活塞环热处理工艺

活塞环热处理工艺
活塞环热处理工艺

活塞环热处理工艺

随着现代发动机向高转速、高负荷、低排放方向发展,在对活塞环的材料提出越来越高要求的同时,对表面处理也提出了更高的要求,活塞环材料的时效、调质、气体氮化、离子氮化及渗陶处理工艺应用越来越广。

活塞环是发动机的核心零部件之一,其在发动机中的主要作用在于密封、传热、控油润滑和支承,因此,活塞环材料应具有适合的强度、硬度、弹性和抗疲惫性能,优良的耐磨性、耐热和耐蚀性能。随着现代发动机向高转速、高负荷、低排放方向发展,在对活塞环的材料提出越来越高要求的同时,对表面处理也提出了更高的要求,越来越多的热处理新技术已经或者正在被应用于活塞环的热处理,如离子氮化,表面渗陶、纳米技术等。

我公司活塞环的热处理从对普通合金铸铁活塞环的时效往应力、球墨铸铁活塞环的调质,多元合金铸铁活塞环的调质发展到钢环的气体氮化、铸铁环的离子氮化及活塞环表面浸渗陶瓷复合处理。本文主要就这些活塞环的热处理工艺作扼要介绍。

时效往应力处理

活塞环属于薄壁件,除铸造内应力外,在金加工过程中还存在加工应力。而活塞环产品一般对挠曲度要求不大于0.06mm,如不经过期效处理,这一指标靠加工控制是很难达到的,有时即使大大降低加工切屑速度也无法满足要求。而假如使用时效处理,在不降低生产效率的基础上还能消除加工过程中产生的环体挠曲变形,确保环体挠曲度符合技术要求。

固然如此,因活塞环环体较薄,在时效过程中,活塞环开口部位会由于整个环体应力开释而出现收缩现象,如收缩过大,则会造成成品环漏光等缺陷。在生产过程中,我们通过大量的对比试验,针对不同材料的环体采用不同的时效工艺,既消除了活塞环的挠曲题目,又避免了活塞环的漏光缺陷,确保了产品的质量。本公司采用的时效工艺为:500℃ 580℃×1.5 2.5h。

退火、调质处理

1、退火处理

为确保活塞环铸造毛坯的内在质量,球铁环和多元合金铸铁环多采用单体双片铸造工艺进行生产。毛坯铸态组织硬度较高,割片加工难度较大,需对铸态毛坯进行退火处理。

对于球墨铸铁活塞环,因其铸态基体中碳化物量可以通过采用公道的熔炼工艺来得到控制,故降低基体硬度只需对基体中的针状组织和珠光体组织进行低温退火即可。本公司球墨铸铁环退火工艺为:600℃ 760℃×1.5 2.5h。

对于多元合金铸铁活塞环,因其铸态组织中含有10%左右的合金碳化物,需使其进行一定程度的分解,为避免毛坯在退火过程中形成较厚的脱碳层,本公司采用真空光亮退火炉对多元合金铸铁活塞环毛坯进行高温退火处理,处理工艺为:920℃ 1000℃×2 4h,随炉冷却。

2、调质处理

本公司采用三条调质炉生产线对割片后球墨铸铁活塞环和多元合金铸铁活环进行调质处理,球墨铸铁活塞环调质工艺为:淬火900℃ 980℃×1 3h,油淬;回火:450℃ 600℃×1 2h。多元合金铸铁活塞环调质工艺为:淬火910℃ 990℃×1 3h,油淬;回火:500℃ 650℃×1 2h。

3、调质后的力学性能

球墨铸铁活塞环调质后的基体组织为:回火索氏体或回火屈氏体,游离碳化物≤3%,铁素体≤5%,硬度:100(112 HRB,抗弯强度:≥1300 MPa,弹性模数:≥150 GPa,热稳定性(弹力消失率):300℃×3h,切向弹力最大消失率8%。多元合金铸铁活塞环调质的基体组织为:回火索氏体,细小弥散分布硬质相及条块状的游离碳化物≤5%,硬度:109 116 HRB,抗弯强度:≥650 MPa,弹性模数:120 160 GPa,热稳定性(弹力消失率):300℃×3h,切向弹力最大消失率为8%。

多元合金铸铁活塞环调质的基体组织为:回火索氏体,细小弥散分布硬质相及条块状的游离碳化物≤5%,硬度:109?116 HRB,抗弯强度:≥650 MPa,弹性模数:120 160 GPa,热稳定性(弹力消失率):300℃×3h,切向弹力最大消失率为8%。

钢环气体氮化

氮化处理的钢质活塞环多采用不锈钢材料,其铬含量达13% 18%。钢质活塞环高度为1.0 1.5mm,径向厚度为2 3.5mm,采用离子氮化处理时因环体易变形,工艺控制难度较大,而采用气体氮化时,可以通过公道的装夹方式、合适的氮化工艺使钢环的氮化层达到工艺要求的厚度,而环体不出现挠曲、低头漏光等质量题目。本公司采用的氮化工艺为:480℃

540℃×4 20h,通氨气、氮气、氨气分解率为15% 40%(具体工艺根据品种和氮化层要求确定)。

离子氮化处理

离子氮化的优点有:

1、渗氮速度快;

2、渗氮层组织轻易控制,脆性小;

3、变形小,渗氮前不需要任何往钝化处理,特别适用于不锈钢;

4、轻易实现局部渗氮;

5、节约能源、本钱低;

6、污染极小。本公司拥有4套(共8台)离子氮化炉,全部采用计算机控制,主要对普通合金铸铁材料和多元合金材料进行氮化处理。

铸铁材料采用气体氮化时,氮原子主要靠沿晶界扩散的方式氮化,氮化层厚度难以达到。而采用离子氮化时,因其采用离子轰击材料表面扩渗的,渗氮速度快,故氮化工艺相对易于控制。但是,由于活塞环属于薄壁件,过程加工应力大,即使采用离子氮化炉进行氮化处理,对常规工件是属于较小变形的,对活塞环环体来说,其变形量仍不可接受,如何将氮化变形控制在更小的范围内,是活塞环离子氮化处理的主要难点。

本公司经过多年的生产与试验,使普通合金铸铁材料和多元合金材料活塞环的离子氮化处理工艺已臻成熟。目前,本公司使用的离子氮化工艺为:装炉高度350 450mm;每垛环间距≥20mm,打弧电压500 650V;真空度20 80Pa;打弧到达温度60℃ 100℃,占空比15% 25%;辉光厚度2 5mm;一段温度280℃ 320℃×20 40min,升温速率3℃ 4℃/min;二段温度320℃380℃×20 40min,升温速率2℃ 3℃/min;三段温度380℃ 480℃×20 40min,升温速率2℃3℃/min;四段氮化温度480℃ 550℃×240 720min,升温速率1℃ 2℃/min 。一段加压开始温度150℃ 300℃,气压100 200Pa,升压速率为4 6 Pa/min;二段加压开始温度250℃400℃气压200 300Pa,升压速率为2 4 Pa/min。

通过上述工艺氮化处理的普通合金铸铁材料和多元合金材料活塞环氮化层能够很好地满足客户要求,目前,本公司生产的氮化活塞环已与多家主机厂的配套。

渗浸陶瓷处理

活塞环渗浸陶瓷处理就是利低温等离子化学气相沉积技术(简称PCVD),在金属基体表面生长一层厚度为几微米陶瓷薄膜,在陶瓷渗透到金属表面几十微米的同时,金属离子也向陶瓷薄膜内部渗透,形成双向扩散,成为“金属陶瓷复合薄膜”。特别是该工艺可以在铬等半导体材料难以扩散进进的金属基体上生长该金属复合陶瓷材料。

这种“金属陶瓷复合薄膜”具有以下一些特点:

1、在300℃以下低温生长,对活塞环无任何不良影响;

2、活塞环表面金属在真空等离子状态下与氮化硼、立方氮化硅发生双向扩散,形成倾斜梯度功能材料,故而结合牢固;

3、由于陶瓷薄膜与金属双向扩散形成倾斜梯度功能材料,不仅起到了过渡层结合牢固的作用,而且改变了陶瓷键边强度,进步了抗弯曲能力,使环体表面硬度及韧性均得到明显进步;

4、高温耐磨性能更好;

5、抗氧化能力增强。

由于陶瓷薄膜具有自润滑功能,使用活塞环渗浸陶瓷处理的活塞环可使发动机的磨擦系数下降17% 30%,其和磨擦副的磨损量减少了2/5 1/2,且可明显降低发动机的振动和噪音。同时,由于陶瓷薄膜与发动机缸套间密封性能好,使活塞均匀漏气量也下降了9.4%,发动机功率可进步4.8% 13.3%。且节约燃油2.2% 22.7%,机油30% 50%。

本公司的渗陶工艺为:真空度≤8Pa,渗陶温度150℃ 250℃,保温时间6 10h,氮气、硅烷、硼烷按一定比例通进。浸渗陶瓷活塞环(铬基)复合层的主要技术指标为:表面硬度950 1300HV0.1;扩散层深度Xjcr30 70μm;活塞环表面增厚3 8μm;热导率18.00 24.55W/mK。

金属材料热处理及其应用

金属材料热处理及其应用(一)---基本常识 金属材料热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其它新技术的移植应用,使金属热处理工艺得到更大发展。一个显着的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。 金属材料热处理的工艺 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。 加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。 金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。 加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。

热处理调质工艺守则及操作规程

热处理调质工艺守则及操作规程

————————————————————————————————作者:————————————————————————————————日期:

热处理调质工艺守则及操作规程 1、主题内容与使用范围 本守则及规程确定了热处理调质处理(淬火+高温回火)的设备评定、工艺确定、及操作规范的内容。 2、引用标准 API Spec6A 《井口装置和采油树设备规范》 3、总则 产品的热处理必须在已经过定期检定并合格的热处理设备中进行。炉子的检定周期为一年。 4、对热处理炉及监控设备的要求 4.1、对热处理炉的要求 4.1.1、炉衬完好,无明显损坏; 4.1.2、电阻丝齐全,电极接触牢固; 4.1.3、炉底平整,无裂纹; 4.1.4、保温材料完好无损; 4.1.5、热处理炉各处的温度应分度均匀,温差不大于14℃(这就需要炉子空间的前、后、左、右及底部都要有电炉丝分布,炉膛的功率密度一般在100-110kw/m3左右)。热处理炉的鉴定周期不大于1年。4.1.6、温度传感器(热电偶)插点正确(在工作区域)并且分布均匀、合理。馈线两端(热电偶与圆盘平衡记录仪或温度显示器)连接可靠。

4.2、仪表 4.2.1、温度控制器的控制精度为:±10℃; 4.2.2、温度显示器(平衡记录仪)以及热电偶,必须在检定有效期之内。检定周期为三个月。 4.2.3、更换记录仪圆盘记录纸,确保其能完整准确地记录加热保温过程。(完工后,在记录纸上填写日期、加工零件号、炉号、操作者等相关信息)。 5、装炉 5.1、装炉前的准备工作 5.1.1、检查设备、仪表是否正常,尤其是注意炉门起闭自动断电装置是否良好,并将炉膛清理干净。 5.1.2、核对任务单与待处理工件以及工艺卡(或作业指导书)是否相符。 5.1.3、检查工件外观,所有棱角必须倒角≥1mm,表面不得有严重的磕碰划伤、氧化皮。 5.1.4、熟悉工艺全过程,考虑好装(出)炉方法,并准备好必要的工夹具及吊具,保证在淬火时工件能快速浸入淬火液中。 5.1.5、对技术要求不允许表面氧化脱碳的工件需要进行必要的防护,如在加热炉内装入适量的木炭或铸铁屑等。 5.1.6、如果是热炉装炉,检查炉温是否与工艺要求相符。 5.1.7、确定吊装设备及工具是否安全、可靠。 注:以上情况如果出现否定或怀疑,应暂停整改,待确定肯定以后方

(工艺技术)钢的热处理工艺设计经验公式

钢的热处理工艺设计经验公式 1钢的热处理 1.1 正火加热时间 加热时间t=KD (1) 式中t为加热时间(s); D使工件有效厚度(mm); K是加热时间系数(s/mm)。 K值的经验数据见表1。 表1 K值的经验数据 1.2 正火加热温度 根据钢的相变临界点选择正火加热温度 低碳钢:T=Ac3+(100~150℃)(2) 中碳钢:T=Ac3+(50~100℃)(3) 高碳钢:T=A Cm+(30~50℃)(4) 亚共析钢:T=Ac3+(30~80℃)(5) 共析钢及过共析钢:T=A Cm+(30~50℃)(6) 1.3 淬火加热时间 为了估算方便起见,计算淬火加热时间多采用下列经验公式: t=a· K ·D︱ (不经预热) (7) t=(a+b)· K ·D︱(经一次预热) (8) t=(a+b+c)· K ·D︱(经二次预热) (9) 式中t—加热时间(min); a—到达淬火温度的加热系数(min/mm); b—到达预热温度的加热系数(min/mm); c—到达二次预热温度的加热系数(min/mm); K—装炉修正系数; D︱--工件的有效厚度(mm)。 在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a多采用1~1.5min/mm;b 为1.5~2min/mm(高速钢及合金钢一次预热a=0.5~0.3;b=2.5~3.6;二次预热a=0.5~0.3;b=1.5~2.5;c=0.8~1.1),若在箱式炉中进行快速加热时,当炉温较淬火加热温度高出100~150℃时,系数a约为1.5~20秒/毫米,系数b不用另加。若用盐浴加热,则所需时间,应较箱式炉中加热时间少五分之一(经预热)至三分之一(不经预热)左右。工件装炉修正系数K的经验值如表2: 表2 工件装炉修正系数K

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 3术语 经保温一段时间后, 经保温一段时间后, 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1 错位炉底板应将其复位后再装, 5.2 对特别 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表7.2碳钢及低合金钢铸件退火工艺 7.3铸钢件直接调质工艺 7.4铸钢件经预备热处理后的调质工艺 7.5低合金铸钢件正火、回火工艺

化学热处理工艺及应用

一.化学热处理工艺及应用 除渗碳、渗氮外,渗金属主要有渗Al、Cr、V、Si、B、S等金属和非金属。下面简单介绍。 1.渗铬 适用于各种钢制件的耐磨性、耐蚀性和抗高温氧化能力。 渗后硬度:低碳钢为200~250HV;高碳钢为1250~1300HV。 渗层深度:一般为0.10~0.30mm。 渗层金相组织:低碳钢50%左右铬在铁素体中的固溶体;高碳钢由铬的碳化物(Cr7C3)、(CrFe)7C3组成。 渗铬方法:固、液、气体渗,还有真空渗等。 固体法:将以下配方研成粒度小于50目(约0.297mm)粉末,然后装箱进行。 配方1:50%~55%铬铁粉末+40~50%氧化铝+2~3%氯化铵。 配方2:60%~65%铬铁粉末+30~35%耐火土+3~4%氯化铵。 装炉温度为800~850℃,保温1~1.5h后升温到1000~1050℃.。保温12~15h(视层深要求而定)。然后随炉冷却600~700℃出炉空冷即可。 液体法:采用70%氯化钡+30%氯化钠为基盐。将金属铬或铬铁粉末经盐酸处理后放入基盐中,加热到1000~1050℃保温1.0~1.5h即开始渗,同时应不间断地用惰 性气体或还原气体保盐浴表面不被氧化。 气体法:利用干净铬块+氯化铵+氢气,在950~1100℃通入氯化铜蒸汽进行。渗铬后的处理:在一定载荷下工作并要求一定的强度的零件,渗铬后正火处理可细化晶 粒,提高基体强度和韧性,淬火和回火处理可根据需要调整基体的性能。 2、渗B 渗硼是指将工件放在一定比例的含硼介质中加热。 适用范围:提高各种钢、铸铁和粉末冶金等材料制作的工件耐磨性。 渗后硬度:900~1200H V0.1以上。 金相组织:为致密的单相Fe2B。

课程设计论文热处理工艺设计

目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3)

3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1

图3.1 12CrNi3叶片泵轴 2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表

热处理工艺设计课程设计

北华航天工业学院 《热处理工艺设计》 课程设计报告 报告题目:CA8480轧辊车床主轴 和淬火量块 热处理工艺的设计 作者所在系部:材料工程系 作者所在专业:金属材料工程 作者所在班级:B10821 作者学号:20104082104 作者姓名:倪新光 指导教师姓名:翟红雁 完成时间:2013.06.27

课程设计任务书 课题名称 CA8480轧辊车床主轴和淬火量块 热处理工艺的设计 完成时间06.27 指导教师翟红雁职称教授学生姓名倪新光班级B10821 总体设计要求 一、设计要求 1.要求学生在教师指导下独立完成零件的选材; 2.要求学生弄清零件的工作环境。 3.要求学生通过对比、讨论选择出最合理的预先热处理工艺和最终热处理工艺方法; 4.要求学生分别制定出预先热处理和最终热处理工艺的正确工艺参数,包括加热方式、加热温度、保温时间以及冷却方式; 5.要求学生写出热处理目的、热处理后组织以及性能。 工作内容及时间进度安排 内容要求时间备注 讲解并自学《金属热处理工艺》课本第六章;收集资料, 分析所给零件的工作环境、性能要求, 了解热处理工艺设计的方法、内容和步骤; 通过对零件的分析,选择合适的材料以及技术要 求 0.5天 热处理工艺方法选择和工艺路线的制定 确定出几种(两种以上)工艺 线及热处理 方案,然后进行讨论对比优缺点, 确定最佳工艺 路线及热处理工艺方案 1.5天 热处理工艺参数的确定及热处理后组织、性能 查阅资料,确定出每种热处理工艺的参数, 包括加热方式、温度和时间,冷却方式等,并绘 出相应的热处理工艺曲线 1.5天 编写设计说明书按所提供的模板 0.5天 答辩1天 课程设计说明书内容要求 一. 分析零件的工作环境,确定出该零件的性能要求,结合技术要求,选出合适的材料,并阐述原因。 二. 工艺路线和热处理方案的讨论。要求两种以上方案进行讨论,条理清晰,优缺点明确。 三. 每种热处理工艺参数的确定(工序中涉及到的所有热处理工艺)。写出确定参数的理由和根据,(尽可能写出所使用的设备)要求每一种热处理工艺都要画出热处理工艺曲线; 四. 写出每个工序的目的以及该零件热处理后常见缺陷。

热处理施工方案(DOC)

一、工程概况 亚通石化有限公司80万吨年/重油快速裂解装置主要包括反应区、分馏区、吸收稳定区、主风机区、余热锅炉区、总图区、电脱盐区、气压机区及精致区九个区。其工艺管线37公里、管件27100个,材质包含1Cr5Mo,15CrMo,20#等需要热处理。 二、编制依据 ☆设计图纸以及设计说明; ☆ SH3501-2002《石油化工剧毒、可燃介质管道工程施工及验收规范》; ☆ GB50236-98《现场设备、工业管道焊接工程施工及验收规范》; ☆ SH/T 3517-2001《石油化工钢制管道工程施工工艺标准》; ☆ GB50235-1997《工业金属管道工程施工及验收规范》; ☆ GB50316-2000《工业金属管道设计规范》; ☆ SH/T 3527-1999《石油化工不锈钢、复合钢焊接规程》; ☆ SH/T 3523-1999《石油化工鉻镍奥氏体钢、铁镍合金和镍合金管道焊接规程》。 三、热处理工程量 根据设计要求,统计本装置需要热处理的工程量如下(焊口有增减,以实际发生为准):如上表统计,需要热处理的管道焊口3043道。

五、热处理方法及工艺规程 5.1热处理方法 采用履带式电加热器对焊缝加热的方法,对接管焊缝进行局部热处理。 5.2热处理工艺规范 严格执行国家现行压力容器制造技术法规、标准及设计技术条件要求规定,选择如下热处理工艺参数(表2)及工艺曲线(图1a 、1b 、1c )。 表2 热处理工艺参数 度 6 25℃ 时间 (h ) 300℃

六、热处理施工 6.1热处理机具就位 (1)热处理机具主要包括控制柜和仪表,安装在单独的工具房内,在运输时应防震、防颠,并且重要的是防止冲击性的碰撞。 (2)机具附带的加热线应栓挂牢固,控制机柜门关严,室内所有开关均应处于关闭状态。 (3)机具运输到现场,应安放于现场安全位置,不得影响其它项目的施工,同时还要保持距离电源近,并且估测加热线和补偿线的长度,确认其最佳位置。 (4)应对热处理控制柜进行调试。 (5)热处理机具运至现场后,卸车应平稳。 6.2加热器的选用 (1)管道加热器选用时,应按照技术要求选取。 (2)使用时应根据管子的公称直径、壁厚以及焊缝宽度选用。管径在DN100~250之间,可选用组成品履带式加热器;公称直径大于DN250时,同时选用两组(或多组)功率相同的加热器并用。 度 7 65℃ 300℃ 时间 (h ) 线 度 6 75℃ 300℃ 时间 (h ) 图1c 15CrMo 热处理曲线

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

2021版热处理工艺在模具制造过程中的应用

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2021版热处理工艺在模具制造 过程中的应用 Safety management is an important part of production management. Safety and production are in the implementation process

2021版热处理工艺在模具制造过程中的应 用 现代工业的快速发展离不开模具,模具被广泛用于航空航天、船舶等各个行业,对制造业影响巨大,特别是对生产金属制品行业,工厂需要采用热处理技术,利用模具制造出高质量产品。 模具是一种制造用的模型,模具的制造程序可以分为多种类型的机械制造和热制造两道程序,众多类型程序中都用到了热处理技术,可以说热处理被应用在模具制作的整个过程,对模具进行加热处理可以增强模具的性能。采用同种结构的模具材料和结构及相同的客观条件,运用了热处理就能使模具的材料得到充分利用,且能够增加模具的使用时间。如果应用不正确的热处理方式,不仅不能弥补原有的材料缺陷,还会使缺陷加大,进而导致整个模具的变形,所以,热处理技术对模具的制造起着重要的作用。本文将讲述热处

理技术的含义,热处理技术对模具的制造的重要意义及热处理技术在模具的制造中的应用进行论述。 热处理技术的含义 热处理是通过把某些金属在特定环境下进行加热、保持恒温,然后冷却等一系列方法,从而是金属表面或内在结构发生变化,进而达到改变性能的技术。模具热处理大致分为模具制作前的热处理、最后热处理和表面修整处理。前期热处理为后期成品热处理打下基础,为提高模具产品的加工性能做准备;最后热处理是对模具进行回火处理来加大模具的强度、硬度和韧度;对模具的表面修整处理是通过对模具施加某些化学和物理作用改善模具性能,进而达到模具表面更加完好。热处理的手段包括退火、正火和淬火。退火依据不同材料应用不等的时间,慢慢冷却产品,使其接近金属的内部组织,取得良好的性能。正火是加热工件后使其在空中冷却,通过正火达到的内部组织更细腻,因此,正火经常用来改善工料削割性能。淬火是把工件在油、水等某些物质介质力冷却,冷却耗时短,淬火和回火经常结合一起使用。

45钢车床主轴的热处理工艺设计

《金属学与热处理》课程设计报告 45钢车床主轴的热处理工艺设计 学 院化学工程与现代材料 专 业 金属材料工程 姓 名 高治峰 学 号 指导教师 张美丽 完成时间 目录 2. 2. 2 45号钢的性能 ................................................................... ..4 2.3 热处理技术条件 .......................................... .. (5) 2.3.1加工工艺路线 .................................... 5 3热处理工艺分析 3.1 锻坯正火 ........................................................ .5 (5) 3.1.2 热处理工艺 ......................................... ..…….5 3.1.3 操作技巧 ............................................ ......5 3.2 调质 .................................................. .. (6) 3.2.1 调质目的 ...................................................... 6 3.2.2 热处理工艺 .................................................. .6 摘要 ....... 1引言…… 2设计分析 2 . 1 析 ........ 2.2 45 号钢的成分及性能点 ........ 2.2.1 45 号钢的元素成分及其作用 车床的使用工况及性能 ? (1) ….2 .4

热处理工艺的特点

热处理工艺的特点 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 热处理的发展史 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770至前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其他新技术的移植应用,使金属热处理工艺得到更大发展。一个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。

金属材料热处理新工艺

金属材料热处理新工艺 金属材料热处理新工艺 热处理发展的主要趋势是,不断改革加热和冷却技术,发展真空热处理,可控气氛热处理和 形变热处理等,以及创造新的表面热处理工艺。 新工艺和技术的发展,主要是: ⑴为了提高零件的强度、韧性;增强零件的抗疲劳和耐磨损能力; ⑵减轻加热过程中的氧化和脱碳; ⑶减少热处理过程中零件的变形; ⑷节约能源,降低成本,提高经济效益; ⑸减少或防止环境污染等。 热处理的新工艺很多,这里只简介可控气氛热处理、真空热处理和形变热处理,以及表面气 相沉积技术。 ㈠可控气氛热处理 在炉气成分可以控制的炉内进行的热处理称为可控气氛热处理。炉气分渗碳性、还原性和中性气氛等。仅用于防止工件表面化学反应的可控气氛称为保护气氛。 可控气氛热处理的应用有一系列技术经济优点:能减少和避免钢件在加热过程中氧化和脱碳,节约钢材,提高工件质量;可实现光亮热处理,保证工件的尺寸精度;可进行控制表面碳浓度的渗碳和氰化;可使已脱碳的工件表面复碳;可进行穿透渗碳处理,例如,某些形状复杂且要求高弹性或高强度的工件,用高碳钢制造加工困难,可用低碳钢冲压成形,然后进行穿透渗碳,以代替高碳钢。这样可以大大革新加工程序。 ⒈吸热式气氛燃料气(天然气、城市煤气、丙烷、丁烷)按一定比例与空气混合后,通入发生器进行加热,在触媒的作用下,经吸热而制成的气体称为吸热式气氛,吸热式气氛主要 用作渗碳气氛和高碳钢的保护气氛。。 ⒉放热式气氛燃料气(天然气、乙烷、丙烷等)按一定比例与空气混合后,靠自身的燃烧反应而制成的气体,由于反应时放出大量的热量,故称为放热式气氛。它是所有制备气氛中最便宜的一种,主要用于防止加热时的氧化,如低碳钢的光亮退火,中碳钢小件的光亮淬火 等。 ⒊放热-吸热式气氛这种气氛用放热和吸热两种方式综合制成。第一步,先将气体燃料(如天然气等)和空气混合,在燃烧室中进行放热式燃烧;第二步,将燃烧室中的燃烧产物再次与少量燃料混合,在装有催化剂的反应罐内进行吸热反应,产生的气体经冷却即为放热-吸热式气氛。它可用于吸热式和放热式气氛原来使用的各个方面。也可做为渗碳和碳氮共渗的载流气体。此种气氛含氮量低,因而可减轻氢脆倾向。 ⒋滴注式气氛用液体有机化合物(如甲醇、乙醇、丙酮、甲酰胺、三乙醇胺等)混合滴入或与空气混合后喷入热处理炉内所得到的气氛称为滴注式气氛。它主要用于渗碳、碳氮共渗、 软氮化、保护气氛淬火和退火等。

热处理工艺规范

ZX/JS-007 江苏新中信电器设备有限公司 热处理工艺规范 编制:审批: 二零一三年三月 江苏新中信电器设备有限公司 热处理工艺规范ZX/JS-007 1 目的 对零部件消除应力,改善材料或零件机械性能的热处理质量实施控制,以保证热处理符合技术条件的要求。 2适用范围 本规范适用于本厂钢制零件在周期作业加热炉中的调质、固熔工序。 3准备工作 3.1检查设备及仪表是否正常。 3.2检查零件上的材料是否符合图样要求。 3.3检查零件的尺寸是否符合图样及工艺文件的规定。 3.3.1调质件最好先经粗加工,断面大于100mm的零件,当有内孔时,应钻孔后

再调质,并且防止出现尖角。 3.3.2调质件的加工余量应大于允许的变形量。 3.3.3不同淬火温度的调质件,不得同炉处理,同炉处理件的有效厚度应相近。 4 工艺规范 4.1 技术部根据标准、工艺规程、材料和设计技术条件,负责编制热处理工艺规程。 4.2 热处理工艺规程至少应包括以下内容: a)热处理工件的材料牌号 b)热处理设备及热处理种类(调质、固溶等) c)热处理工艺参数(升温、保温、出炉温度、回火温度及各温度段的加热时间等)和工艺曲线图。 d)冷却方法及冷却介质。 4.3 消除应力热处理后一般不得再进行焊接补焊。否则应重新进行热处理。 4.4 ASTM A276 410或420调质处理(详见附录1)规范见表1。 表1

4.4.1机械性能参数: ≥550MPa 。 Rm ≥690MPa ; Rp 0.2 4.5 ASTM A276 410或420淬火处理(详见附录2)规范见表2。 表2 4.6 ASTM A182 F304、F316、F321钢固溶处理(详见附录3)规范见表3。

热处理种类应用

1.热处理工艺的分类 金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 8.5补充手段之二 1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 2.正火:指将钢材或钢件加热到或(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 3.淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 4.回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。

【精品】热处理工艺及设备讲义

热处理工艺及设备教学内容 第一讲:绪论 (自我介绍,与学生沟通。) 举例: 例1):弹簧件:目前用于制作弹簧工件的材料有很多种。首先根据工件使用条件和要求选用合适的弹簧钢,然后加工成形。这时虽然材料和工件的形状都达到了弹簧工件的要求,但性能并没有达到技术要求.这时工件在受力作用下就会发生塑性变形,无法起到弹簧工件的作用。要想使工件充分体现出弹簧的特性,就要根据所用具体材料进行相应热处理来满足. 例2):家用菜刀、剪刀等,这些工件使用性能如何,热处理的好与坏,直接影响刀具的质量,如硬度低时,易出现卷刃现象,如硬度过高,易出现断裂现象等. 例3):学生在钳工实习时制作的小锤子。在钳工制作锤子时,所用工具有:锉刀、锯条和钻头等工具,它们同样是金属材料,为什么锤子能被加工得动?这说明这些工具的硬度比锤子的硬度高,所以能把锤子从原材料加工成锤子的形态。但在钳工加工成形的锤子也只是一个半成品。因为虽然锤子的形状,尺寸达到了要求,但它们的机械性能并没有达到要求。如果这时用它锤击工件,锤子本身就会出现变形。所以要想使锤子不但在尺寸和精度上达到要求而且在性能上也应达到技术要求,为此就要通过进行热处理来完成。 例4):古代刀剑,不经过热处理,是没法上战场使用的。

引出本课程的教学目的:认识、理解、掌握、运用《热处理工艺及设备》知识。0绪论 0-1热处理的起源和历史 春秋战国时期,铸铁的石墨化退火和脱碳退火,应用于农具中; 西汉时代,钢铁兵器的淬火提高硬度; 三国时代,发现了淬火介质对工件质量的影响; 汉魏时期,开始了化学热处理; 明代,有了渗碳工艺; 由于历史原因,新中国成立前的热处理一直停滞不前. 0-2热处理的概念、工艺特点 1、热处理:采用适当的方式对固态金属或合金进行加热、保温和冷却, 以获得所要求的组织结构(或表面化学成分)与性能的工艺。 性能包括:工艺性能、机械性能、物理性能和化学性能.

20CrMO热处理工艺设计要点

前言 众所周知,齿轮是机械设备中关键的零部件,它广泛的用于汽车、飞机、坦克、轮船等工业领域。它具有传动准确、结构紧凑使用寿命长等优点。齿轮传动是近代机器中最常见的一种机械振动是传递机械动力和运动的一种重要形式、是机械产品重要基础零件。它与带、链、摩擦、液压等机械相比具有功率范围大,传动效率高、圆周速度高、传动比准确、使用寿命长、尺寸结构小等一系列优点。因此它已成为许多机械产品不可缺少的传动部件,也是机器中所占比例最大的传动形式。由于齿轮在工业发展中的突出地位,使齿轮被公认为工业化的一种象征。 得益于近年来汽车、风电、核电行业的拉动,汽车齿轮加工机床、大规格齿轮加工机床的需求增长十分耀眼。据了解,随着齿轮加工机床需求的增加,近年来涉及齿轮加工机床制造的企业也日益增多。无论是传统的汽车、船舶、航空航天、军工等行业,还是近年来新兴的高铁、铁路、电子等行业,都对机床工具行业的快速发展提出了紧迫需求,对齿轮加工机床制造商提出了新的要求。据权威部门预测2012 年将达到200 万吨。20CrMo钢作为一种典型的低合金渗碳结构钢在工程中广泛用于制造轴类、齿轮类零件。 由于齿轮的工作条件复杂,所以要求齿轮既要具有优良的耐磨性又要具备高的抗接触疲劳和抗弯曲疲劳性能。 在齿轮热处理工艺显著提高的背景下,我国已能自行生产各类高参数的齿轮。但我国齿轮的质量与其他发达国家的同类产品相较还是具有一定的差距,主要表现在齿轮的平均使用寿命、单位产品能耗、生产率这几方面上。要提高齿轮的质量,除了要选材合适之外,必须对材料的热处理工艺进行优化,通过新工艺和新设备引进吸收和自主创新,实现齿轮热处理工艺朝节能、环保、智能化方向发展。 本设计是在课堂学习热处理知识后的探索和尝试,其内容讨论如何设计齿轮的热处理工艺,重点是制定合理的热处理规程,并按此设计齿轮的热处理方法。

17-4 热处理工艺

标准:GB/T 1220-1992 ●特性及应用: 0Cr17Ni4Cu4Nb是由铜、铌/钶构成的沉淀、硬化、马氏体不锈钢。0Cr17Ni4Cu4Nb有较高的强度、耐蚀性、抗氧化性,0Cr17Ni4Cu4Nb这个等级具有高强度、硬度(高达300℃/572℉)和抗腐蚀等特性。经过热处理后,产品的机械性能更加完善,可以达到高达1100-1300MPa(160-190 ksi) 的耐压强度。这个等级不能用于高于300℃(572℉) 或非常低的温度下,它对大气及稀释酸或盐都具有良好的抗腐蚀能力,它的抗腐蚀能力与304和430一样。 ●应用领域: 1.海上平台、直升机甲板、其他平台 2.食品工业 3.纸浆及造纸业 4.航天(涡轮机叶片) 5.机械部件 6.核废物桶 ●化学成分: 0Cr17Ni4Cu4Nb化学成分: C Si Mn P S Ni Cr Mo Cu Nb 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.035 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 美国ASTMS17400,AISI630,UNS630化学成分 C Si Mn P S Ni Cr Mo Cu Nb 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 日本SUS630化学成分 C Si Mn P S Ni Cr Mo Cu Nb+Tao 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 欧洲X5CrNiCuNb16-4化学成分 C Si Mn P S Ni Cr Mo Cu Nb+Tao 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - ●力学性能: 抗拉强度σb (MPa):480℃时效,≥1310; 550℃时效,≥1060; 580℃时效,≥1000; 620℃时效,≥930 条件屈服强度σ0.2 (MPa):480℃时效,≥1180;550℃时效,≥1000;580℃时效,≥865;620℃时效,≥725 伸长率δ5 (%):480℃时效,≥10;550℃时效,≥12;580℃时效,≥13;620℃时效,≥16 断面收缩率ψ (%):480℃时效,≥40;550℃时效,≥45;580℃时效,≥45;620℃时效,≥50 硬度:固溶,≤363HB和≤38HRC;480℃时效,≥375HB和≥40HRC; 550℃时效,≥331HB和≥35HRC;580℃时效,≥302HB和≥31HRC;620℃时效,≥277HB和 ≥28HRC ●热处理规范及金相组织: 热处理规范:1)固溶1020~1060℃快冷;2)480℃时效,经固溶处理后,470~490℃空冷; 3)550℃时效,经固溶处理后,540~560℃空冷; 4)580℃时效,经固溶处理 后,570~590℃空冷;5)620℃时效,经固溶处理后,610~630℃空冷。 金相组织:组织特征为沉淀硬化型。 ●交货状态:一般以热处理状态交货,其热处理种类在合同中注明;未注明者,按不热处理状态交货。

金属材料热处理工艺的应用与发展趋势

金属材料热处理工艺的应用与发展趋势 摘要:伴随着我国制造业的发展,机械加工发展越加趋于重要地位。而在重视环境和人文一体的我国,必须在保证生态情况下,减少耗能污染,引进先进的热处理新技术是必要的。 关键词:金属材料;热处理技术;应用发展 先进的热处理技术是我国制造金属业的重点整改项目之一。在社会提倡节约能源,低能易耗,保护环境的政策下,开发和应用新的金属材料热处理工艺是势在必行的。我国以前的制造业中,对热处理的能耗极高,并且用电量大,据研究统计,制造业用电量占机械总用电的30%。可想而知,庞大的用电量致使废气排放量大,对环境造成大幅的污染危害。而引进应用先进的热处理技术,缩短加热处理时间,降低周期,无疑是大大降低了用电能耗,不仅节约电能源、煤能源、石油能源,还减少了环境污染,促进的生态环境,大大提高了制造业和社会环境的统一、和谐和交融。此外,先进的热处理技术应用还可以给企业节约生产成本,缩短生产周期,减少人工浪费和返工手续,提高经济效益和保证产品的质量,从而保证产品的市场竞争力和耐用性。 1.热处理的薄层渗入技术 热处理薄层渗入技术打破了人们原有传统的固有思想---认为各化学元素渗透更深、加热时间更长会对金属制件材料的韧性和耐磨性更好。而经过一系列的实践研究表明并非如此,反而在对金属制件材料进行热处理时,减少金属制件材料表面涂层的厚度,即薄层厚度,反而能得到金属制件材料更好的韧性和综合性能。在热处理中还能缩短对金属制件材料的加热时间,减少用电量,降低排放污染,节约大量的能源消耗。根据实践证明:金属制件材料表面的渗碳层相较减小百分之三十,用电能源就会节约到百分之三十,对煤炭和甲醇资源而言,更能达到百分之五十的节约。而对金属材料的综合性能没有任何影响。我国自行车行业中对钢球的使用已经应用了热处理薄层渗入技术,并经实践证明有了显著的成效。既节约了成本,提高了生产力,还减少了废气排放和环境污染,促进了生态环保的发展。 2.热处理的超硬涂层技术 热处理超硬涂层技术是指在机械制造业中利用高新技术装置设备,摒除传统的人工盯进控制,实行电脑自动化运行监控技术,对超硬金属制件材料工具零件运用热处理的离子轰击法,使其在刀具、模具表面上沉积硬化后,再用2umTIN 的专业技术方法进行溅射处理,成品极快,产品质量过硬,产品的使用寿命也有显著提高。通过实践证明,新技术的应用不仅使产品质量提高,还节约时间成本,做到高效环保生产。 3.热处理的振动时效处理技术

相关文档
最新文档