矩阵特征值的意义

矩阵特征值的意义
矩阵特征值的意义

矩阵特征值的意义

数学里面的特征值和特征矩阵到底有什么用,它的物理意义在于什么??

矩阵的特征值要想说清楚还要从线性变换入手,把一个矩阵当作一个线性变换在某一组基下的矩阵,最简单的线性变换就是数乘变换,求特征值的目的就是看看一个线性变换对一些非零向量的作用是否能够相当于一个数乘变换,特征值就是这个数乘变换的变换比,这样的一些非零向量就是特征向量,其实我们更关心的是特征向量,希望能把原先的线性空间分解成一些和特征向量相关的子空间的直和,这样我们的研究就可以分别限定在这些子空间上来进行,这和物理中在研究运动的时候将运动分解成水平方向和垂直方向的做法是一个道理! 特征值时针对方阵而言的。

两个向量只有维数相同时才能考虑相等的问题,才能有和、有差。 引入特征值与特征向量的概念

? 引例 在一个n 输入n 输出的线性系统y=Ax 中,其中

? 我们可发现系统A 对于某些输入x ,其输出y

? 恰巧是输入x 的 倍,即 ;对某些输入,其输出与输入就不存在这种按比例放大的关系。

??????? ??=??????? ??=??????? ??=n n nn n n n n y y y y x x x x a a a a a a a a a A M M L L L L L L L 2121212222111211,,λx y λ=

? 例如,对系统 ,若输入

? 则 ?

? 若输入 ,则 ? 所以,给定一个线性系统A ,到底对哪些输入,能使其输出按比例放大,放大倍数 等于多少?这显然是控制论中感兴趣的问题。

基于此给出特征值与特征向量的概念:

? 定义 设A 是一个n 阶方阵,若存在着一个数 和一个非零n 维向量x ,使得

则称 是方阵A 的特征值,非零向量x 称为A 对应于特征值 的特征向量,或简称为A 的特征向量 ???? ??=4312A ?

??

? ??=31x x Ax y 5315155314312=???? ??=???? ??=???? ??????

??==????

??=52x x Ax y λ≠???? ??=???? ?????? ??==269524312λx

Ax λ=λλ

用MATLAB求矩阵特征值

用matlab求矩阵的特征值和特征向量 我要计算的矩阵: 1 3 5 1/3 1 3 1/5 1/3 1 [v,d]=eig(A); A为你的矩阵,V为特征向量矩阵,D为特征值矩阵,然后对D求最大值即可得最大特征根! [V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the corresponding eigenvectors so that X*V = V*D. V是特征向量,D是特征值 实例: 矩阵: 1 2/3 7/3 7/3 3/2 1 3/2 3/2 3/7 2/3 1 3/2 3/7 2/3 2/3 1 >> format rat >> A=[1 2/3 7/3 7/3 3/2 1 3/2 3/2 3/7 2/3 1 3/2 3/7 2/3 2/3 1] A = 1 2/3 7/3 7/3 3/2 1 3/2 3/2 3/7 2/3 1 3/2 3/7 2/3 2/3 1 >> [V,D]=eig(A)

V = 1793/2855 504/3235 - 146/235i 504/3235 + 146/235i 1990/4773 670/1079 -3527/5220 -3527/5220 -509/959 4350/11989 1160/4499 + 287/3868i 1160/4499 - 287/3868i -350/647 838/2819 181/3874 + 1179/4852i 181/3874 - 1179/4852i 1238/2467 D = 810/197 0 0 0 0 -93/4229 + 455/674i 0 0 0 0 -93/4229 - 455/674i 0 0 0 0 -149/2201 ***************************************************************************************** 如何归一化求权重呢? >> a=[1 3 5;1/3 1 3; 1/5 1/3 1] a = 1.0000 3.0000 5.0000 0.3333 1.0000 3.0000 0.2000 0.3333 1.0000 >> [V,D]=eig(a) V = 0.9161 0.9161 0.9161 0.3715 -0.1857 + 0.3217i -0.1857 - 0.3217i 0.1506 -0.0753 - 0.1304i -0.0753 + 0.1304i D =

第九章矩阵特征值问题的数值方法

第9章矩阵特征值问题的数值 方法 9.1 特征值与特征向量 9.2 Hermite矩阵特征值问题 9.3 Jacobi方法 9.4 对分法 9.5 乘幂法 9.6 反幂法 9.7 QR方法

9.1 特征值与特征向量设A是n阶矩阵,x是非零列向量. 如果有数λ存在,满足, (1) 那么,称x是矩阵A关于特征值λ的特征向量.

如果把(1)式右端写为 ,那么(1)式又可写为: x λ ()0 I A x λ-=||0 I A λ-=即1110 ()||...n n n f I A a a a λλλλλ--=-=++++记 它是关于参数λ的n 次多项式,称为矩阵A 的特 征多项式, 其中a 0=(-1)n |A |. (2)

显然,当λ是A的一个特征值时,它必然 是的根. 反之,如果λ是的根,那么齐次方程组(2)有非零解向量x,使(1)式 成立. 从而,λ是A的一个特征值. A的特征值也称为A的特征根 . ()0 fλ= ()0 fλ=

矩阵特征值和特征向量有如下主要性质: 定理9.1.1 n阶矩阵A是降秩矩阵的充分必要 条件是A有零特征值. 定理9.1.2 设矩阵A与矩阵B相似,那么它们 有相同的特征值. 定理9.1.3 n阶矩阵A与A T有相同的特征值. 定理9.1.4 设λ ≠λj是n阶矩阵A的两个互异特 i 征值,x、y分别是其相应的右特征向 量和左特征向量,那么,x T y=0 .

9.2 Hermite矩阵特征值问题?设A为n阶矩阵,其共轭转置矩阵记为A H. 如果A=A H,那么,A称为Hermite矩阵.

判断矩阵的最大特征值

项目六 矩阵的特征值与特征向量 实验1 求矩阵的特征值与特征向量 实验目的 学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量;能利用软件计算方 阵的特征值和特征向量及求二次型的标准形. 求方阵的特征值与特征向量. 例1.1 (教材 例1.1) 求矩阵.031121201??? ?? ??--=A 的特征值与特值向量. (1) 求矩阵A 的特征值. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvalues[A] 则输出A 的特征值 {-1,1,1} (2) 求矩阵A 的特征向量. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvectors[A] 则输出 {{-3,1,0},{1,0,1},{0,0,0}} 即A 的特征向量为.101,013??? ? ? ??????? ??- (3) 利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigensystem[A] 则输出矩阵A 的特征值及其对应的特征向量.

例1.2 求矩阵??? ?? ??=654543432A 的特征值与特征向量. 输入 A=T able[i+j,{i,3},{j,3}] MatrixForm[A] (1) 计算矩阵A 的全部(准确解)特征值, 输入 Eigenvalues[A] 则输出 {0, 426-,426+} (2) 计算矩阵A 的全部(数值解)特征值, 输入 Eigenvalues[N[A]] 则输出 {12.4807, -0.480741, -1.34831610-?} (3) 计算矩阵A 的全部(准确解)特征向量, 输入 Eigenvectors[A]//MatrixForm 则输出 1 2 1172422344220342234421172 42234 42 20342234 42 1 (4) 计算矩阵A 的全部(数值解)特征向量, 输入 Eigenvectors[N[A]]//MatrixForm 则输出 0.4303620.5665420.7027220.805060.111190.5826790.4082480.816497 0.408248 (5) 同时计算矩阵A 的全部(准确解)特征值和特征向量, 输入 OutputForm[Eigensystem[A]] 则输出所求结果 (6) 计算同时矩阵A 的零空间, 输入

求矩阵特征值算法及程序

求矩阵特征值算法及程序简介 1.幂法 1、幂法规范化算法 (1)输入矩阵A、初始向量( 0),误差eps; (2) k 1; (3)计算V(k)A(k 1); (4)m k max(V(k)) ,m k1max( V ( k 1)); (5) (k)V(k)/m k; (6)如果m k m k 1eps,则显示特征值1和对应的特征向量x(1) ),终止; (7)k k 1, 转(3) 注:如上算法中的符号max(V )表示取向量V 中绝对值最大的分量。本算法使用了数据规范化处理技术以防止计算过程中出现益出错误。 2、规范化幂法程序 Clear[a,u,x]; a=Input[" 系数矩阵A="]; u=Input[" 初始迭代向量u(0)="]; n=Length[u]; eps=Input[" 误差精度eps ="]; nmax=Input[" 迭代允许最大次数nmax="]; fmax[x_]:=Module[{m=0,m1,m2}, Do[m1=Abs[x[[k]]]; If[m1>m,m2=x[[k]];m=m1], {k,1,Length[x]}]; m2] v=a.u; m0=fmax[u]; m1=fmax[v]; t=Abs[m1-m0]//N; k=0; While[t>eps&&k

相关主题
相关文档
最新文档