2014年上海市高考数学试卷(理科)

2014年上海市高考数学试卷(理科)
2014年上海市高考数学试卷(理科)

2014年上海市高考数学试卷(理科)

一、填空题(共14题,满分56分)

1.(4分)函数y=1﹣2cos2(2x)的最小正周期是.

2.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)?=.

3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程.

4.(4分)设f(x)=,若f(2)=4,则a的取值范围为.

5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为.

6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).

7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.

8.(4分)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.

9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).

11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.

13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为.

14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在

C上的点P和l上的Q使得+=,则m的取值范围为.

二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分

15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()

A.充分非必要条件 B.必要非充分条件

C.充要条件D.既非充分又非必要条件

16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则?(i=1,2,…,8)的不同值的个数为()

A.1 B.2 C.3 D.4

17.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()

A.无论k,P1,P2如何,总是无解

B.无论k,P1,P2如何,总有唯一解

C.存在k,P1,P2,使之恰有两解

D.存在k,P1,P2,使之有无穷多解

18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取

值范围为()

A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]

三、解答题(共5题,满分72分)

19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.

20.(14分)设常数a≥0,函数f(x)=.

(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);

(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B 看D的仰角分别为α和β.

(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?

(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).

22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l 分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.

(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;

(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;

(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.

(1)若a2=2,a3=x,a4=9,求x的取值范围;

(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.

(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.

2014年上海市高考数学试卷(理科)

参考答案与试题解析

一、填空题(共14题,满分56分)

1.(4分)(2014?上海)函数y=1﹣2cos2(2x)的最小正周期是.

【分析】由二倍角的余弦公式化简,可得其周期.

【解答】解:y=1﹣2cos2(2x)

=﹣[2cos2(2x)﹣1]

=﹣cos4x,

∴函数的最小正周期为T==

故答案为:

【点评】本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.

2.(4分)(2014?上海)若复数z=1+2i,其中i是虚数单位,则(z+)?=6.【分析】把复数代入表达式,利用复数代数形式的混合运算化简求解即可.【解答】解:复数z=1+2i,其中i是虚数单位,

则(z+)?=

=(1+2i)(1﹣2i)+1

=1﹣4i2+1

=2+4

=6.

故答案为:6

【点评】本题考查复数代数形式的混合运算,基本知识的考查.

3.(4分)(2014?上海)若抛物线y2=2px的焦点与椭圆的右焦点重合,

则该抛物线的准线方程x=﹣2.

【分析】由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程

【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),

又y2=2px(p>0)的焦点与椭圆右焦点重合,

故=2得p=4,

∴抛物线的准线方程为x=﹣=﹣2.

故答案为:x=﹣2

【点评】本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.

4.(4分)(2014?上海)设f(x)=,若f(2)=4,则a的取

值范围为(﹣∞,2] .

【分析】可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.

【解答】解:当a>2时,f(2)=2≠4,不合题意;

当a=2时,f(2)=22=4,符合题意;

当a<2时,f(2)=22=4,符合题意;

∴a≤2,

故答案为:(﹣∞,2].

【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.

5.(4分)(2014?上海)若实数x,y满足xy=1,则x2+2y2的最小值为2.

【分析】由已知可得y=,代入要求的式子,由基本不等式可得.

【解答】解:∵xy=1,

∴y=

∴x2+2y2=x2+≥2=2,

当且仅当x2=,即x=±时取等号,

故答案为:2

【点评】本题考查基本不等式,属基础题.

6.(4分)(2014?上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).

【分析】由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.

【解答】解:设圆锥母线与轴所成角为θ,

∵圆锥的侧面积是底面积的3倍,

∴==3,

即圆锥的母线是圆锥底面半径的3倍,

故圆锥的轴截面如下图所示:

则cosθ==,

∴θ=arccos,

故答案为:arccos

【点评】本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.

7.(4分)(2014?上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C 与极轴的交点到极点的距离是.

【分析】由题意,θ=0,可得C与极轴的交点到极点的距离.

【解答】解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,

∴C与极轴的交点到极点的距离是ρ=.

故答案为:.

【点评】正确理解C与极轴的交点到极点的距离是解题的关键.

8.(4分)(2014?上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.

【分析】由已知条件推导出a1=,由此能求出q的值.

【解答】解:∵无穷等比数列{a n}的公比为q,

a 1=(a3+a4+…a n)

=(﹣a 1﹣a1q)

=,

∴q2+q﹣1=0,

解得q=或q=(舍).

故答案为:.

【点评】本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.

9.(4分)(2014?上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).

【分析】直接利用已知条件转化不等式求解即可.

【解答】解:f(x)=﹣,若满足f(x)<0,

即<,

∴,

∵y=是增函数,

∴的解集为:(0,1).

故答案为:(0,1).

【点评】本题考查指数不等式的解法,指数函数的单调性的应用,考查计算能力.

10.(4分)(2014?上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).

【分析】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,

再求选择的3天恰好为连续3天的情况,即可得到答案.

【解答】解:在未来的连续10天中随机选择3天共有种情况,

其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),

(5,6,7),(6,7,8),(7,8,9),(8,9,10),

∴选择的3天恰好为连续3天的概率是,

故答案为:.

【点评】本题考查古典概型以及概率计算公式,属基础题.

11.(4分)(2014?上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,

b2},则a+b=﹣1.

【分析】根据集合相等的条件,得到元素关系,即可得到结论.

【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},

则①或②,

由①得,

∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.

若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,

∵互异的复数a,b,

∴b﹣a≠0,即a+b=﹣1,

故答案为:﹣1.

【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.

12.(4分)(2014?上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.

【分析】先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.

【解答】解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,

如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,

令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,

∴x1+x2+x3=0++2π=.

故答案为:

【点评】本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.

13.(4分)(2014?上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为0.2.

【分析】设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.

【解答】解:设小白得5分的概率至少为x,

则由题意知小白得1,2,3,4分的概率为1﹣x,

∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,

E(ξ)=4.2,

∴4(1﹣x)+5x=4.2,

解得x=0.2.

故答案为:0.2.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.

14.(4分)(2014?上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3] .【分析】通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.

【解答】解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且x P∈[﹣2,0],

对于点A(m,0),存在C上的点P和l上的Q使得+=,

说明A是PQ的中点,Q的横坐标x=6,

∴m=∈[2,3].

故答案为:[2,3].

【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想.

二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分

15.(5分)(2014?上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件 B.必要非充分条件

C.充要条件D.既非充分又非必要条件

【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.

【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,

若a>2且b>2,则必有a+b>4,即必要性成立,

故“a+b>4”是“a>2且b>2”的必要不充分条件,

故选:B.

【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.

16.(5分)(2014?上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则?(i=1,2,…,8)的不同值的个数为()

A.1 B.2 C.3 D.4

【分析】建立空适当的间直角坐标系,利用坐标计算可得答案.

【解答】解:=,

则?=()=||2+,

∵,

∴?=||2=1,

∴?(i=1,2,…,8)的不同值的个数为1,

故选A.

【点评】本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.

17.(5分)(2014?上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()

A.无论k,P1,P2如何,总是无解

B.无论k,P1,P2如何,总有唯一解

C.存在k,P1,P2,使之恰有两解

D.存在k,P1,P2,使之有无穷多解

【分析】判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.

【解答】解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,

∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2

﹣a1=a2﹣a1

①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,

即(a1﹣a2)x=b2﹣b1.

∴方程组有唯一解.

故选:B.

【点评】本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解和指数的应用.

18.(5分)(2014?上海)设f(x)=,若f(0)是f(x)的最小

值,则a的取值范围为()

A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]

【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.

【解答】解;当a<0时,显然f(0)不是f(x)的最小值,

当a≥0时,f(0)=a2,

由题意得:a2≤x++a,

解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,

∴0≤a≤2,

故选:D.

【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.

三、解答题(共5题,满分72分)

19.(12分)(2014?上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.

【分析】利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.

【解答】解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,

∴∠P1=60°,同理∠P2=∠P3=60°,

∴△P1P2P3是等边三角形,P﹣ABC是正四面体,

∴△P1P2P3的边长为4,

V P﹣ABC==

【点评】本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法.

20.(14分)(2014?上海)设常数a≥0,函数f(x)=.

(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);

(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.

【分析】(1)根据反函数的定义,即可求出,

(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.

【解答】解:(1)∵a=4,

∴,

∴,

∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,

∴=,整理可得a(2x﹣2﹣x)=0.

∵2x﹣2﹣x不恒为0,

∴a=0,此时f(x)=1,x∈R,满足条件;

若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,

∴=﹣,整理可得a2﹣1=0,

∴a=±1,

∵a≥0,

∴a=1,

此时f(x)=,满足条件;

当a>0且a≠1时,f(x)为非奇非偶函数

综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.当a>0且a≠1时,f(x)为非奇非偶函数

【点评】本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.

21.(14分)(2014?上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.

(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?

(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).

【分析】(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论.

(2)利用正弦定理,建立方程关系,即可得到结论.

【解答】解:(1)设CD的长为x米,则tanα=,tanβ=,

∵0,

∴tanα≥tan2β>0,

∴tan,

即=,

解得0≈28.28,

即CD的长至多为28.28米.

(2)设DB=a,DA=b,CD=m,

则∠ADB=180°﹣α﹣β=123.43°,

由正弦定理得,

即a=,

∴m=≈26.93,

答:CD的长为26.93米.

【点评】本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键.

22.(16分)(2014?上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.

(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;

(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;

(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.

【分析】(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.

(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.

(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.

【解答】(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,

∴点(1,2)、(﹣1,0)被直线x+y﹣1=0分隔.

(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有1﹣4k2≤0,

∴k≤﹣,或k≥.

曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔.

(3)证明:设点M(x,y),则?|x|=1,故曲线E的方程为[x2+(y ﹣2)2]x2=1 ①.

y轴为x=0,显然与方程①联立无解.

又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,

故x=0是一条分隔线.

若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx ﹣2)2]x2=1,

令f(x)=[x2+(kx﹣2)2]x2﹣1,

∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0没有实数解,

k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0没有实数解,

即y=kx与E有公共点,

∴y=kx不是E的分隔线.

∴通过原点的直线中,有且仅有一条直线是E的分隔线.

【点评】本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档

题.

23.(16分)(2014?上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;

(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.

(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.

【分析】(1)依题意:,又将已知代入求出x 的范围;

(2)先求出通项:,由求出,对q分类讨论求出S n分别代入不等式S n≤S n+1≤3S n,得到关于q的不等式组,解不等式组求出q的范围.

(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…a k的公差.

【解答】解:(1)依题意:,

∴;又

∴3≤x≤27,

综上可得:3≤x≤6

(2)由已知得,,,

∴,

当q=1时,S n=n,S n≤S n+1≤3S n,即,成立.

当1<q≤3时,,S n≤S n+1≤3S n,即,

不等式

∵q>1,故3q n+1﹣q n﹣2=q n(3q﹣1)﹣2>2q n﹣2>0对于不等式q n+1﹣3q n+2≤0,令n=1,

得q2﹣3q+2≤0,

解得1≤q≤2,又当1≤q≤2,q﹣3<0,

∴q n+1﹣3q n+2=q n(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,

∴1<q≤2,

当时,

,S n≤S n+1≤3S n,即,

∴此不等式即,

3q﹣1>0,q﹣3<0,

3q n+1﹣q n﹣2=q n(3q﹣1)﹣2<2q n﹣2<0,

q n+1﹣3q n+2=q n(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0

∴时,不等式恒成立,

上,q的取值范围为:.

(3)设a1,a2,…a k的公差为d.由,且a1=1,

当n=1时,﹣≤d≤2;

当n=2,3,…,k﹣1时,由,得d≥,

所以d≥,

所以1000=k,即k2﹣2000k+1000≤0,

得k≤1999

相关主题
相关文档
最新文档