确定性信号谱分析

确定性信号谱分析
确定性信号谱分析

实验报告

课程名称:数字信号处理指导老师:刘英成绩:__________________

实验名称:DFT/FFT的应用之一——确定性信号谱分析

一、实验目的和要求

谱分析即求信号的频谱。本实验采用DFT/FFT技术对周期性信号进行谱分析。通过实验,了解用X(k)近似地表示频谱X(e j )带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T、抽样点数N)。

二、实验内容和步骤

2-1 考虑下列序列()cos(0.48)cos(0.52)

=+

p p

x n n n

求出它基于有限个样本的频谱。

a)当0≤n≤10 时,分别确定并画出x(n)的基于N=10点DFT和N=100点的DFT b)当0≤n≤100 时,确定并画出x(n) 的基于N=100点的DFT

比较(a)、(b)基于N=100的DFT的异同,说明补零(高密度频谱)和采集更多数据(高分辨率频谱)之间的区别。

2-2谱分析参数可以从下表中任选一组(也可自定)。对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期?

2-3-1观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。

2-3-2分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响;

2-3-3思考X(k)与X(ejω)的关系;

2-3-4讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。

三、主要仪器设备

MATLAB编程。

四、操作方法和实验步骤

(参见“二、实验内容和步骤”)

五、实验数据记录和处理

2-1

%0<=n<=9,N=10

n=0:1:9;

x=cos(0.48*pi*n)+cos(0.52*pi*n);

X=fft(x,10);

figure(1);

subplot(2,1,1);stem(n,x);

xlabel('n');ylabel('x');title('signal x(n),0<=n<=9');

axis([0 10 -2.5 2.5]);

subplot(2,1,2);stem(n/5,abs(X));axis([0 1 0 10]);

xlabel('n');ylabel('|X|');title('Magnitude of X');

%0<=n<=9,N=100,21á?

n=0:1:9;

x=cos(0.48*pi*n)+cos(0.52*pi*n);

x=[x,zeros(1,90)];

X=fft(x,100);

N=0:1:99;

figure(2);

subplot(2,1,1);stem(N,x);

xlabel('n');ylabel('x');title('signal x(n),0<=n<=9');

axis([0 100 -2.5 2.5]);

subplot(2,1,2);stem(N/50,abs(X));axis([0 1 0 10]);

xlabel('n');ylabel('|X|');title('Magnitude of X');

%0<=n<=99,N=100

n=0:1:99;

x=cos(0.48*pi*n)+cos(0.52*pi*n);

X=fft(x,100);

figure(3);

subplot(2,1,1);stem(N,x);

xlabel('n');ylabel('x');title('signal x(n),0<=n<=9');

axis([0 100 -2.5 2.5]);

subplot(2,1,2);stem(N/50,abs(X));axis([0 1 0 60]);

xlabel('n');ylabel('|X|');title('Magnitude of X'); 2-2

%program 2-2-1

clear;clf;clc;%清除缓存

length=32;

T=0.000625;

t=0:0.001:31;%设置区间以及步长

n=0:length-1;

xt=sin(2*pi*50*t);

xn=sin(2*pi*50*T*n);

figure(1);

subplot(2,1,1);plot(t,xt);

xlabel('t');ylabel('x(t)');

axis([0 0.1 -1 1]);title('原序列');

subplot(2,1,2);

stem(n,xn);xlabel('n');ylabel('xn)');

title('抽样后序列');axis([0 length -1 1]);

figure(2); %画出序列的实部、虚部、模、相角

subplot(2,2,1);stem(n,real(xn));

xlabel('n');ylabel('real(xn)');title('序列的实部');

axis([0 length -1 1]);

subplot(2,2,2);stem(n,imag(xn));

xlabel('n');ylabel('imag(xn)');title('序列的虚部');

axis([0 length -1 1]);

subplot(2,2,3);stem(n,abs(xn));

xlabel('n');ylabel('abs(xn)');title('序列的模');

axis([0 length -1 1]);

subplot(2,2,4);stem(n,angle(xn));

xlabel('n');ylabel('angle(xn)');title('序列的相角');

axis([0 length -1 pi]);

F=fft(xn,length); %计算DFT

figure(3); %画出DFT的幅度,实部和虚部

subplot(3,1,1);stem(n,abs(F));

xlabel('k');ylabel('abs(F)');title('DFT幅度谱');

axis([0 length 0 20]);

subplot(3,1,2);stem(n,real(F));

xlabel('k');ylabel('real(F)');title('DFT实部');

axis([0 length -2*10^-15 2*10^-15]);

subplot(3,1,3);stem(n,imag(F));

xlabel('k');ylabel('imag(F)');title('DFT虚部');

axis([0 length -20 20]);

六、实验结果与分析2-1

为了得到一个较密的频谱,显然,我们的采样频率应更小一些,也就是说,应增加N的长度。有两种方法,一种是取样时就采集更多的样本;另一种是在序列后面添加一定长度的零,叫做填零运算填零是给原始序列填零的运算。这导致较长的DFT,它会给原始序列的离散时间傅氏变换提供间隔更密的样本。填零运算提供了一个较密的频谱和较好的图示形式,但因为在信号中只是附加了零,而没有增加任何新的信息,还是原始连续谱的N点取样,只是补零观察到了更多的频点,但这并不意味着补零能够提高真正的频谱分辨率。采集更多的数据,可以获得更多的信息,可以真正提高频谱分辨率。2-2

第二组参数

第三组参数

第四组参数

第五组参数

2-3-1观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。

如图所示可知结果。

2-3-2分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响;

抽样间隔决定是否发生混叠,抽样的时间长短决定是否发生频谱泄漏,抽样间隔决定栅栏效应。

2-3-3思考X(k)与X(ejω)的关系;

X(k)是对X(ejω)的抽样。

2-3-4讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。

用X(k)近似表示X(ejω)时,一定会产生栅栏效应,但取样间隔决定了栅栏效应强弱。取样时间决定了混叠,抽样多少决定了频谱泄漏。

6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U)和谱峰的数值(V)、混叠现象和频谱泄漏的有无。

候,即满足奈奎斯特定律的时候不会出现频率的混叠现象。由于采样后,信号的频谱在

频域上周期上延拓,而且截断后,相当于频谱在频域上与sinc函数进行卷积,因此采样后的信号总是存在高频分量,因此总是存在频域混叠的现象,也会存在频域泄露的现象。

6-2 观察实验结果(数据及图形)的特征,做必要的记录。

1、抽样间隔不同会影响谱峰所在位置以及峰值

2、泄露现象

可能出现了泄漏

6-3 用基本理论、基本概念来解释各种现象。

(1)混叠

序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解。在一般情况下,为了保证不出现频谱混叠,在采样前,先进行抗混叠滤波。

(2)泄漏

用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,

这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。为了减少泄漏的影响,可以选择适当的窗函数使频谱的扩散减至最小。

DFT-FFT的应用之确定性信号谱分析

实验报告 课程名称:数字信号处理指导老师:成绩:__________________ 实验名称:DFT/FFT的应用之一确定性信号谱分析实验类型:__验证_ 同组学生姓名:— 一、实验目的和要求 谱分析即求信号的频谱。本实验采用DFT/FFT技术对周期性信号进行谱分析。通过实验,了解用X(k)近似地表示频谱X(ejω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T、抽样点数N)。 二、实验内容和步骤 2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。 2-2 谱分析参数可以从下表中任选一组(也可自定)。对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期? 信号频率f(赫兹)谱分析参数抽样间隔T (秒) 截断长度N (抽样个数) 50 第一组参数0.000625 32 50 第二组参数0.005 32 50 第三组参数0.0046875 32 50 第四组参数0.004 32 50 第五组参数0.0025 16 2-3 对以上几个正弦序列,依次进行以下过程。 2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。 2-3-2 分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响; 2-3-3 思考X(k)与X(e jω)的关系; 2-3-4 讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。 三、主要仪器设备 MATLAB编程。

四、操作方法和实验步骤 (参见“二、实验内容和步骤”) 五、实验数据记录和处理 %program 2-2-1 clear;clf;clc;%清楚缓存 length=32; T=0.000625; t=0:0.001:31;%设置区间以及步长 n=0:length-1; xt=sin(2*pi*50*t); xn=sin(2*pi*50*T*n); figure(1); subplot(2,1,1);plot(t,xt); xlabel('t');ylabel('x(t)'); axis([0 0.1 -1 1]);title('原序列'); subplot(2,1,2); stem(n,xn);xlabel('n');ylabel('xn)'); title('抽样后序列');axis([0 length -1 1]); figure(2); %画出序列的实部、虚部、模、相角 subplot(2,2,1);stem(n,real(xn)); xlabel('n');ylabel('real(xn)');title('序列的实部');axis([0 length -1 1]); subplot(2,2,2);stem(n,imag(xn)); xlabel('n');ylabel('imag(xn)');title('序列的虚部');axis([0 length -1 1]); subplot(2,2,3);stem(n,abs(xn)); xlabel('n');ylabel('abs(xn)');title('序列的模');axis([0 length -1 1]); subplot(2,2,4);stem(n,angle(xn)); xlabel('n');ylabel('angle(xn)');title('序列的相角');axis([0 length -1 1]); F=fft(xn,length); %计算DFT figure(3); %画出DFT的的幅度,实部和虚部 subplot(3,1,1);stem(n,abs(F)); xlabel('k');ylabel('abs(F)');title('DFT幅度谱'); subplot(3,1,2);stem(n,real(F));

正余弦信号的谱分析

设计一正余弦信号的谱分析代码: F=input('输入信号频率'); t=0:0.001:0.2; x1=cos(2*pi*F*t); subplot(3,1,1); plot(t,x1); title('x1连续余弦信号'); n=0:31; x2=cos(2*pi*F*n*1/64); subplot(3,1,2),stem(n,x2); xlabel('n'),ylabel('x1(n)'); title('x2采样后的余弦序列'); k=0:31; X=abs(fft(x2,32)); subplot(3,1,3); stem(k,X); xlabel('k'),ylabel('X(k)'); string=[num2str(32),'点FFT幅频曲线']; title(string); 输入信号频率:10 (1)

输入信号频率:11 (2)

代码: N=input('输入谱分析的长度'); n=1:N-1; figure(1) f1=0.22,f2=0.34; x=0.5*sin(2*pi*f1*n)+sin(2*pi*f2*n); subplot(2,1,1),stem(n,x); xlabel('n'),ylabel('x1(n)'); title('余弦序列'); X=abs(fft(x,N)); subplot(2,1,2); k=0:N-1; stem(k,X); xlabel('k'),ylabel('X(k)'); string=[num2str(N),'点FFT幅频曲线']; title(string); figure(2) f1=0.22,f2=0.25; x=0.5*sin(2*pi*f1*n)+sin(2*pi*f2*n); subplot(2,1,1),stem(n,x); xlabel('n'),ylabel('x1(n)'); title('余弦序列'); X=abs(fft(x,N)); subplot(2,1,2); k=0:N-1; stem(k,X); xlabel('k'),ylabel('X(k)'); string=[num2str(N),'点FFT幅频曲线']; title(string);

信号处理课设报告——DFT对信号进行谱分析

燕山大学 课程设计说明书 课程名称数字信号原理及应用 题目DFT对信号进行谱分析 学院(系)电气工程学院 年级专业 学号 学生姓名 指导教师 教师职称

电气工程学院《课程设计》任务书 课程名称:数字信号处理课程设计 基层教学单位:仪器科学与工程系指导教师:王娜学号学生姓名(专业)班级 设计题目16、DFT对信号进行谱分析 设计技术参数 ) 2.0 cos( 2 ) ( 1 n n xπ = )] cos( ) 1.0 [cos( 5.0 ) ( 2 n n n xπ π- = ) 10 ( 2 ) ( 21 3 + =-n R n x n 设 计要求选择合适的变换区间长度N,用DFT对上述信号进行谱分析,画出时域波形、幅频特性和相频特性曲线 参考资料数字信号处理方面资料MATLAB方面资料 周次前半周后半周 应完成内容收集消化资料、学习MA TLAB软件, 进行相关参数计算 编写仿真程序、调试 指导教师签字基层教学单位主任签字 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

目录 一、绪论 (1) 1.1 信号处理简介 (1) 1.2 MATLAB简介 (2) 二、信号处理原理 (4) 2.1 DFT的定义及推导 (4) 2.2 DFT的性质 (6) 2.3 快速傅里叶变换 (7) 三、软件仿真设计 (8) 四、程序设计与结果 (9) 4.1信号1的分析 (9) 4.2信号2的分析 (10) 4.3信号3的分析 (11) 4.4补零计算 (12) 五、设计体会及心得 (15) 参考文献 (16)

数字信号处理实验报告-DFTFFT的应用之一确定性信号谱分析

实验报告 课程名称: 数字信号处理 指导老师: 成绩:__________________ 实验名称:DFT/FFT 的应用之一 ? 确定性信号谱分析 实验类型:__验证_ 同组学生姓名: — 一、实验目的和要求 谱分析即求信号的频谱。本实验采用DFT/FFT 技术对周期性信号进行谱分析。通过实验,了解用X(k)近似地表示频谱X(ej ω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T 、抽样点数N )。 二、实验内容和步骤 2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。 2-2 谱分析参数可以从下表中任选一组(也可自定)。对各组参数时的序列,计算:一个正弦周期是 否对应整数个抽样间隔?观察区间是否对应整数个正弦周期? 2-3 对以上几个正弦序列,依次进行以下过程。 2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U ,V )。 2-3-2 分析抽样间隔T 、截断长度N (抽样个数)对谱分析结果的影响; 2-3-3 思考X(k)与X(e j ω)的关系; 2-3-4 讨论用X(k)近似表示X(ej ω)时的栅栏效应、混叠现象、频谱泄漏。 三、主要仪器设备 MATLAB 编程。 专业:________________ 姓名:________________ 学号:________________ 日期:________________ 地点:________________

实验名称:_______________________________姓名:______________学号:__________________ P. 四、操作方法和实验步骤 (参见“二、实验内容和步骤”) 五、实验数据记录和处理 列出MATLAB程序清单,加注释。 六、实验结果与分析 6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U)和谱峰的数值(V)、混叠现象和频谱泄漏的有无。 6-2 观察实验结果(数据及图形)的特征,做必要的记录。 5-2 用基本理论、基本概念来解释各种现象。 (注: A、黑色部分不要改动。 B、蓝色部分,学生根据本人情况填写。 C、“五、实验数据记录和处理”和“六、实验结果与分析”根据要求(见红色部分),逐条撰写。 D、从第二页起,在每页头部填写实验名称、姓名、学号,标上页码。不够时自行加页。 E、上交纸质报告)

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

时间序列分析方法第章谱分析

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞ ∞-}{t Y 的性质。 假设+∞ ∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:

注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞ ∞-}{j γ,原则上都可 以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: ω的下面我们考虑)1(MA 过程, 此时:z z θψ+=1)(,则母体谱为: 可以化简成为: 显然,当0>θ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数;当0<θ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数。

对)1(AR 过程而言,有: 这时只要1||<φ,则有:)1/(1)(z z φψ-=,因此谱函数为: 该谱函数的性质为:当0>φ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数;当0<φ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数。 一般地,对),(q p ARMA 过程而言: ) (ωY s 利用上述谱公式,可以实现谱函数与自协方差函数之间的转换。 解释母体谱函数 假设0=k ,则利用命题6.1可以得到时间序列的方差,即0γ,计算公式为: 根据定积分的几何意义,上式说明母体谱函数在区间],[ππ-内的面积就是0γ,也就是过程的方差。

信号频谱分析和测试

信号频谱分析和测 试 返回 一、实验室名称:虚拟仪器实验室 二、实验项目名称:信号频谱分析和测试 三、实验目的 1.了解周期函数的傅立叶变换理论及虚拟频谱分析仪的工作原理; 2.熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。 四、实验内容 1.测量典型信号(正弦波、三角波、方波)的频谱并记录; 2.用实验平台的任意波形信号源产生一个任意信号,观察其频谱。 五、实验器材(设备、元器件): 1、计算机一台 2、SJ-8002B 电子测量实验箱一台 3、FG1617函数发生器一台 4、虚拟频谱分析仪程序 5、Q9线一条 六、实验原理 6.1 常见周期信号傅立叶展开公式与波形 1)方波 ,其中的 2)三角波 ,其中的 )7sin 715sin 513sin 31(sin 4)( +ω+ω+ ω+ωπ=t t t t A t f T π=ω2)7cos 4915sin 2513sin 91(sin 8)(2 +ω-ω+ω-ωπ=t t t t A t f T π=ω2

3)锯齿波 ,其中 6.2 信号的离散傅立叶变换(DFT ) x(t)经采样后变为x(nT ’),T ’为采样周期,采样频率fs=1/T ’。离散信号x(nT ’)的傅里 叶变换可以表示为: ,n=0,1,…N-1 X(k)是复数,信号的频谱是它的模,为了方便显示,做归一化处理,用 来表示频谱。 频率分辨率为: FFT 是DFT 的快速算法。 6.3 虚拟频谱分析仪 数字式虚拟频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处 理器系统或计算机来处理.在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须 是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越 接近原始信号,在频谱上展现的频带就越宽。 本频谱分析仪采用快速傅立叶变换的方法,分析信号中所含各个频率份量的幅值。其构 成框图如图4所示: 图4频谱分析仪框图 七、实验步骤 7.1 测量典型信号(正弦波、三角波、方波)的频谱 (1) 准备工作:用Q9线连接信号发生器与实验平台的Ain1端,并用EPP 排线连接实 验平台和计算机之间的EPP 接口,最后打开电源.。信号发生器产生一个频率为10K ,峰峰 值为3V 左右的正弦波,启动实验平台配套的频谱分析软件,观察波形显示并作图。 (2)由信号源产生一个频率为10KHz ,峰值为3V 的正弦波,用数字频谱分析仪对该信 号进行频谱测量,幅度刻度方式设为线性刻度,不加窗函数,起始频率为0Hz ,结束频率为 100KHz ,Y 线性参考电压为2V ,将测量结果填入表1,并计算出频谱的理论值填入表1。 )4sin 413sin 312sin 21(sin 2)( +ω+ω+ω+ωπ+= t t t t A A t f T π=ω2()()N nk j N n e n x k X /210π--=∑=N k X )(f ?N f f s =?N kf k f f s k =??=

数字信号处理课程设计正余弦信号的谱分析

指导教师: 日期: 《数字信号处理》课程设计 题目:正余弦信号的谱分析 姓名: 院系:电子信息工程系 专业:通信工程 班级:通信091 学号: 指导教师: 2012年6 月

正余弦信号的谱分析 (电子信息工程学系 指导教师:留黎钦) 中文摘要:使用MATLAB 软件,通过编写程序,对正余弦信号进行傅里叶变换。用DFT 和FFT 实现对正余弦信号的 谱分析,并且分析DFT 长度对频谱的影响。 关键词:matlab ; 傅里叶变换; DFT; FFT; 一、概述 数字信号处理方法的一个重要用途是在离散时间域中确定一个连续时间信号的频谱,通常称为频谱分析,更具体的说,它也包括确定能量谱或功率谱。数字频谱分析可以应用在很广阔的领域。 二、设计目的 1.用DFT 实现对正余弦信号的谱分析; 2.观察DFT 长度和窗函数长度对频谱的影响; 3.对DFT 进行谱分析中的误差现象获得感性认识。 三、设计原理 1、谱分析原理 频谱分析方法是基于以下的观测:如果连续时间信号)(t g a 是频带有限的,那么对其离散时间等效信号)(n g 的DFT 进行谱分析。它的离散时间等效物g(n)应当能给出a g (t)频谱的一个很近似的估计两者之间只差一个带数因子T 。然而,在大多数情况下,)(t g a 是在∞<<∞-t 范围内定义的,因此)(n g 也就定义在∞<<∞-n 的无线范围内,要估计一个无限长信号的频谱是不可能的。实用的方法是:先让模拟连续信号)(t g a 通过一个抗混叠的模拟滤波器,然后把它采样成一个离散序列)(n g 。假定反混叠滤波器的设计是正确的,则混叠效应可以忽略,又假设A/D 变换器的字长足够长,则A/D 变换中的量化噪声也可忽略。 假定表征正余弦信号的基本参数,如振幅、频率和相位不随时间改变,则此信号的傅立叶变换 )(ωj e G 可以用计算它的DTFT 得到 ∑∞ -∞ =-= n n j j e n g e G ωω )()( (1) 实际上无限长序列)(n g 首先乘以一个长度为M 的窗函数)(n w ,使它变成一个长为M 的有限长序列, )()()(1n w n g n g =,对)(1n g 求出的DTFT )(1ωj e G 应该可以作为原连续模拟信号)(t g a 的频谱估计, 然后求出)(1ω j e G 在πω20≤≤区间等分为N 点的离散傅立叶变换DFT 。为保证足够的分辨率,DFT 的 长度N 选的比窗长度M 大,其方法是在截断了的序列后面补上N -M 个零。计算采用FFT 算法。 更详细地考察一下上面的方法。这样才能了解它的限制,并正确利用它所得出的结果。特别要分析加窗的效果,以及和由DFT 样本来估计DTFT 频率采样值的问题。 在讨论由)(1k G 来估计频谱)(1jw e G 和)(jw e G 时,需要重新探讨一下这些变换和它们所对应的频

声发射信号的谱分析和相关分析

声发射信号的谱分析和相关分析 陈玉华,刘时风 耿荣生* 沈功田** (清华大学机械系,北京100084) *(北京航空工程技术研究中心, 北京100076) **(国家质量技术监督局锅检中心,北京100027) 摘要:本文主要阐述了谱分析方法和相关分析方法在声发射信号分析中的应用,给出了谱分析和相关分析的基本原理,并分别举例子做了分析讨论。 关键词:声发射;谱分析;FFT;相关分析 SPECTRAL ANALYSIS AND CORRELATION ANALYSIS FOR ACOUSTIC EMISSION SIGNAL CHEN Yuhua,LIU Shifeng (Tsinghua University,Beijing 100084,China) Abstract:A review is given to both spectral analysis and correlation analysis of acoustic emission signal. The principles of spectral analysis and correlation analysis are presented and discussed with some examples. Keywords: acoustic emission;spectral analysis;FFT;correlation analysis 材料或结构受外力或内力作用产生变形或断裂,以弹性波形式释放出应变能的现象称为声发射。声发射是一种常见的物理现象,例如岩石开裂,骨头断裂和各种固体材料断裂过程中发出的声音都是声发射信号,图1为典型的声发射信号。实际应用中,由于外界的干扰以及声发射接收系统的原因(比如传感器的频率特性等),接受得到的声发射信号中除了含有声发射信号特征信息外,还存在着大量的干扰和噪声信号。因此,要想复杂的信号中提取出需要的特征声发射信号,就需要应用一些分析手段来对信号进行处理。 图1. 典型声发射信号

信号的频谱分析及MATLAB实现

信号的频谱分析及MATLAB 实现(实例) 摘自:张登奇,杨慧银.信号的频谱分析及MATLAB 实现[J].湖南理工学院学报(自然科学版),2010,(03) 摘 要:DFT 是在时域和频域上都已离散的傅里叶变换,适于数值计算且有快速算法,是利用计算机实现信号频谱分析的常用数学工具。文章介绍了利用DFT 分析信号频谱的基本流程,重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施,实例列举了MATLAB 环境下频谱分析的实现程序。通过与理论分析的对比,解释了利用DFT 分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应,并提出了相应的改进方法。 关键词:MATLAB ;频谱分析;离散傅里叶变换;频谱混叠;频谱泄漏;栅栏效应 3 分析实例 对信号进行频谱分析时,由于信号不同,傅里叶分析的频率单位也可能不同,频率轴有不同的定标方式。为了便于对不同信号的傅里叶分析进行对比,这里统一采用无纲量的归一化频率单位,即模拟频率对采样频率归一化;模拟角频率对采样角频率归一化;数字频率对2π归一化;DFT 的k 值对总点数归一化。同时,为了便于与理论值进行对比,理解误差的形成和大小,这里以确定信号的幅度谱分析为例进行分析说明。假设信号为:)()(t u e t x t -=,分析过程:首先利用CTFT 公式计算其模拟频谱的理论值;然后对其进行等间隔理想采样,得到)(n x 序列,利用DTFT 公式计算采样序列的数字连续频谱理论值,通过与模拟频谱的理论值对比,理解混叠误差形成的原因及减小误差的措施;接下来是对)(n x 序列进行加窗处理,得到有限长加窗序列)(n xw ,再次利用DTFT 公式计算加窗后序列)(n xw 的数字连续频谱,并与加窗前)(n x 的数字连续频谱进行对比,理解截断误差形成的原因及减小误差的措施;最后是对加窗序列进行DFT 运算,得到加窗后序列)(n xw 的DFT 值,它是对)(n xw 数字连续频谱进行等间隔采样的采样值,通过对比,理解栅栏效应及DFT 点数对栅栏效应的影响。利用MATLAB 实现上述分析过程的程序如下: clc;close all;clear; %CTFT 程序,以x(t)=exp(-t) t>=0 为例 %利用数值运算计算并绘制连续信号波形 L=4, %定义信号波形显示时间长度 fs=4,T=1/fs; %定义采样频率和采样周期 t_num=linspace(0,L,100);%取若干时点,点数决定作图精度 xt_num=exp(-1*t_num);%计算信号在各时点的数值 subplot(3,2,1);plot(t_num,xt_num),%绘信号波形 xlabel('时间(秒)'),ylabel('x(t)'),%加标签 grid,title('(a) 信号时域波形'),%加网格和标题 %利用符号运算和数值运算计算连续信号幅度谱的理论值 syms t W %定义时间和角频率符号对象 xt=exp(-1*t)*heaviside(t),%连续信号解析式 XW=fourier(xt,t,W),%用完整调用格式计算其傅氏变换 %在0两边取若干归一化频点,点数决定作图精度 w1=[linspace(-0.5,0,50),linspace(0,1.5,150)];

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并 能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

matlab 实验四 信号的谱分析

实验四 信号的谱分析 一、实验目的: 1、 掌握DTFT 原理及其程序实现,学习用DTFT 对信号进行谱分析。 2、 掌握DFT 原理及其程序实现,学习用DFT 对信号进行谱分析。 3、 熟悉FFT 算法原理和掌握fft 子程序的应用。 4、 掌握DFT 的性质。 二、实验内容: 1、 对于序列x(n)=[3,1,7,2,4],在-π ~ π内取64个频点,利用矩阵操作求其DTFT ,画出它 的幅频特性和相频特性。并把x(n)的位置零点右移一位,再求DTFT ,画出其幅频特性和相频特性,讨论移位对于DTFT 的影响。 2、 利用矩阵操作求1题中序列的DFT ,并画图。 3、 利用Matlab 自带的fft 函数求1题中序列的DFT ,并与1题中求出的DTFT 相比较。 4、 已知序列x(n)=[2,3,4,5]位于主值区间,求其循环左移一位的结果,画出循环移位的中间 过程。 提示:左右各拓展一个周期,nx=[-4:7];采用stem 函数画图。 5、 已知序列x(n)=[1,2,3,4,5,6]位于主值区间,循环长度为8,确定并画出循环折叠 y(n)=x((-n)8);如果循环长度为6,确定并画出循环折叠y(n)=x((-n)6)。 6、 已知序列x(n)=[2,1,5,3]位于主值区间,h(n)=nR 4(n),计算循环卷积1()()()c y n h n x n =⑥, 2()()()c y n h n x n =⑩和线性卷积()()*()y n h n x n =,画出1()c y n 、2()c y n 和()y n 的波 形图,观察循环卷积和线性卷积的关系。 三、实验报告要求: 1.实验原理: 序列x (n)的频谱定义为:n j n e n x n x F j X ωω-∞ -∞ =∑= =)())(()( πωπ≤≤-;也称 为它的离散时间傅立叶变换。可以认为,序列中的每一个样本x(n)对频谱产生的贡献为 n j e n x ω-)( ,把整个序列中所有样本的频谱分量按向量(即复数)叠加起来,就得到序 列的频谱X(j ω)。按定义: ()()ωωωωω322j j j n j e e e e n x j X ----+∞ ∞ -++-==∑ ω的基频在[-π,π]范围内,可任意地连续取值,代入上式,即可求出一系列的X(j ω), 因为X(j ω)是复数,可以分解为幅度和相位,并画出幅度和相位随频率变化的曲线。 频点的设定:在左闭右开奈奎斯特频率区间ωωπ<≤-中设定K 个等间隔频点的通用 公式:(K 可奇可偶) 2/)1(:2/)1(---=K K k K k d k π ωω2=?= 程序: x=[3,1,7,2,4]; nx1=-1:3; nx=0:4 K=64;dw=2*pi/K;

信号及系统的谱分析

数字信号处理实验一:信号及系统的谱分析 学号 姓名 注:1)此次实验作为《数字信号处理》课程实验成绩的重要依据,请同学们认真、独立完成,不得抄袭。 2)请在授课教师规定的时间内完成; 3)完成作业后,请以word 格式保存,文件名为:学号+姓名 4)请通读全文,依据第2及第3 两部分内容,认真填写第4部分所需的实验数据,并完成实验分析。 5)需将这次实验的内容给出一个纸质报告(31-40号)。全体将报告的电子版交给班长以便实验结束后刻成光盘 1. 实验目的 (1) 熟练利用DFT 计算公式对信号进行谱分析, 加深DFT 算法原理和基本性质的理解。 (2) 利用卷积方法计算信号经过离散系统输出响应,并观察输出信号的频谱变化。 (3) 熟悉FFT 算法原理和FFT 子程序的应用,掌握利用函数fft.m 对离散信号及系统响应进行 频域分析。 (4) 理解并掌握利用FFT 实现线性卷积的方法。了解可能出现的分析误差及其原因, 以便在实际中正确应用FFT 。 2. 实验原理与方法 1)离散傅里叶变换(DFT )的基本原理 离散傅里叶变换(DFT )是分析有限长序列频谱成分的重要工具,在信号处理的理论上有重要意义。由于其可以在计算机上实现谱分析、 卷积、相关等主要的信号频谱分析过程,因此DFT 的快速算法得到了广泛的应用。 实现DFT 的基本计算公式如下: 2)系统响应信号的时域分析(卷积运算) 离散信号输入离散系统后,若系统起始状态为0,则系统的响应输出是 其方框图表示如下: 图 1 [][]∑∑-=--== ===1 1 0)(1 )()()()()(N k nk N N n nk N W k X N k X IDFT n x W n x n x DFT k X [] x n [][][] zs y n h n x n =*离散系统 h (n ) [][][] zs y n h n x n =*

(时间管理)时间序列分析方法第章谱分析

(时间管理)时间序列分析方法第章谱分析

第六章谱分析SpectralAnalysis 到目前为止,时刻变量的数值壹般均表示成为壹系列随机扰动的函数形式,壹般的模型形式为: 我们研究的重点于于,这个结构对不同时点和上的变量和的协方差具有什么样的启示。这种方法被称为于时间域(timedomain)上分析时间序列的性质。 于本章中,我们讨论如何利用型如和的周期函数的加权组合来描述时间序列数值的方法, 这里表示特定的频率,表示形式为: 上述分析的目的于于判断不同频率的周期于解释时间序列性质时所发挥的重要程度如何。如此方法被称为频域分析(frequencydomainanalysis)或者谱分析(spectralanalysis)。 我们将要见到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由壹种表示能够描述的任何数据性质,均能够利用另壹种表示来加以体现。对某些性质来说,时域表示可能简单壹些;而对另外壹些性质,可能频域表示更为简单。 §6.1 母体谱 我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设是壹个具有均值的协方差平稳过程,第个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里表示复变量。将上述函数除以,且将复数表示成为指数虚数形式,,则得到的结果(表达式)称为变量的母体谱: 注意到谱是的函数:给定任何特定的值和自协方差的序列,原则上均能够计算的数值。 利用DeMoivre 定理,我们能够将表示成为: 因此,谱函数能够等价地表示成为: 注意到对于协方差平稳过程而言,有:,因此上述谱函数化简为: 利用三角函数的奇偶性,能够得到: 假设自协方差序列是绝对可加的,则能够证明上述谱函数存于,且且是的实值、对称、连续函数。由于对任意,有:,因此是周期函数,如果我们知道了内的所有的值,我们能够获得任意时的值。 §6.2 不同过程下母体谱的计算 假设随机过程服从过程: 这里: , 根据前面关于过程自协方差生成函数的推导: 因此得到过程的母体谱为: 例如,对白噪声过程而言,,这时它的母体谱函数是常数:下面 我们考虑过程, 此时:,则母体谱为: 能够化简成为: 显然,当时,谱函数于内是的单调递减函数;当时,谱函数于内是的单调递增函数。对过程而言,有: 这时只要,则有:,因此谱函数为: 该谱函数的性质为:当时,谱函数于内是的单调递增函数;当时,谱函数于内是的单调递减函数。 壹般地,对过程而言: 则母体谱函数为:

相关文档
最新文档