均为50mm ±2mm。每组试件共6个 有显著层理的岩石,分别沿平行和垂直层理方向各取试件6个。试件上、下端面应平行和磨平,试件端面的平面度公差应小于0.05 mm,端面对于试件轴线垂直度偏差不应超过0.250。对于非标准圆柱体试件,试验后抗压强度试验值按本章条文说明中公式(TO221一3)进行换算。 4试验步骤 4.1用游标卡尺量取试件尺寸(精确至0.1mm),对立方体试件在顶面和底面上各量取其边长,以各个面上相互平行的两个边长的算术平均值计算其承压面积;对于圆柱体试件在顶面和底面分别测量两个相互正交的直径,并以其各自的算术平均值分别计算底面和顶面的面积,取其顶面和底面面积的算术平均值作为计算抗压强度所用的截面积。 4.2试件的含水状态可根据需要选择烘干状态、天然状态、饱和状态、冻融循环后状态。试件烘千和饱和状态应符合本规程T 0205中相关条款的规定,试件冻融循环后状态

岩石的基本物理力学性质及其试验方法

第一讲岩石的基本物理力学性质及其试验方法(之一) 一、内容提要: 本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。 二、重点、难点: 岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。 一、概述 岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。 所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。岩体是指在一定工程范围内的自然地质体。通常认为岩体是由岩石和结构面组成。所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。 【例题1】岩石按其成因可分为( )三大类。 A.火成岩、沉积岩、变质岩 B.花岗岩、砂页岩、片麻岩 C.火成岩、深成岩、浅成岩 D.坚硬岩、硬岩、软岩答案:A 【例题2】片麻岩属于( )。 A.火成岩 B. 沉积岩 C. 变质岩 答案:C 【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。 A.岩石的种类 B.岩石的矿物组成 C.结构面的力学特性 D.岩石的体积大小答案:C 二、岩石的基本物理力学性质及其试验方法 (一)岩石的质量指标 与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。 1岩石的颗粒密度(原称为比重) 岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。岩石颗粒密度通常采用比重瓶法来求得。其试验方法见相关的国家标准。岩石颗粒密度可按下式计算 2岩石的块体密度 岩石的块体密度是指单位体积岩块的质量。按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。 (1)岩石的干密度 岩石的干密度通常是指在烘干状态下岩块单位体积的质量。该指标一般都采用量积法求得。即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不平整度误差不得大于0.05mm;端面垂直于试件轴线,最大偏差不得大于0.25。)。测量试件直径或边长以及高度后,将试件置于烘箱中,在105~110℃的恒温下烘24h,再将试件放入干燥器内冷却至重温,最后称试件的质量。岩块干

岩石硬度分级

也难以凿岩,难以爆破,则它们的硬度也比较大,概括地说就是比较坚固。因此人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。 坚固性大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数(f值)。 坚固性系数f=R/100(R单位 Kg/cm2) R-岩石标准试样的单向极限抗压强度值。如: ①极坚固岩石f=15~20(坚固的花岗岩、石英岩、石灰岩等) ②坚固岩石f=8~10(不坚固的花岗岩,坚固的砂岩等) ③中等坚固岩石f=4~6(普通砂岩,铁矿等) ④不坚固岩石f=~3(如黄土,仅为) 矿岩的坚固性也是一种抵抗外力的性质,但它与矿岩的强度却是两种不同的概念。强度是指矿岩 抗压缩、拉伸、弯曲及剪切等单向作用的性能,而坚固性所抵抗的外力却是一种综合的外力(如抵抗锹、镐、机械破碎,炸药的综合作用力)。 莫氏硬度 陶瓷及矿物材料常用的划痕硬度叫做莫氏硬度,它只表示硬度由小到大的顺序,不表示软硬的程度。后面的矿物可以划破前面矿物的表面。一般莫氏硬度按10级标准的莫氏硬度计确定,后来因为出现了一些人工合成的硬度大的材料,又将莫氏硬度分为15级。 维氏硬度 在陶瓷材料的研究中,精确测定材料的硬度,通常在维氏显微硬度计上进行。 岩石分级

岩石可分三大类:1、岩浆岩(喷出岩)2、沉积岩 3、变质岩 1、岩浆岩主要有:花岗岩、安山岩、闪长岩、流纹岩、玄武岩、辉长岩等。 2、沉积岩主要有:石英砂岩、石灰砾岩、泥铁岩、白云岩、泥岩、石膏等。 3、变质岩主要有:片麻岩、绿泥石片岩、千枚岩、大理岩、云母片岩等。 虽然岩石的面貌是千变万化的,但是从它们的形成环境,也就是从成因上来划分,可以把岩石分为三大类:沉积岩、岩浆岩和变质岩 1、沉积岩:沉积岩是在地表或近地表不太深的地方形成的一种岩石类型,它是由风化产物、火山 物质、有机物质等碎屑物质在常温常压下经过搬运、沉积和石化作用,最后形成的岩石。不论哪种方式形成的碎屑物质都要经过搬运过程,然后在合适的环境中沉积下来,经过漫长的压实作用,石化成坚硬的沉积岩。沉积岩依照沉积物颗粒的大小又分砾岩、砂岩、页岩、石灰岩。 沉积岩的形成:1、风化侵蚀:在河流上的大石头,经年累月被侵蚀风华,逐渐崩解成小的泥沙、碎屑。2、搬运:这些碎屑被水流从上游搬运到下游。3、堆积:下游流速减缓,搬运力减小,岩石碎屑便沉积下来。4、压密:新的沉积物压在旧的沉积物上,时间久了,底下的沉积物被压得较紧实。5、胶结:地下水经过沉积物的孔隙,带来的矿物质填满孔隙,使岩石碎屑颗粒紧紧胶结在一起,形成沉积岩。6、露出:沉积在海底的沉积岩层在板块运动的推挤下拱出海面,露出地表。 2、岩浆岩:岩浆岩也叫火成岩,是在地壳深处或上地幔中形成的岩浆,在侵入到地壳上部或者喷 出地表冷却凝固并经过结晶作用形成的岩石。因为它形成的条件和沉积岩差别很大,因此它的特点也与沉积岩明显不同。岩浆岩又分安山岩、玄武岩、花岗岩。有地底岩浆冷却凝固形成。 由于岩浆成分和冷却方式不同,便形成不同的火成岩。岩浆岩的形成:1、安山岩:岩浆由火山口喷出地面,快速冷却形成。2、玄武岩:岩浆经由缓和喷发漫流而出,逐渐冷凝形成的。3、花岗岩:岩浆并不喷出地面,而是在地下慢慢冷却形成的。 3、变质岩:在地壳形成和发展过程中,早先形成的岩石,包括沉积岩、岩浆岩,由于后来地质环 境和物理化学条件的变化,在固态情况下发生了矿物组成调整、结构构造改变甚至化学成分的变化,从而形成一种新的岩石,这种岩石被称为变质岩。变质岩是大陆地壳中最主要的岩石类型之一。变质岩又分板岩、片岩、片麻岩、大理石。变质岩的形成:1、为变质前的岩层:由于沉积或火山作用,堆积出一层层岩层。2、挤压岩层:在强大压力和摩擦力作用下,产生温度和压力,使得深埋在地下岩石发生变质作用。3、变质成新岩石:岩石里分散排布的矿物结晶会呈规矩排列,或生出新矿物来,而变成各种新的变质岩。 在全球陆地表面,沉积岩覆盖了75%,岩浆岩和变质岩占陆地面积1/4。但是到了地下深处,沉积岩逐渐变成了少数民族。在整个地壳中,沉积岩只占地壳体积的8%,变质岩占了27%,剩下的65%都是岩浆岩。

岩石力学实验-煤和岩石吸水性测定实验

实验八、岩石吸水性测定 一、实验目的 煤和岩石吸水率分为强制吸水率和自然吸水率,煤和岩石自然吸水率是指煤和岩石在标准大气压力和室温条件下吸入水的质量与试件固体质量的比值,煤和岩石强制吸水率是指煤和岩石在强制状态下最大吸入水的质量与试件固体质量的比值。通过本实验,要了解煤(岩石)自然吸水率测试程序及测试仪器设备,掌握煤(岩石)自然吸水率测试过程及计算方法。 二、实验仪器及工具 1、干燥器 2、天平 3、水盆 三、实验原理 实验的自然吸水率应按照下式计算: ?1)×100% ωz=(M1 M 式中 ωz—煤或岩石的自然吸水率; M—试件烘干后的质量,g; M1—试件自然饱和吸水后的质量,g。 四、实验步骤 自然吸水率的测定 (1)将试件放在105~110°C的烘箱中干燥24h,取出试件,放在干燥器中冷却至室温,称重得M。 (2)在盛水容器中放置几根直径相同的玻璃棒,每根玻璃棒间距 1~2cm,将岩块架在玻璃棒上,每个试件间距1~2cm。 (3)向容器中注水至试件的四分之一高度,以后每隔2h注水一次,每次注水量为使容器液面升高数值等于试件高度的四分之一,直至最后液面高出试件1~2cm为止。 (4)24h后将试件取出,用湿毛巾擦去表面水分,第一次称重。称重后仍放回盛水容器中,以后每隔24h称重一次,直至前后两次质量差不超过0.01g为止。最后一次的称重即为试件吸水后的质量M1。 五、实验现象及数据记录

六、实验结果及数据分析 将实验数据带入上述公式得: ?1)×100% ωz=(M1 M =1.56% 即所测试件的自然饱和吸水率为1.56%。 七、心得体会 通过本次实验,我学会了如何测定煤和岩石的含水率,并对所得数据进行处理,且了解到自然吸水率与强制吸水率的不同之处。煤岩物理性质的研究对于井下环境的判断有重大影响,做好基础研究是矿山安全的重要保障。

岩石硬度分级

1、按岩石的单轴抗压强度RC分类 用岩块单轴抗压强度进行分类,简单、早期,因此在工程上采 用了较长的时间(普氏系数)。 (一)岩石单轴抗压强度分类(表5-1) 由于岩石点荷载试验可在现场测定,数量多而简便,所以用点荷载强度指标分类得到重视。由伦敦地质学会与Franklin等人提出, 见图5-1

一)斯梯尼(Stini)分类 根据巷道围岩的稳定性进行分类,如表5-2所示。

(二)前苏联巴库地铁分类 根据岩石抗压强度、工程地质条件和开挖时岩体稳定破坏现象,分四类,并有相应的施工措施,见表5-3

岩石硬度分级 岩石级别坚固程度代表性岩石 I 最坚固最坚固、致密、有韧性的石英岩、玄武岩和其它各种特别坚固的岩石。(f=20) II 很坚固很坚固的花岗岩、石英斑岩、硅质片岩、较坚固的石英岩、最坚固的砂岩和石灰岩。(f=15) III 坚固致密的花岗岩、很坚固的砂岩和石灰岩、石英矿脉、坚固的砾岩、很坚固的铁矿石。(f=10) IIIa 坚固坚固的砂岩、石灰岩、大理石、白云岩、黄铁矿、不坚固的花岗岩。(f=8) IV 比较坚固一般的砂岩、铁矿石。(f=6) IVa 比较坚固砂质页岩、页岩质砂岩。(f=5) V 中等坚固坚固的泥质页岩、不坚固的砂岩和石灰岩、软砾石。(f=4)Va 中等坚固各种不坚固的页岩、致密的泥灰岩。(f=3) VI 比较软软弱页岩、很软的石灰岩、白垩、盐岩、石膏、无烟煤、破碎的砂岩和石质土壤。(f=2) VIa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎石,坚固的煤,硬化的粘土。(f=1.5) VII 软软致密粘土、较软的煤、坚固的冲击土层、粘土质土壤。(f=1)VIIa 软软砂质粘土、砾石,黄土。(f=0.8)

相关文档
最新文档