材料科学基础 简答

材料科学基础 简答
材料科学基础 简答

.

第二部分简答题

第一章原子结构

1、原子间的结合键共有几种?各自的特点如何?【11年真题】

答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每

个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。

(2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性。因此,七

熔点和硬度均较高。离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。

(3)共价键:有方向性和饱和性。共价键的结合极为牢固,故共价键晶体具有

结构稳定、熔点高、质硬脆等特点。共价结合的材料一般是绝缘体,其导电能力较差。

(4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,

将原来稳定的原子结构的原子或分子结合为一体的键合。它没有方向性和饱和性,其结合不如化学键牢固。

(5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化

学键和范德瓦耳斯力之间。

2、陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊

性能。【模拟题一】

答:陶瓷材料中主要的结合键是离子键和共价键。由于离子键和共价键很. .

强,故陶瓷的抗压强度很高、硬度很高。因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好、耐高温、化学稳定性高。

第二章固体结构

1、为什么密排六方结构不能称为一种空间点阵?【11年真题】

答:空间点阵中每个阵点应该具有完全相同的周围环境。密排六方晶体结

构位于晶胞内的原子具有不同的周围环境。如将晶胞角上的一个原子与相应的晶胞之内的一个原子共同组成一个阵点,这样得出的密排六方结构应属于简单六方点阵。

2、为什么只有置换固溶体的两个组元之间才能无限互溶,而间隙固溶体则不能?

【模拟题一】

答:因为形成固溶体时,溶质原子的溶入会使溶剂结构产生点阵畸变,从而使体系能量升高。溶质与溶剂原子尺寸相差较大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,溶解度越小。一般来说,间隙固溶体中溶质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。

3、试证明四方晶系中只有简单四方点阵和体心四方点阵两种类型。【模拟题三】

答:可以作图加以说明。四方晶系表面也含有简单四方、底心四方、面心四方和体心四方结构,然而根据选取晶胞的原则,晶胞应具有最小的体积,尽管可以从4个体心四方晶胞勾出面心四方晶胞(如下图1),从4个简单四方晶胞. .

中勾出1个底心四方晶胞(如下图2),但它们均不具有最小的体积。因此四方

晶系实际上只有简单四方和体心四方两种独立的点阵。

4、空间点阵和晶体点阵有何区别?【模拟题四】

答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各阵点的周围环境相同,它只能有14种类型;晶体点阵又称

晶体结构,是指晶体中实际质点的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。

5、说明间隙固溶体与间隙化合物有什么异同。【模拟题五】

答:相同点:二者一般都是由过渡族金属与原子半径较小的C、N、H、O、B等非金属元素所组成。

不同点:(1)晶体结构不同。间隙固溶体属于固溶体相,保持溶剂的晶格类型;间隙化合物属于金属化合物相,形成不同于其组元的新点阵。

(2)表达式不同。间隙固溶体用α、β、γ表示;间隙化合物用化学分子式MX、MX等表示。2(3)机械性能不同。间隙固溶体的强度、硬度较低,塑性、韧性好;间隙化合物的强度、熔点较高,塑性、韧性差。

第三章晶体缺陷

第四章扩散

1、简述菲克第一定律和第二定律的含义,写出其表达式,并标明其字母的含义。【08年真题】

.

.

答:菲克定律描述了固体中存在浓度梯度时发生的扩散,即化学扩散。

?d。DJ?-菲克第一定律:扩散中原子的通量与质量浓度梯度成正比,即dx 式中,J为扩散通量,表示单位时间内通过垂直于扩散方向X的单位面积的扩散22/s;ρ为扩散系数,其单位为mkg/(m物质质量,其单位是是扩散物质*s);D3。式中的负号表示物质的扩散方向与质量浓度梯度kg/m的质量浓度,其单位为?d方向相反,即表示物质从高的质量浓度区向低的质量浓度区方向迁移。该

定dx律描述了一种稳态扩散,即质量浓度不随时间而变化。

菲克第二定律:大多数扩散过程是非稳态扩散过程,某一点浓度随时间而变化,这类扩散过程可以由菲克第一定律结合质量守恒定律推导出的菲克第二定律

?????(D。 = 来处理。即)?t?x?x

、将一根高碳钢长棒与纯铁棒焊接起来组成扩散偶,试分析在扩散偶中碳浓度2 12分布随扩散时间的变化规律,并画出分布曲线的示意图。【年真题】发生反碳

将经焊接缝进入纯铁内,答:高碳钢和纯铁焊接起来组成扩散偶,,且渗层组织中不存在两应扩散,在纯铁内部形成渗层组织(中间相或固溶体)相混合区在界面上的浓度时突变的。

Q(-Do*exp?D【模拟题二】说明影响扩散的因素。)、试从扩散系数公式3kT 答:从公式表达式可以看出,扩散系数与扩散激活能Q和温度T有关。

扩散激活能越低,扩散系数越大,因此扩散激活能低的扩散方式的扩散系数较大,如晶界和位错处的扩散系数较大。不同类型的固溶体,原子的扩散机制是不同的,间隙固溶体的扩散激活能一般均较小。

.

.

温度是影响扩散速率的最主要因素。温度越高,原子热激活能量越大,越易发生迁移,扩散系数越大。

第五章形变与再结晶

1、试述孪晶与滑移的异同,比较它们在塑性变形过程中的作用。【07年真题】

答:相同点:均是均匀切变,都沿一定得晶面、晶向进行,不改变晶体结构,都是位错运动的结果。

不同点:(1)晶体位向不同。滑移不改变晶体位向;孪生改变晶体位向,形成镜面对称关系。

(2)位移量不同。滑移位移量较大,大于原子间距的整数倍;孪生位移量较小,小于孪生方向上的原子间距。

(3)对塑性变形的贡献不同。滑移很大,总变形量大;孪生有限,总变形量小。(4)压力大小不同。滑移有一定临界分切应力;孪生所需临界分切应力远高于滑移。

(5)变性条件不同。一般先发生滑移,滑移困难时发生孪生。

(6)变性机制不同。滑移是全位错运动的结果,孪生是分位错运动的结果。

比较滑移与孪生在塑性变形过程中的作用:塑性变形主要通过滑移实现,只有当滑移难以发生时发生孪生,虽然孪生对塑性变形的直接贡献不大,但孪晶的产生改变了晶体的位向,使原处于不利的滑移系换到有利于发生滑移的位置,从而可以激发进一步的滑移和晶体变形。这样,滑移和孪生交替进行,相辅相成,可使晶体获得较大变形量。

.

.

2、说明金属在冷变形、回复、再结晶及晶粒长大四个阶段的行为与表现,并说明各阶段促使这些晶体缺陷运动的驱动力是什么。【07真题】

答:(1)冷变形加工时主要的形变方式是滑移,由于滑移,晶体中空位和位错密

度增加,位错分布不均匀。缺陷运动驱动力为切应力作用。

(2)回复过程空位扩散、聚集或消失;位错密度降低,位错相互作用重新分

布(多样化)。缺陷运动驱动力为弹性畸变能。

(3)再结晶过程毗邻低位错密度区晶界向高位错密度区的晶粒扩张。位错密

度减少,能量降低,成为低畸变或无畸变区。缺陷运动驱动力为形变储存能。

(4)晶粒长大阶段弯曲界面向其曲率中心移动,微量杂质原子偏聚在晶界区域,

对晶界移动起到拖曳作用,这与杂质吸附在位错中组成柯氏气团阻碍位错运动相似,影响了晶界的活动性。缺陷运动驱动力为晶粒长大前后总的界面能差,而界

面移动的驱动力是界面曲率。

3、试用位错理论解释低碳钢的屈服现象。距离说明吕德斯带对工业生产的影响及解决办法。【08、09真题】

答:由于低碳钢是以铁素体为基的合金,铁素体中的碳原子与位错交互作用,总是趋于聚集在位错线受拉应力的部位以降低体系的畸变能,形成柯氏气团对位错起“钉扎”作用,致使屈服强度升高。而位错一旦挣脱气团的钉扎,便可在较小的应力下继续运动,这时拉伸曲线上又会出现下屈服点。已经屈服的试样,卸载后立即重新加载拉伸时,由于位错已脱出气团的钉扎,故不出现屈服点。但若卸载后,放置较长时间或稍加热后,再进行拉伸时,由于溶质原子已通过扩散又重新聚集到位错线周围形成气团,故屈服现象又会重新出现。

吕德斯带会使低碳钢薄板在冲压成型时使弓箭表面粗糙不平。解决办法:可.

.

根据应变时效原理,将钢板在冲压之前先进行一道微量冷轧(如1%~2%压下量)工序,使屈服点消除,随后进行冲压成型,也可向钢中加入少量Ti、Al及C、N等形成化合物,以消除屈服点。

4、奥氏体不锈钢能否通过热处理来强化?为什么?生产中用什么方法使其强化?【09真题】

答:热处理强化机制主要是通过热处理过程中相变而得到强化,而奥氏体不锈钢在热处理时不发生相变,达不到预想的强化效果,因而不能通过热处理来强化。生产中主要借冷加工实现强化的。金属材料经加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象。加工硬化是金属材料的一项重要特性,可被用作强化金属的途径,特别是那些不能通过热处理强化的材料。

5、简要说明提高一种陶瓷材料韧性的方法及原理。

答:相比于金属而言,脆、难以变形是陶瓷的一大特点,为了改善陶瓷的脆性、提高其韧性,目前采取降低晶粒尺寸,使其亚微米或纳米化来提高塑性和韧性,采取氧化锆增韧、相变增韧、纤维增韧或颗粒原位生长增强等有效途径来改善之。

纤维增韧原理:利用一些纤维的高强度和高模量,使之均匀分布于陶瓷材料的机体中,生成一种陶瓷基复合材料。当材料受到外载荷时,纤维可以承担部分的负荷,减轻了陶瓷本身的负担,同时纤维可以组织或抑制裂纹扩展,从而改善了陶瓷材料的脆性,起到增韧效果。

.

.

????附并解释为什么在的含义。6、指出材料拉伸应力—应变曲线图中bes、、s 近,应力会发生多次微小的波动?【10年真题】

??ee?时为弹性极限,当应力小于答:时试样发生弹性形变,当应力超过e?s??为抗拉试样发生塑性形变。时试样开始屈服。为屈服强度,当应力达到b s?时,

试样发生断裂。强度,当应力达到b?s附近,应力的多次微小的波动时屈服伸长现象。这是因为当拉伸试样在

开始屈服时,应力随即突然下降,并在应力基本恒定的情况下继续发生屈服伸长,所以拉伸曲线出现应力平台区。在发生屈服延伸阶段,试样的应变是不均匀的。这种变形带沿试样长度方向不断形成与扩展,从而产生拉伸曲线平台的屈服伸长。其中,应力的每一次微小波动,即对应一个新变形带的形成。当屈服扩展到整个试样标距范围时,屈服延伸阶段就告结束。

7、六方晶系的滑移系通常是什么?FCC晶体的滑移系是什么?从晶体滑移角度上分析,为什么FCC晶系的多晶体塑性变形能力通常比六方晶系的多晶体的变

形能力大。【11年真题】

答:滑移系是由一个滑移面和此面上的一个滑移方向合起来的,滑移面和滑移方向通常是金属晶体中原子排列最密的晶面和晶向。因为原子密度最大的晶面其面间距最大,点阵阻力最小,因而容易沿着这些面发生滑移;滑移方向为原子密度

最大的方向是由于最密排方向上的原子间距最短,及位错b最小。所以六方晶系的滑移系通常是:滑移面为{0001}、滑移方向<11-20>;FCC晶体的滑移系通常为:滑移面{111}、滑移方向<110>。

每一个滑移系表示晶体在进行滑移时可能采取的一个空间取向。在其他条件.

.

相同时,晶体中的滑移系越多,滑移过程可能采取的空间取向便越多,滑移容易进行,它的塑性便越好。据此,面心立方的滑移系共有{111}<110>=12个,而

34密排六方晶体的滑移系仅有{0001}<11-20>=3个.由于FCC滑移系数比六方

晶系31的多,所以FCC晶系的多晶体塑性变形能力通常比六方晶系的多晶体的

变形能力大。

8、在室温(20℃)下对铅板进行轧制,请问这个加工过程是冷加工还是热加工,为什么?(铅的熔点是327.50℃)【11年真题】

答:热加工是指在再结晶温度以上的加工过程,在再结晶温度以下的加工过程为冷加工。铅的再结晶温度低于室温,因此在室温下对铅板进行加工属于热加工。

9、某工厂用冷拉钢丝绳将一大型钢件调入热处理炉内,由于一时疏忽,未将钢丝绳取出,而是随同工件一起加热至860℃(该温度高于钢丝绳的再结晶温度),保温时间到了,打开炉门,要吊出工件时,钢丝绳发生断裂,试分析原因。【12

年真题】

答:冷拉钢丝绳是经大变形量的冷拔钢丝绞合而成,加工过程的冷加工硬化是钢丝的强度、硬度大大提高,从而能承载很重的钢件。但是当其加热至860℃时,

其温度已远远超过钢丝绳的再结晶温度,以致产生回复再结晶现象,加工硬化效果完全消失,强度、硬度大大降低。再把它用来起重时,一旦负载超过其承载能力,必然导致钢丝绳断裂事故。

.

.

10、请对比分析加工硬化、细晶强化、弥散强化、复相强化和固溶强化的特点和机理有何异同。【模拟题二】

答:(1)加工硬化:随冷塑性变形量增加,金属的强度、硬度提高,塑性、韧性

下降的现象称加工硬化。原因:随变形量增加, 位错密度增加,由于位错之间的

交互作用(堆积、缠结),使得位错难以继续运动,从而使变形抗力增加。

(2)细晶强化:通过细化晶粒来同时提高金属的强度、硬度、塑性和韧性的

方法称细晶强化。因为晶粒越细,单位体积内晶粒数目越多,参与变形的晶粒数目也越多,变形越均匀,使在断裂前发生较大的塑性变形。强度和塑性同时增加,金属在断裂前消耗的功也越大,因而其韧性也比较好。该强化机制是唯一的同时增大强度和塑性的机制。

(3)弥散强化:当在晶内呈颗粒状弥散分布时,第二相颗粒越细,分布越均

匀,合金的强度、硬度越高,塑性、韧性略有下降,这种强化方法称弥散强化或沉淀强化。原因:由于硬的颗粒不易被切变,因而阻碍了位错的运动,提高了变形抗力。

(4)固溶强化:随溶质含量增加,固溶体的强度、硬度提高,塑性、韧性下

降,称固溶强化。原因:由于溶质原子与位错相互作用的结果,溶质原子不仅使晶格发生畸变,而且易被吸附在位错附近形成柯氏气团,使位错被钉扎住,位错要脱钉,则必须增加外力,从而使变形抗力提高。包括弹性交互作用(柯氏气团)、

电交互作用(玲木气团)和化学交互作用。

(5)复相强化:由于第二相的相对含量与基体处于同数量级是产生的强化机

制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。

.

.

11、纤维组织和织构是怎样形成的?它们有何不同?对金属的性能有什么影响?

【模拟题三】

答:材料经冷加工后,除使紊乱取向的多晶材料变成有择优取向的材料外,还使材料中的不熔杂质、第二相和各种缺陷发生变形。由于晶粒、杂质。第二相、缺陷等都沿着金属的主变形方向被拉长成纤维状,故称为纤维组织。一般说来,纤维组织使金属纵向(纤维)方向强度高于横向方向。这是因为在横断面上杂质、第二相、缺陷等脆性、低强度“组元”的截面面积小,而在纵断面上截面面积大。当零件承受较大载荷或承受冲击和交变载荷时,这种各向异性就可能引起很大的危险。

金属在冷加工以后,各晶粒的位向就有一定的关系。如某些晶面或晶向彼此平行,且都平行于零件的某一外部参考方向,这样一种位向分布就称为择优取向或简称为织构。

形成织构的原因并不限于冷加工,而这里主要是指形变织构。无论从位向还是从性能看,有织构的多晶材料都介于单晶体和完全紊乱取向的多晶体之间。由于织构引起金属各向异性,在很多情况下给金属加工带来不便,如冷轧镁板会产生

(0001)<1120> ,若进一步加工很容易开裂;深冲金属杯的制耳,金属的热循环生长等。但有些情况下也有其有利的一面。

12、金属铸件能否通过再结晶退火来细化晶粒?【模拟题四】

答:再结晶退火必须用于经冷变形加工的材料,其目的是改善冷变形后材料的组织和性能。再结晶退火的温度较低,一般在临界点以下。若对铸件采用再结.

.

晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。

13、冷变形金属在加工时经过哪三个阶段,它们各自特点是什么?【模拟题四】答:经过的三个阶段是回复、再结晶、晶粒长大。

(1)回复:不发生大角度晶界迁移,晶粒的形状和大小与变形态相同。

(2)再结晶:首先在畸变度答的区域产生新的无畸变晶粒核心,然后消耗周围的变形基体长大,直到完全变成无畸变的细等轴晶粒,但晶体结构并没有改变,

性能发生明显变化并恢复到变形前的情况。

(3)晶粒长大:在晶界表面能的驱动下,新晶粒互相吞食而长大,从而得到在该条件下较为稳定的尺寸。

第六章凝固

1、讨论形成晶相和玻璃相的条件,指出为什么大多数陶瓷材料可以结晶,形成玻璃相也是常见的,而金属很容易进行结晶,但很难形成玻璃相?【08年真题】答:对于有可能进行结晶的材料,决定液体冷却时是否能结晶或者形成玻璃

的外部条件是冷却速度,内部条件是黏度。如果冷却速度足够高,任何液体原则上都可以转化为玻璃。特别是对那些分子结构复杂、材料熔融态时黏度很大的液体,冷却时原子迁移扩散困难,则晶体的形成过程很难进行,容易形成过冷液体。

温度下降至Tg以下时,过冷液体固化成玻璃。

金属材料由于其晶体结构比较简单,且熔融时黏度小,冷却时很难阻止结晶过程的发生,故固态下的金属大多为晶体;但如果冷却很快时,能阻止某些合金.

.

的结晶过程,此时过冷液态的原子排列方式保留至固态,原子在三维空间则不呈周期性的规则排列。

陶瓷材料晶体一般比较复杂,特别是能形成三维网络的SiO等,尽管大多2数陶瓷材料可进行结晶,但也有一些是非晶体,这主要是指玻璃和硅酸盐结构。

2、铸锭的一般组织可分为哪几个区域?写出其名称,并简述影响铸锭结晶组织的因素。【08年真题】

答:在铸锭组织中,一般有三层晶区:

(1)表层细晶区。其形成是由于模壁的温度较低,液体的过冷度较大,因此形核率较高。

(2)柱状晶区。其形成是由于模壁的温度升高,晶核的成长速率大于晶核的

形核率,且沿垂直于模壁方向的散热较为有利。在细晶区中取向有利的晶粒优先生长为柱状晶粒。

(3)中心等轴区。其形成是由于模壁温度进一步升高,液体过冷度进一步降

低,剩余液体的散热方向性已不明显,处于均匀冷却状态;同时,未熔杂质、破断枝晶等易集中于剩余液体中,这些都促使了等轴晶的形成。

影响铸锭结晶组织的因素:冷却速度、浇注温度。通常快的冷却速度,高的浇注

温度和定向散热有利于柱状晶的形成;如果金属纯度较高、铸锭截面较小时,柱状晶快速成长,有可能形成穿晶。相反,慢的冷却速度,低的浇注温度,加入有效形核剂或搅动等均有利于形成中心等轴晶。

3、合金凝固时发生成分过冷的原因是什么?请画出成分过冷的温度分布曲线。. .

【10年真题】

答:在合金的凝固的过程中,由于液相中溶质的分布发生变化而改变了凝固凝固温度,这可由相图中的液相相来确定,因此,界面前沿的液体中的实际温度低于由溶质分布所决定的凝固温度时,产生过冷,即成分过冷。

K<1成分过冷的温度分布示意图如下图所示:0

4、分别写出固溶体的自由能公式中的混合熵、混合焓的表达式。画图示意出当相互作用参数不同时自由能—成分曲线的形状有何不同?【10年真题】答:

5、什么叫临界晶核?它的物理意义及过冷度的定量关系如何?【11年真题】.

.

*为临界半径。r答:半径为的晶核称为临界晶核,r*时,r*有最大值,当晶胚的r小于它的物理意义:由△G—r曲线可知,△G最终熔难以长大,则其长大将导致体系自由能的增加,故这种尺寸晶胚不稳定,时,晶胚的长大使体系自由能降低,这些晶胚就称为稳定的r*r≥化而消失。当晶核。因此临界晶核是晶胚可以长大地半径最小的晶核。??T m2?r*,r*与过冷度的定量关系:即临界半径

由过冷度决定,过冷T?Lm??T度越大,r*越小,则形核的几率增大,晶核的数目也增多。

6、分析纯金属生长形态与温度梯度的关系。【12年真题】

答:在正温度梯度的情况下,结晶潜热只能通过固相而散开,相界面的推移速度受固相传热速度所控制,晶体的生长接近于平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有突起部分,而伸入温度较高的液体中时,它的生长速度就会缓解甚至停止,周围部分的较凸起部分大而会赶上来,使凸起部分消失,这种过程使得液固界面保持平面状态。

在负温度梯度时,相界面上产生的结晶潜热可以通过固相也可以通过液相而消失,相界面的推移不止由传热速度所控制,在这种情况下,如果部分的相界面生长凸起,到前面的液体中,则能处于温度更低的液相中,使得凸出部分的生长速度增大而进一步的伸向液体中,在这种情况下,液固界面将以树枝状生长。

7、液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么?

【模拟题一】

答:固态金属熔化时不一定出现过热。如熔化时,液相若与气相接触,当. .

有少量液体金属在固相表面形成时,就会很快覆盖在整个表面(因为液体金属总是润湿同一种固态金属),由下图表面张力平衡可知rcosθ+r=r,而实验指SVLVSL 出r+r

碍,也就不必过热。实际金属多属于这种情况。如果固体金属熔化时液相不与气相接触,则有可能使固体金属过热,然而,这在实际上是难以做到的。

8、简述金属晶体长大地机制。【模拟题二】

答:晶体长大机制是指晶体微观长大方式,它与液—固界面结构有关。

具有粗糙界面的物质,因界面上约有50%的原子位置空着,这些空位都可接受原

子,故液体原子可以单个进入空位,与晶体相连接,界面沿其法线方向垂直推移,呈连续式长大。具有光滑界面的晶体长大,不是单个原子的附着,而是以均匀形核的方式,在晶体学小平面界面上形成一个原子层后的二维晶核与原界面间形成台阶,单个原子可以在台阶上填充,使二维晶核侧向长大,在该层填满后,则在新的界面上形成新的二维晶核,继续填满,如此反复进行。

若晶体的光滑界面存在有螺型位错的露头,则该界面成为螺旋面,并形成永不消

失的台阶,原子附着到台阶上使晶体长大。

9、试述结晶相变的热力学条件、动力学条件、能量和结构条件。【模拟题四】.

.

答:分析结晶相变时系统自由能的变化可知,结晶的热力学条件为△G<0;Lm???可知,只有△T>0,才有△G<0。即只有-=由单位体积自由能的变化△G BB ?m。过冷才能使△G<0 熔点动力学条件为液—固界面前沿液体的温度T

液体中存在的结构起伏,是结晶时产生晶核的基础。因此,结构起伏是结晶过程必须具备的结构条件。

10、比较说明过冷度、临界过冷度、动态过冷度等概念的区别。【模拟题五】答:实际结晶温度与理论结晶温度之间的温度差,称为过冷度(△T=Tm-Tn)。它是相变热力学条件所要求的,只有△T>0时,才能造成固相的自由能低于液相

自由能的条件,液、固相间的自由能差便是结晶的驱动力。

过冷液体中,能够形成等于临界晶核半径的晶胚时的过冷度,称为临界过冷**时,过冷液体中的最大的晶胚尺寸也T*。显然,当实际过冷度△T<度(△T△)小于临界晶核半径,故难于成核;只有△T>△T*时,才能均匀形核。所以,临界

过冷度是形核时所要求的。

晶核长大时,要求液—固界面前沿液体中有一定的过冷,才能满足

dNdN,这种过冷称为动态过冷度(△T=Tm-Ti),) )=((kM F

d tdt它是晶体长大地必要条件。

第七章相图

1、杠杆定律与重心法则有什么关系?在三元相图的分析中怎样运用杠杆定律和. .

重心法则?【07年真题】

答:杠杆定律与重心法则的关系:杠杆定律应用于三元相图两相平衡时,而重心法则则是应用于三元系统处于三相平衡时,当设想先把三相中的任意两相,混合成一体,然后再把这个混合体和第三相混合成合金,那么这两部分即可应用杠杆定律中的推论,即当给定材料在一定温度下处于两相平衡状态时,若其中一相的成分给定,另一相的成分点必在两已知成分点连线的延长线上。结合直线定律,再进一步应用杠杆定律,可推导出合金成分正好位于成分三角形(三相平衡的三相成分点构成)的质量重心,即重心法则。可见,重心法则是由一定假设,借助直线法则、杠杆定律而推导出来的。

杠杆定律用来计算三元系中两相平衡时,两个相的质量分数;另外可以由直线法则及杠杆定律作出有用的推论:当给定材料在一定温度下处于两相平衡时,若其中一相的成分给定,另一相的成分点必在两已知成分点连线的延长线上;若两个平衡相的成分点已知,材料的成分点必然位于此两个成分点的连线上。

重心法则可用来计算三元系中三相平衡时,三个相的质量分数。

2、三元相图的垂直截面与二元相图有何不同?为什么杠杆定律可以应用于二元相图而不能应用于三元相图的垂直截面图?【09年真题】

答:尽管三元相图的垂直截面图与二元相图的形状很相似,但是它们之间存在着本质的差别,二元相图的液相线与固相线可以用来表示合金在平衡凝固过程中液相与固相浓度随温度变化的规律,而三元相图的垂直截面就不能表示相浓度随温度而变化的关系,只能用于了解冷凝过程中额相变温度,不能应用直线法则来确定两相的质量分数,也不能用杠杆定律计算两相的相对量。

.

.

3、三元匀晶相图中,如果是一个两相区,根据相律,该相区的自由度是多少?如果一个合金成分位于该相区,如何知道两相的成分和含量?【12年真题】答:(1)有相律可知f=c-p+1=2,即自由度为2.

(2)可用直线法则、杠杆定律、重心定律计算两相的成分和含量。

直线法则:在一定温度下三组元材料两相平衡时,材料的成分点和其两个①平衡相的成分点必然位于成分三角形内的一条直线上。如下图所示,设在一定温

度下成分点o的合金处于ɑ+β两相平衡状态,ɑ相及β相的成分点分别为a、b。由图中可读出三元合金o、ɑ、β相中B组元的含量分别为Ao、Aa、Ab;C组元111的含量分别为Ao、Aa、Ab。由含量关系可推导出解析几何中三点共线的关系式:222A a-AbA o-A b1111。由此可证明o、a、b必在一条直线上。同样在等边成

分三?A a-A b Ao-Ab2222角形中,上述关系依然存在。

Aa?Aoobob1111?杠杆定律:由前面推导还可以得出???②a

Ab?Aaabab1111重心定律:成分为R的三元合金在某一温度下,分解成α,β,γ三个相,则R的③成分点必定位于△αβγ的重心位置上。如图,合金成分o,三相α、β、γ成分分别为P、Q、S,则由杠杆定律可以得到各相的质量分数为:OROMOT???。O点正好位于成分三角形PQS的质量重心。???,,???

STPMQR

.

.

第八章综合

一、概念辨析题(说明下列各组概念的异同。任选六题,每小题3分,共18分)

1 晶体结构与空间点阵

2 热加工与冷加工

3 上坡扩散与下坡扩散

4 间隙固溶体与间隙化合物

5 相与组织

6 交滑移与多滑移

7 金属键与共价键 8 全位错与不全位错 9 共晶转变与共析转变

答:1 晶体结构与空间点阵

异:点的属性、数目、有无缺陷;同:描述晶体中的规律性。

2 热加工与冷加工

异:热加工时发生回复、再结晶与加工硬化;冷加工只发生加工硬化;

同:发生塑性变形。

3 上坡扩散与下坡扩散

异:扩散方向;

同:驱动力-化学位梯度。

4 间隙固溶体与间隙化合物

异:结构与组成物的关系;

同:小原子位于间隙位置。

5 相与组织

异:组织具有特定的形态;

同:都是材料的组成部分。

6 交滑移与多滑移

异:多个滑移系的滑移;

同:交滑移中滑移系具有相同的滑移方向。

7 异:电子共用范围不同, 金属键中电子属所有原子共用, 共价键中属若干原子共用.

同:成键方式为电子共用.

8 异:柏氏矢量与点阵常数的关系不同.

同:都是线缺陷,即位错.

9 异:共晶转变为从液相转变,共析转变为从固相转变.

同:在恒温下转变产物为两个固相.

1. 请对比分析加工硬化、细晶强化、弥散强化、复相强化和固溶强化的特点和机理.

答:加工硬化:是随变形使位错增殖而导致的硬化;

细晶强化:是由于晶粒减小,晶粒数量增多,尺寸减小,增大了位错连续滑移的阻力导致的强化;同时由于滑移分散,也使塑性增大。该强化机制是唯一的同时增大强度和塑性的机制。

弥散强化:又称时效强化。是由于细小弥散的第二相阻碍位错运动产生的强化。包括切过机制和绕过机制。

复相强化:由于第二相的相对含量与基体处于同数量级是产生的强化机制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。.

.

固溶强化:由于溶质原子对位错运动产生阻碍。

2. 试论材料强化的主要方法及其原理.

固溶强化. 原理:晶格畸变、柯氏气团,阻碍位错运动;方法:固溶处理、淬火等。

细晶强化:原理:晶界对位错滑移的阻碍作用。方法:变质处理、退火等。

弥散强化:原理:第二相离子对位错的阻碍作用;方法:形成第二硬质相如球化退火、变质处理等。

相变强化:原理:新相为高强相或新相对位错的阻碍。方法:淬火等。

加工硬化;原理:形成高密度位错等。方法:冷变形等。

3. 请简述二元合金结晶的基本条件有哪些。

答:热力学条件ΔG < 0

结构条件: r > r*

能量条件: A > ΔG max

成分条件

4. 同素异晶转变和再结晶转变都是以形核长大方式进行的,请问两者之间有何

差别?

答:同素异晶转变是相变过程,该过程的某一热力学量的倒数出现不连续;再结晶转变只是晶粒的重新形成,不是相变过程。

5. 两位错发生交割时产生的扭折和割阶有何区别?

答:位错的交割属于位错与位错之间的交互作用,其结果是在对方位错线上产生一个大小和方向等于其柏氏矢量的弯折,此弯折即被称为扭折或割阶。扭折是指交割后产生的弯折在原滑移面上,对位错的运动不产生影响,容易消失;割阶是不在原滑移面上的弯折,对位错的滑移有影响。

.

.

6. 请简述扩散的微观机制有哪些?影响扩散的因素又有哪些?

答:置换机制:包括空位机制和直接换位与环形换位机制,其中空位机制是主要机制,直接换位与环形换位机制需要的激活能很高,只有在高温时才能出现。间隙机制:包括间隙机制和填隙机制,其中间隙机制是主要机制。

影响扩散的主要因素有:温度(温度约高,扩散速度约快);晶体结构与类型(包括致密度、固溶度、各向异性等);晶体缺陷;化学成分(包括浓度、第三组元等)

7. 请简述回复的机制及其驱动力。

答:低温机制:空位的消失

中温机制:对应位错的滑移(重排、消失)

高温机制:对应多边化(位错的滑移+攀移)

驱动力:冷变形过程中的存储能(主要是点阵畸变能)

.

《材料科学基础》经典习题及答案全解

材料科学与基础习题集和答案 第七章回复再结晶,还有相图的内容。 第一章 1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=m g ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/ 原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

材料科学基础试卷(带答案)

材料科学基础试卷(一) 一、概念辨析题(说明下列各组概念的异同。任选六题,每小题3分,共18分) 1 晶体结构与空间点阵 2 热加工与冷加工 3 上坡扩散与下坡扩散 4 间隙固溶体与间隙化合物 5 相与组织 6 交滑移与多滑移 7 金属键与共价键 8 全位错与不全位错 9 共晶转变与共析转变 二、画图题(任选两题。每题6分,共12分) 1 在一个简单立方晶胞内画出[010]、[120]、[210]晶向和(110)、(112)晶面。 2 画出成分过冷形成原理示意图(至少画出三个图)。 3 综合画出冷变形金属在加热时的组织变化示意图和晶粒大小、内应力、强度和塑性变化趋势图。 4 以“固溶体中溶质原子的作用”为主线,用框图法建立与其相关的各章内容之间的联系。 三、简答题(任选6题,回答要点。每题5分,共30 分) 1 在点阵中选取晶胞的原则有哪些? 2 简述柏氏矢量的物理意义与应用。 3 二元相图中有哪些几何规律? 4 如何根据三元相图中的垂直截面图和液相单变量线判断四相反应类型? 5 材料结晶的必要条件有哪些? 6 细化材料铸态晶粒的措施有哪些? 7 简述共晶系合金的不平衡冷却组织及其形成条件。 8 晶体中的滑移系与其塑性有何关系? 9 马氏体高强度高硬度的主要原因是什么? 10 哪一种晶体缺陷是热力学平衡的缺陷,为什么? 四、分析题(任选1题。10分) 1 计算含碳量w=0.04的铁碳合金按亚稳态冷却到室温后,组织中的珠光体、二次渗碳体和莱氏体的相对含量。 2 由扩散第二定律推导出第一定律,并说明它们各自的适用条件。 3 试分析液固转变、固态相变、扩散、回复、再结晶、晶粒长大的驱动力及可能对应的工艺条件。 五、某面心立方晶体的可动滑移系为(111) [110].(15分) (1) 指出引起滑移的单位位错的柏氏矢量. (2) 如果滑移由纯刃型位错引起,试指出位错线的方向. (3) 如果滑移由纯螺型位错引起,试指出位错线的方向. (4) 在(2),(3)两种情况下,位错线的滑移方向如何? (5) 如果在该滑移系上作用一大小为0.7MPa的切应力,试确定单位刃型位错和螺型位错 线受力的大小和方向。(点阵常数a=0.2nm)。 六、论述题(任选1题,15分) 1 试论材料强化的主要方法、原理及工艺实现途径。 2 试论固态相变的主要特点。 3 试论塑性变形对材料组织和性能的影响。

材料科学基础试题库

《材料科学基础》试题库 一、名词解释 1、铁素体、奥氏体、珠光体、马氏体、贝氏体、莱氏体 2、共晶转变、共析转变、包晶转变、包析转变 3、晶面族、晶向族 4、有限固溶体、无限固溶体 5、晶胞 6、二次渗碳体 7、回复、再结晶、二次再结晶 8、晶体结构、空间点阵 9、相、组织 10、伪共晶、离异共晶 11、临界变形度 12、淬透性、淬硬性 13、固溶体 14、均匀形核、非均匀形核 15、成分过冷 16、间隙固溶体 17、临界晶核 18、枝晶偏析 19、钢的退火,正火,淬火,回火 20、反应扩散 21、临界分切应力 22、调幅分解 23、二次硬化 24、上坡扩散 25、负温度梯度 26、正常价化合物 27、加聚反应 28、缩聚反应 四、简答 1、简述工程结构钢的强韧化方法。(20分) 2、简述Al-Cu二元合金的沉淀强化机制(20分) 3、为什么奥氏体不锈钢(18-8型不锈钢)在450℃~850℃保温时会产生晶间腐

蚀如何防止或减轻奥氏体不锈钢的晶间腐蚀 4、为什么大多数铸造合金的成分都选择在共晶合金附近 5、什么是交滑移为什么只有螺位错可以发生交滑移而刃位错却不能 6、根据溶质原子在点阵中的位置,举例说明固溶体相可分为几类固溶体在材料中有何意义 7、固溶体合金非平衡凝固时,有时会形成微观偏析,有时会形成宏观偏析,原因何在 8、应变硬化在生产中有何意义作为一种强化方法,它有什么局限性 9、一种合金能够产生析出硬化的必要条件是什么 10、比较说明不平衡共晶和离异共晶的特点。 11、枝晶偏析是怎么产生的如何消除 12、请简述影响扩散的主要因素有哪些。 13、请简述间隙固溶体、间隙相、间隙化合物的异同点 14、临界晶核的物理意义是什么形成临界晶核的充分条件是什么 15、请简述二元合金结晶的基本条件有哪些。 16、为什么钢的渗碳温度一般要选择在γ-Fe相区中进行若不在γ-Fe相区进行会有什么结果 17、一个楔形板坯经冷轧后得到相同厚度的板材,再结晶退火后发现板材两端的抗拉强度不同,请解释这个现象。 18、冷轧纯铜板,如果要求保持较高强度,应进行何种热处理若需要继续冷轧变薄时,又应进行何种热处理 19、位错密度有哪几种表征方式 20、淬透性与淬硬性的差别。 21、铁碳相图为例说明什么是包晶反应、共晶反应、共析反应。 22、马氏体相变的基本特征(12分) 23、加工硬化的原因(6分) 24、柏氏矢量的意义(6分) 25、如何解释低碳钢中有上下屈服点和屈服平台这种不连续的现象(8分) 26、已知916℃时,γ-Fe的点阵常数,(011)晶面间距是多少(5分) 27、画示意图说明包晶反应种类,写出转变反应式(4分) 28、影响成分过冷的因素是什么(9分) 29、单滑移、多滑移和交滑移的意义是什么(9分) 30、简要说明纯金属中晶粒细度和材料强度的关系,并解释原因。(6分) 31、某晶体的原子位于四方点阵的节点上,点阵的a=b,c=a/2,有一晶面在x,y,z轴的截距分别为6个原子间距、2个原子间距和4个原子间距,求该晶面的

材料科学基础练习题

练习题 第三章 晶体结构,习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。1:1和2:1 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。并说明为什么其体积分数小于74.05%?

最新材料科学基础-综合复习题

材料科学基础复习题 一、选择题 1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是. (A) 金属键(B) 离子键(C) 分子键(D) 共价键 2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是. (A) 氢键(B) 离子键(C) 分子键(D) 共价键 3. 工业用硅酸盐属于. (A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料 4. 布拉菲点阵共有中. (A) 8 (B) 10 (C) 12 (D) 14 5. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为. (A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 4 6. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是. (A) 在简单立方点阵中, 低指数的晶面间距较大 (B) 在简单立方点阵中, 高指数的晶面间距较大 (C) 晶面间距越大, 该晶面上原子排列越紧密 (D) 晶面间距越大, 该晶面上原子排列越稀疏 7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为. (A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 12 8. 密堆积结构的致密度为. (A) 0.68 (B) 0.74 (C) 0.82 (D) 1.0 9. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为. (A) 4 (B) 6 (C) 8 (D) 10 10. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是. (A) 原子结合键为共价键 (B) 原子配位数为4 (C) 单位晶胞包含8个原子 (D) 属于面心立方点阵, 为密堆积结构 11. 下述晶体缺陷中属于点缺陷的是. (A) 空位(B) 位错(C) 相界面(D) 间隙原子 12. 下述晶体缺陷中属于线缺陷的是. (A) 空位(B) 位错(C) 晶界(D) 间隙原子 13. 下述晶体缺陷中属于面缺陷的是. (A) 表面(B) 位错(C) 相界面(D) 空位 14. 下述界面中界面能最小的是. (A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面 15. 下述界面中界面能最大的是. (A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面 16. 理想密排六方金属的c/a为. (A) 1.6 (B)(C) (D) 1

材料科学基础试题及答案考研专用

一、名词: 相图:表示合金系中的合金状态与温度、成分之间关系的图解。 匀晶转变:从液相结晶出单相固溶体的结晶过程。 平衡结晶:合金在极缓慢冷却条件下进行结晶的过程。 成分起伏:液相中成分、大小和位置不断变化着的微小体积。 异分结晶:结晶出的晶体与母相化学成分不同的结晶。 枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象。 共晶转变:在一定温度下,由—定成分的液相同时结晶出两个成分一定的固相的转变过程。 脱溶:由固溶体中析出另一个固相的过程,也称之为二次结晶。 包晶转变:在一定温度下,由一定成分的固相与一定成分的液相作用,形成另一个一定成分的固相的转变过程。 成分过冷:成分过冷:由液相成分变化而引起的过冷度。 二、简答: 1. 固溶体合金结晶特点? 答:异分结晶;需要一定的温度范围。 2. 晶内偏析程度与哪些因素有关? 答:溶质平衡分配系数k0;溶质原子扩散能力;冷却速度。 3. 影响成分过冷的因素? 答:合金成分;液相内温度梯度;凝固速度。

三、书后习题 1、何谓相图?有何用途? 答:相图:表示合金系中的合金状态与温度、成分之间关系的图解。 相图的作用:由相图可以知道各种成分的合金在不同温度下存在哪些相、各个相的成分及其相对含量。 2、什么是异分结晶?什么是分配系数? 答:异分结晶:结晶出的晶体与母相化学成分不同的结晶。 分配系数:在一定温度下,固液两平衡相中溶质浓度之比值。 3、何谓晶内偏析?是如何形成的?影响因素有哪些?对金属性能有何影响,如何消除? 答:晶内偏析:一个晶粒内部化学成分不均匀的现象 形成过程:固溶体合金平衡结晶使前后从液相中结晶出的固相成分不同,实际生产中,液态合金冷却速度较大,在一定温度下扩散过程尚未进行完全时温度就继续下降,使每个晶粒内部的化学成分布均匀,先结晶的含高熔点组元较多,后结晶的含低熔点组元较多,在晶粒内部存在着浓度差。 影响因素:1)分配系数k0:当k0<1时,k0值越小,则偏析越大;当k0>1时,k0越大,偏析也越大。2)溶质原子扩散能力,溶质原子扩散能力大,则偏析程度较小;反之,则偏析程度较大。3)冷却速度,冷却速度越大,晶内偏析程度越严重。 对金属性能的影响:使合金的机械性能下降,特别是使塑性和韧性显著降低,

材料科学基础考研经典题目doc资料

材料科学基础考研经 典题目

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18.为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19.在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样 条件下,单相固溶体合金凝固的形貌又如何?分析原因

材料科学基础选择题汇总

1、极化会对晶体结构产生显著影响,可使键性由( B )过渡,最终使晶体结构类型发生变化。 A: 共价键向离子键B: 离子键向共价键 C: 金属键向共价键D: 键金属向离子键 2、离子晶体中,由于离子的极化作用,通常使正负离子间的距离( B ),离子配位数()。 A: 增大,降低B: 减小,降低 C: 减小,增大D: 增大,增大 3、氯化钠具有面心立方结构,其晶胞分子数是(C )。 A: 5 B: 6 C: 4 D: 3 4、NaCl单位晶胞中的“分子数”为4,Na+填充在Cl-所构成的( B )空隙中。 A: 全部四面体B: 全部八面体 C: 1/2四面体D: 1/2八面体 5、CsCl单位晶胞中的“分子数”为1,Cs+填充在Cl-所构成的( C )空隙中。 A: 全部四面体B: 全部八面体 C: 全部立方体D: 1/2八面体 6、MgO晶体属NaCl型结构,由一套Mg的面心立方格子和一套O的面心立方格子组成,其一个单位晶胞中有( B )个MgO分子。 A: 2 B: 4 C: 6 D: 8 7、萤石晶体可以看作是Ca2+作面心立方堆积,F-填充了( D )。 A: 八面体空隙的半数B: 四面体空隙的半数 C: 全部八面体空隙D: 全部四面体空隙 8、萤石晶体中Ca2+的配位数为8,F-配位数为( B )。 A: 2 B: 4 C: 6 D: 8 9、CsCl晶体中Cs+的配位数为8,Cl-的配位数为( D )。 A: 2 B: 4 C: 6 D: 8 10、硅酸盐晶体的分类原则是(B )。 A: 正负离子的个数B: 结构中的硅氧比 C:化学组成D:离子半径 11、锆英石Zr[SiO4]是( A )。 A: 岛状结构B: 层状结构 C: 链状结构D: 架状结构 12、硅酸盐晶体中常有少量Si4+被Al3+取代,这种现象称为( C )。 A: 同质多晶B: 有序—无序转变 C: 同晶置换D: 马氏体转变 13. 镁橄榄石Mg2[SiO4]是( A )。 A: 岛状结构B: 层状结构 C: 链状结构D: 架状结构 14、对沸石、萤石、MgO三类晶体具有的空隙体积相比较,其由大到小的顺序

材料科学基础试题库

材料科学基础试题库 材料科学基础》试题库 一、选择 1、在柯肯达尔效应中,标记漂移主要原因是扩散偶中________ 。 A、两组元的原子尺寸不同 B、仅一组元的扩散 C、两组元的扩散速率不同 2、在二元系合金相图中,计算两相相对量的杠杆法则只能用于________ 。 A、单相区中 B、两相区中 C、三相平衡水平线上 3、铸铁与碳钢的区别在于有无______ 。 A、莱氏体 B、珠光体 C、铁素体 4、原子扩散的驱动力是_____ 。 A、组元的浓度梯度 B、组元的化学势梯度 C、温度梯度 5、在置换型固溶体中,原子扩散的方式一般为_______ 。 A、原子互换机制 B、间隙机制 C、空位机制 6、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为________ 。 A、肖脱基缺陷 B、弗兰克尔缺陷 C、线缺陷 7、理想密排六方结构金属的 c/a 为_____ 。 A、1.6 B、2 XV (2/3) C、“ (2/3) 8、在三元系相图中,三相区的等温截面都是一个连接的三角形,其顶点触及 A、单相区 B、两相区 C、三相区 9、有效分配系数Ke表示液相的混合程度,其值范围是_________ o(其中Ko是平衡分配系数)

A、 1

材料科学基础试题库

一、单项选择题(请在每小题的4个备选答案中,选出一个最佳答案, 共10小题;每小题2分,共20分) 1、材料按照使用性能,可分为结构材料和 。 A. 高分子材料; B. 功能材料; C. 金属材料; D. 复合材料。 2、在下列结合键中,不属于一次键的是: A. 离子键; B. 金属键; C. 氢键; D. 共价键。 3、材料的许多性能均与结合键有关,如大多数金属均具有较高的密度是由于: A. 金属元素具有较高的相对原子质量; B. 金属键具有方向性; C. 金属键没有方向性; D.A 和C 。 3、下述晶面指数中,不属于同一晶面族的是: A. (110); B. (101); C. (011- );D. (100)。 4、 面心立方晶体中,一个晶胞中的原子数目为: A. 2; B. 4; C. 6; D. 14。 5、 体心立方结构晶体的配位数是: A. 8; B.12; C. 4; D. 16。 6、面心立方结构晶体的原子密排面是: A. {111}; B. {110}; C. (100); D. [111]。 7、立方晶体中(110)和(211)面同属于 晶带 A. [110]; B. [100]; C. [211]; D. [--111]。 6、体心立方结构中原子的最密排晶向族是: A. <100>; B. [111]; C. <111>; D. (111)。 6、如果某一晶体中若干晶面属于某一晶带,则: A. 这些晶面必定是同族晶面; B. 这些晶面必定相互平行; C. 这些晶面上原子排列相同; D. 这些晶面之间的交线相互平行。 7、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为:A. 4, 2, 6; B. 6, 2, 4; C. 4, 4, 6; D. 2, 4, 6 7、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为: A. 肖脱基缺陷; B. 弗兰克缺陷; C. 线缺陷; D. 面缺陷 7、两平行螺旋位错,当柏氏矢量同向时,其相互作用力:

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面 是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,, 晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四面体间隙数为 。 3. 纯铁冷却时在912ε 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平 面上的方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ; (2) ;(3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,导电性 。 6)间隙固溶体是 ,间隙化合物是 。 二、 问答 1、 分析氢,氮,碳,硼在?-Fe 和?-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼:0.091nm ,?-Fe :0.124nm ,?-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空 1. 在液态纯金属中进行均质形核时,需要 起伏和 起伏。 2 液态金属均质形核时,体系自由能的变化包括两部分,其中 自由能

【考研】材料科学基础试题库答案

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编

东华理工大学材料科学与工程系 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r与时间t的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、_____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、_____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl晶胞中(001)面心的一个球(Cl-离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008.一个立方晶系晶胞中,一晶面在晶轴X、Y、Z上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel缺陷时,晶体体积_________,晶体密度_________;而有Schtty缺陷时,晶体体积_________,晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大时,_________是主要的。 0016.少量CaCl2在KCl中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其缺陷反应式为_________。 0017.Tg是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg比慢冷时_________ ,淬冷玻璃比慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的三种熔体,其粘度大小的顺序为_________。 0019.三T图中三个T代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2组成的熔体,若保持Na2O含量不变,用CaO置换部分SiO2后,电导_________。0022.在Na2O-SiO2熔体中加入Al2O3(Na2O/Al2O3<1),熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。

材料科学基础考研经典题目教学内容

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18. 为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19. 在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样条件下,单相 固溶体合金凝固的形貌又如何?分析原因 答:正的温度梯度指的是随着离开液—固界面的距离Z 的增大,液相温度T 随之升高的情况,即0>dZ dT 。在这种条件下,纯金属晶体的生长以接近平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有凸起部分而伸入温度较高的液体中时,它的生长速度就会减慢甚至停止,周围部分的过冷度较凸起部分大,从而赶上来,使凸起部分消失,这种过程使液—固界面保持稳定的平面形状。固溶体合金凝固时会产生成分过冷,在液体处于正的温度梯度下,相界面前沿的成分过冷区呈现月牙形,其大小与很多因素有关。此时,成分过冷区的特性与纯金属在负的温度梯度下的热过冷非常相似。可以按液固相界面前沿过冷区的大小分三种情况讨论:⑴当无成分过冷区或成分过冷区较小时,界面不可能出现较大的凸起,此时平界面是稳定的,合金以平面状生长,形成平面晶。⑵当成分过冷区稍大时,这时界面上凸起的尖部将获得一定的过冷度,从而促进了凸起进一步向液体深处生长,考虑到界面的力学平衡关系,平界面变得不稳定,合金以胞状生长,形成胞状晶或胞状组织。⑶当成分过冷区较大时,平界面变得更加不稳定,界面上的凸起将以较快速度向液体深处生长,形成一次轴,同时在一次轴的侧向形成二次轴,以此类推,因此合金以树枝状生长,最终形成树枝晶。 20. 纯金属晶体中主要的点缺陷类型是什么?试述它们可能产生的途径? 答:纯金属晶体中,点缺陷的主要类型是空位、间隙原子、空位对及空位与间隙原子对等。产生的途径:⑴依靠热振动使原子脱离正常点阵位置而产生。空位、间隙原子或空位与间隙原子对都可由热激活而形成。这种缺陷受热的控制,它的浓度依赖于温度,随温度升高,其平衡态的浓度亦增高。⑵冷加工时由于位错间有交互作用。在适当条件下,位错交互作用的结果能产生点缺陷,如带割阶的位错运动会放出空位。⑶辐照。高能粒子(中子、α粒子、高速电子)轰击金属晶体时,点阵中的原子由于粒子轰击而离开原来位置,产生空位或间隙原子。 21. 简述一次再结晶与二次再结晶的驱动力,并如何区分冷热加工?动态再结晶与静态再结晶后的组 织结构的主要区别是什么? 答:一次再结晶的驱动力是基体的弹性畸变能,而二次再结晶的驱动力是来自界面能的降低。再结晶温

材料科学基础考题1

材料科学基础考题 Ⅰ卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷 二、选择题(每题2分,共20分) 1.在体心立方结构中,柏氏矢量为a[110]的位错( )分解为a/2[111]+a/2]111[. (A) 不能(B) 能(C) 可能 2.原子扩散的驱动力是:( ) (A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度 3.凝固的热力学条件为:() (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4.在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现() (A) 氧离子空位(B) 钛离子空位(C)阳离子空位 5.在三元系浓度三角形中,凡成分位于()上的合金,它们含有另两个顶角所代表的两组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6.有效分配系数k e 表示液相的混合程度,其值范围是() (A)1

材料科学基础试题库答案 (1)

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r与时

间t的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、_____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、_____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl晶胞中(001)面心的一个球(Cl-离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008.一个立方晶系晶胞中,一晶面在晶轴X、Y、Z上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel缺陷时,晶体体积_________,晶体密度_________;而有Schtty缺陷时,晶体体积_________,晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大时,_________是主要的。 0016.少量CaCl2在KCl中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其缺陷反应式为_________。 0017.Tg是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg比慢冷时_________ ,淬冷玻璃比慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的三种熔体,其粘度大小的顺序为_________。 0019.三T图中三个T代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2组成的熔体,若保持Na2O含量不变,用CaO置换部分SiO2后,电导_________。0022.在Na2O-SiO2熔体中加入Al2O3(Na2O/Al2O3<1),熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。 0026.离子晶体生成Schttky缺陷时,正离子空位和负离子空位是同时成对产生的,同时伴随_________的增加。0027.多种聚合物同时并存而不是一种独存这就是熔体结构_________的实质。在熔体组成不变时,各级聚合物的数量还与温度有关,温度升高,低聚物浓度增加。 0028.系统中每一个能单独分离出来并_________的化学均匀物质,称为物种或组元,即组份。例如,对于食盐的水溶液来说,NaCl与H2O都是组元。而Na+、Cl-、H+、OH-等离子却不能算是组元,因为它们都不能作为独立的物质存在。 0029.在弯曲表面效应中,附加压力ΔP总是指向曲面的_________,当曲面为凸面时,ΔP为正值。 0030.矿化剂在硅酸盐工业中使用普遍,其作用机理各异,例在硅砖中加入1-3%[Fe2O3+Ca2(OH)2]做矿化剂,能使大部分a-石英不断溶解同时不断析出a-磷石英,从而促进a-石英向磷石英的转化。水泥生产中

材料科学基础精彩试题库(内附部分自己整理问题详解)

《材料科学基础》试题库 一、选择 1、在柯肯达尔效应中,标记漂移主要原因是扩散偶中 __C___。 A、两组元的原子尺寸不同 B、仅一组元的扩散 C、两组元的扩散速率不同 2、在二元系合金相图中,计算两相相对量的杠杆法则只能用于 __B___。 A、单相区中 B、两相区中 C、三相平平线上 3、铸铁与碳钢的区别在于有无 _A____。 A、莱氏体 B、珠光体 C、铁素体 4、原子扩散的驱动力是 _B____。 A、组元的浓度梯度 B、组元的化学势梯度 C、温度梯度 5、在置换型固溶体中,原子扩散的方式一般为 __C___。 A、原子互换机制 B、间隙机制 C、空位机制 6、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为 _B____。 A、肖脱基缺陷 B、弗兰克尔缺陷 C、线缺陷 7、理想密排六方结构金属的c/a为 __A___。 A、1.6 B、2×√(2/3) C、√(2/3) 8、在三元系相图中,三相区的等温截面都是一个连接的三角形,其顶点触及 __A___。 A、单相区 B、两相区 C、三相区 9、有效分配系数Ke表示液相的混合程度,其值围是 _____。(其中Ko是平衡分配系数) A、1

相关文档
最新文档