大学生方程式赛车车身外流场ANSYS分析报告

大学生方程式赛车车身外流场ANSYS分析报告
大学生方程式赛车车身外流场ANSYS分析报告

大学生方程式赛车

车身外流场ANSYS分析报告

指导老师:詹振飞

小组序号:第五小组

小组成员:刘宇航黄志宇

谢智龙陈治安

重庆大学方程式赛车创新实践班

二〇一六年十月

摘要

大学生方程式赛车起源于国外,近几年才在国内兴起并得以迅速发展,成为各个高校研发实力的侧影,因此得到了各个高校的重视,赛车外形设计更是赛车很重要的一部分,它不仅是赛车的外壳,更可以利用空气动力学来为赛车减少阻力,提高赛车的性能。因此外形设计时赛车总体设计中很重要的一部分,通过有限元法对赛车外壳进行风洞模拟测试对赛车外形的改进及优化分析有重要的意义。

利用ANSYS中的fluent进行有限元模拟风洞试验试验,能够准确反映汽车行驶状态时的空气动力学特性数据,其研究对象主要有汽车空气动力特性和汽车各部位的流场。ANSYS在此过程中起到极其重要的作用。

对于一辆优秀的赛车而言,它的性能不仅取决于优秀的结构设计和强劲的发动机性能,还在一定程度上取决于它的外形。赛车的外形不仅能够影响赛车的美观度,更重要的是能够影响车身所受的阻力。因此,如果赛车有一个好的外观设计,利用好空气动力学的原理,则能够在一定程度上减小车身的阻力,从而提高整车的性能。

本小组利用CATIA等建模软件建立了适当的赛车外观模型。在此基础上,利用ANSYS中的Fluent进行有限元的模拟风洞试验,并得出了一定的结论,整理成报告。

关键字:CATIA三维设计,车身外流场,ANSYS,风洞模拟,有限元

1.利用三维建模软件建立车身模型

在2016年发布的大赛规则限定的范围内,本小组利用CATIA等相关的建模软件建立了合适的赛车车身模型,以用于后续分析。

2.2016年大赛关于车身的部分规则要求

1)赛车的轴距至少为 1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧

两车轮的接地面中心点之间的距离。

2)赛车较小的轮距(前轮或后轮)必须不小于较大轮距的 75%。

3)在正常乘坐并系好安全带的情况下,车的尺寸需适合男性第 95 百分位模板

的乘坐尺寸相关要求。

3.车身模型方案

赛车轴距越大,车身内部纵向空间大。但相应的车身越大,相应的质量越大。出于轻量化的原则,且要求赛车的灵活性及降低成本。综合考虑,车身外形建模轴距定为1620mm。

赛车轮距越大,赛车横向稳定性越好,车内部横向空间更大。但同样轮距大,质量大,并影响转弯直径。此外设计前轮距大于后轮距,使赛车具有更好地转向能力。于是综合考虑,前轮距定为1240mm,后轮距为1190mm。

4.小组作品

设计理念:

本模型采用楔形汽车外形设计,并模仿战斗机外形,使赛车具有较好的可看性和空气动力学特点。将赛车尾部适当倾斜以削弱尾部的空气涡流,减少阻力。此外,添加空气动力套件,使赛车更为美观,并增加下压力,增加轮胎附着力,以产生更大驱动力。

5.车身分析处理过程

1.将车身模型导入到ICEM-CFD软件中进行前处理

2.将容差设置在0.1,检查模型面网络

可以看出模型网格的拓扑结构较好

3.建立计算域

计算域沿车长方向取十倍车长(28米),沿车宽方向取10米对称分布,车高方向取十米

4.设置计算域边界,命名模型各部分

5.进行网格划分

设置总体尺寸

6.设置各边界表面的最大尺寸

7.网格划分完毕

网格总数量约为154万个

8.进行网格质量检查

9.显示网格质量

网格质量在0.2以上,满足要求

10.建立沿X轴的切面,并输出网格

11.将网格文件导入Fluent软件中

首先将单位缩放至mm

12.设置计算模型

13.设置进口条件

14.设置出口条件

15.设置计算域壁面条件

16.设置地面滑移条件

17.设置赛车壁面条件

18.设置赛车计算参考数值

19.修改收敛标准改为0.0001

20.设置气动阻力监测曲线

21.设置气动升力监测曲线

22.设置迭代步数为1000并初始化,开始计算

23.1000步迭代计算后,得出并导出数据

赛车所受气动阻力为329N,其中压差阻力为311N,

摩擦阻力为18N,所受气动升力为-573N

24.将数据导入到CFD-POST软件中进行后处理

25.建立赛车表面压力云图属性

26.建立横切面速度矢量图并导出为视频

27.建立截面观察空气流向

大学生方程式赛车悬架系统设计

大学生方程式赛车悬架系统设计 中国大学生方程式汽车大赛,在XX年开始举办,至XX 年已举办三届,大赛目的是为了提高大学生汽车设计与团队协作等能力,而华南农业大学XX年才组队设计赛车,现在还没有派队参加比赛,本文初步探讨SAE赛车悬架设计的方案,为日后华南农业大学参赛打下基础。 本课题的重点和难点 1、根据整车的布置对FSAE赛车悬架的结构形式进行的选择。 2、对前后悬架的主要参数和导向机构进行初步的设计。 3、用Catia或Proe建立悬架三维实体模型。 4、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 5、悬架设计方案确定后的优化改良。优化的方案一:用ADAMS/Insight进行优化,以车轮的定位参数优化目标,以上下横臂与车架的铰接点为设计变量进行优化。优化的方案二:轻量化,使用Ansys软件进行模拟悬架工作状况,进行受力分析,强度校核,优化个部件结构,受力情况。 1、查阅FSAE悬架的设计。 2、运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。 3、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 4、用ADAMS/Insight进行优化,改善操纵稳定性。

5、使用Ansys软件进行模拟悬架工作状况,进行受力分析,优化个部件结构及轻量化。 悬架设计流程如下: 首先要确定赛车主要框架参数,包括:外形尺寸、重量、发动机马力等等。 确定悬架系统类型,一般都会选用双横臂式,主要是决定选用拉杆还是推杆。 确定赛车的偏频和赛车前后偏频比。 估计簧上质量和簧下质量的四个车轮独立负重。 根据上面几个参数推算出赛车的悬架刚度和弹簧的弹性系数。 推算出赛车在没有安装防侧倾杆之前的悬架刚度初值,并计算车轮在最大负重情况下的轮胎变形。 计算没安装防侧倾杆时赛车的横向负载转移分布。 根据上面计算数值,选择防侧倾杆以获得预想的侧倾刚度和 LLTD。最后确定减振器阻尼率。 上面计算和选型完成后,再重新对初值进行校核。 运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能,并用ADAMS/Insight进行优化分析。 使用Ansys软件进行模拟悬架工作状况,进行受力分析,

大学生方程式赛车使用材料分析

大学生方程式赛车使用材料分析 摘要:本论文主要内容为大学生方程式赛车正在普及中国的高校,在参赛队伍的努力下,这项比赛正在给中国的汽车制造业注入活力。对于参赛者而言,对汽车材料知识的学习非常重要,因为通过对车架、车身、轮胎、油气系统材料选择以及优化可以极大提高赛车的整体性能下文,将会对现在的方程式赛车的整体车结构的材料进行分析以及对于参赛者材料选择重要性的论述。 Abstract: the main content of this thesis is to popularize Chinese for college students of Formula One racing college, in the team's efforts, this game is to Chinese automobile manufacturing industry infuse vigor.The contestants, to automotive materials knowledge learning is very important, because the frame, body, tires, oil and gas system in material selection and optimization can greatly improve the overall performance of the car below, will be on the present formula car integral structure material for analysis and material selection for contestants in the exposition of the importance. 中国大学生方程式汽车大赛(以下简称“FSAE”)是中国汽车工程学会及其合作会员单位在学习和总结美、日、德等国家相关经验的基础上结合中国国情精心打造的一项全新赛事。我们大学生参与其中主要意义在于通过动手实践增强理论知识,为我国的汽车工业发展输送高素质的人才。在参与FASE中,对于赛车的设计固然重要,但是对于赛车材料的选择同样是重中之重。通过对材料的准确把握,设计制造出合格的赛车,是FASE的灵魂。而灵魂的重要性值得所有参与其中的人认真研究。 首先我们从车架说起。车架是是构起赛车的基本,车架是车辆的主体结构,为其他部件,如悬架、发动机、座椅、踏板、传动装置等提供安装的位置,并承受所有部件传来的力。所以我们说,对于车架材料的选择非常重要,因为它决定了赛车的稳定性。对因为于大学生来讲,设计的赛车从简单以及可行性来考虑,多采用空间衍架结构,设计制造简单便宜,并且发生碰撞后可以很容易的检修。

ANSYS计算温度场及应力场

基于ANSYS有限元软件实现施工温控仿真的主要技术(1)研究方法和分析流程 本次计算利用ANSYS软件来进行象鼻岭碾压混凝土拱坝全过程温控仿真计算分析。具体分析流程如下: 1)收集资料:包括工程气象水文资料、大坝体型、热力学参数、工程进度、施工措施、防洪度汛和蓄水等。 2)整理分析资料:参数拟合、分析建模方法。 3)建模:采用ANSYS软件进行建模,划分网格。 4)编写计算批处理程序:根据资料结合模型编写计算温度场的ANSYS批处理程序。 5)检查计算批处理程序:首先检查语句,然后导入计算模型检查所加荷载效果。 6)计算温度:使用ANSYS软件温度计算模块进行计算。 7)分析温度结果:主要分析各时刻的温度场分布和典型温度特征值。 8)应力计算建模:模型结构尺寸与温度分析模型相同,需要改变把温度分析材料参数改为应力分析材料参数。 9)计算应力:使用ANSYS软件温度应力计算模块和自编的二次开发软件进行计算。 10)分析应力结果:主要分析应力场分布和典型应力特征值。 11)编写报告:对计算流程和结果实施进行提炼总结,提出可行的温控指标和措施。 (2)前处理 1)建模方法选择。 有限元建模一般有两种方法:一种为通过点线面几何拓扑的方法建模,这种建模方法精确,但是比较费时。对于较大规模的建模任务花费时间太多。另一种为通过其他软件导入,如CAD,通过在其他软件中建模,然后输出为ANSYS 可以识别的文件类型,再导入ANSYS中完成建模过程,这种建模方式精度较直接建模的精度要稍低一些,但是由于要求建模的模型已经在CAD软件中完成了

初步建模,可以直接拿来稍作处理即可应用,时间花费较少。本计算选用从CAD 软件导入ANSYS中来建立模型。 2)建模范围。 建模范围可以分为全坝段建模和单坝段建模,全坝段建模可以全面反映整个坝体的温度和应力情况,但是建模难度高、计算量大;单坝段建模建模难度小,计算量也相对较小,一般情况下单坝段建模即可满足要求。 3)施工模拟层厚。 根据已建碾压混凝土坝经验,碾压层厚一般为0.3m左右,按照0.3m一层建模是最精确的,但是如果按照0.3m一层建模,计算网格数量巨大,计算时间长,对于硬件要求较高,在硬件和时间达不到要求的情况下,按照3m一层以下精度都是可以基本满足要求的。 4)分区模拟。 由于各分区混凝土水化热差别较大,对于温度计算影响较大,因此建模要尽量反映混凝土大坝内部分区变化。基岩由于对混凝土只是导热作用,且影响范围在10m左右,因此在计算时可以认为是均质体,计算热力学参数采用靠近建基面的地层参数。 5)参数选取。 参数一般选择可研阶段的材料试验报告,如果项目部未能提供这些资料,可以在征求同意的前提下,通过查阅相关书籍,尽量采取相似工程的资料。 (3)计算 1)ANSYS计算模块。 ANSYS计算温度场模块由其自带,可以直接进入模块计算。 2)化学产热模拟。 通过ANSYS中产热命令BFE模拟。 3)边界条件模拟。 ①对流边界条件通过命令SFA模拟。 ②接触散热边界条件通过命令D模拟。 4)浇筑模拟。 通过ANSYS中的生死单元功能实现,初始阶段所有单元均为死单元,死单

大学生方程式赛车设计——转向系统

赛车转向系统是用于改变或保持赛车行驶方向的专门机构。起作用是使赛车在行驶过程中能按照车手的操纵要求而适时地改变其行驶方向,并在受到路面传来的偶然冲击及赛车意外地偏离行驶方向时,能与行驶系统配合共同保持赛车继续稳定行驶。因此,转向系统的性能直接影响着赛车的操纵稳定性和安全性。对赛车的行驶安全至关重要,因此赛车转向系统的零件都称为保安件。赛车转向系统和制动系统都是赛车安全必须要重视的两个系统。当转动赛车方向盘时,车轮就会转向。为了使车轮转向,方向盘和轮胎之间发生了许多复杂的运动。最常见的赛车转向系统的工作原理包括:齿条齿轮式转向系统和循环球式转向系统。当赛车转向时,两个前轮并不指向同一个方向。要让赛车顺利转向,每个车轮都必须按不同的圆圈运动。由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。转向拉杆具有独特的几何结构,可使内车轮的转向度大于外车轮。赛车转向系统分为两大类:机械转向系 统和动力转向系统。a机械转向 系统:完全靠车手手力操纵的转 向系统。b动力转向系统:借助 动力来操纵的转向系统。动力转 向系统又可分为液压动力转向系 统和电动助力动力转向系统。机 械转向系以车手的体力作为转向 能源,其中所有传力件都是机械 的。机械转向系由转向操纵机构、 转向器和转向传动机构三大部分 组成(如图)。车手对转向盘施 加的转向力矩通过转向轴输入转 向器。从转向盘到转向传动轴这 一系列零件即属于转向操纵机构。作为减速传动装置的转向器中有级减速传动副。经转向器放大后的力矩和减速后的运动传到转向横拉杆,再传给固定于转向节上的转向节臂,使转向节和它所支承的转向轮偏转,从而改变了赛车的行驶方向。这里,转向横拉杆和转向节属于转向传动机构。。 转向操纵机构由方向盘、转向轴、转向管柱等组成,它的作用是将车手转动转向盘的操纵力传给转向器。机械转向器(也常称为转向机)是完成由旋转运动到直线运动(或近似直线运动)的一组齿轮机构,同时也是转向系中的减速传动装置。常用的有齿轮齿条式、循环球曲柄指销式、蜗杆曲柄指销式、循环球-齿条齿扇式、蜗杆滚轮式等。齿条齿轮式齿轮组被包在一个金属管中,齿条的各个齿端都突出在金属管外,并用横拉杆连在一起。小齿轮连在

ANSYS热应力分析经典例题

ANSYS热应力分析例题 实例1圆简内部热应力分折: 有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。 该问题属于轴对称问题。由于圆筒无限长,忽略圆筒端部的热损失。沿圆筒纵截面取宽度为10M的如图13—2所示的矩形截面作为几何模型。在求解过程中采用间接求解法和直接求解法两种方法进行求解。间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。 /filname,exercise1-jianjie /title,thermal stresses in a long /prep7 $Et,1,plane55 Keyopt,1,3,1 $Mp,kxx,1,70 Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2 Lesize, all,,,20 $Lsel,s,,,2,4,2 Lesize,all,,,5 $Amesh,1 $Finish /solu $Antype,static Lsel,s,,,4 $Nsll,s,1 $d,all,temp,200 lsel,s,,,2 $nsll,s,1 $d,all,temp,20 allsel $outpr,basic,all solve $finish /post1 $Set,last /plopts,info,on Plnsol,temp $Finish /prep7 $Etchg,tts Keyopt,1,3,1 $Keyopt,1,6,1 Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28 Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,all Lsel,s,,,2 $Nsll,s,1 $Cp,9,ux,all Allsel $Finish /solu $Antype,static D,all,uy,0 $Ldread,temp,,,,,,rth Allsel $Solve $Finish /post1 /title,radial stress contours Plnsol,s,x /title,axial stress contours Plnsol,s,y /title,circular stress contours Plnsol,s,z /title,equvialent stress contours Plnsol,s,eqv $finish

ANSYS热应力分析实例

ANSYS热应力分析实例 当一个结构加热或冷却时,会发生膨胀或收缩。如果结构各部分之间膨胀收缩程度不同,和结构的膨胀、收缩受到限制,就会产生热应力。 7.1热应力分析的分类 ANSYS提供三种进行热应力分析的方法: 在结构应力分析中直接定义节点的温度。如果所以节点的温度已知,贝U可以 通过命令直接定义节点温度。节点温度在应力分析中作为体载荷,而不是节点自由度 间接法。首先进行热分析,然后将求得的节点温度作为体载荷施加在结构应力分析中。 直接法。使用具有温度和位移自由度的耦合单元,同时得到热分析和结构应力分析的结果。 如果节点温度已知,适合第一种方法。但节点温度一般是不知道的。对于大多数问题,推荐使用第二种方法一间接法。因为这种方法可以使用所有热分析的功能和结构分析的功能。如果热分析是瞬态的,只需要找出温度梯度最大的时间点,并将此时间点的节点温度作为荷载施加到结构应力分析中去。如果热和结构的耦合是双向的,即热分析影响结构应力分析,同时结构变形又会影响热分析(如大变形、接触等),则可以使用第三种直接法一使用耦合单元。此外只有第三种方法可以考虑其他分析领域(电磁、流体等)对热和结构的影响。 7.2间接法进行热应力分析的步骤 首先进行热分析。可以使用热分析的所有功能,包括传导、对流、辐射和表面效应单元等,进行稳态或瞬态热分析。但要注意划分单元时要充分考虑结构分析的要求。例如,在有可能有应力集中的地方的网格要密一些。如果进行瞬态分析,在后处理中要找出热梯度最大的时间点或载荷步。 表7-1热单元及相应的结构单元

重新进入前处理,将热单元转换为相应的结构单元,表7-1是热单元与结构 单元的对应表。可以使用菜单进行转换: Mai n Menu>Prep roeessor>Eleme nt Typ e>Switeh Eleme nt Type ,选择Thermal to Struetual 。 但要注意设定相应的单元选项。例如热单元的轴对称不能自动转换到结构单元中,需要手工设置一下。在命令流中,可将原热单元的编号重新定义为结构单元,并设置相应的单元选项。 设置结构分析中的材料属性(包括热膨胀系数)以及前处理细节,如节点耦 合、约束方程等。 读入热分析中的节点温度, GUI: Solution>Load Apply>Temperature>From Thermal Analysis 。输入或选择热分析的结果文件名*.rth。如果热分析是瞬态的,则还需要输入热梯度最大时的时间点或载荷步。节点温度是作为体载荷施加的,可通过Utility Men u>List>Load>Body Load>On all nodes 列表输出。 设置参考温度,Mai n Men u>Solutio n>Load Setti ng>Refere nee Temp 。 进行求解、后处理。 7.3间接法热应力分析实例 7.3.1 问题描述 图7-1冷却栅示意图

首届中国大学生方程式赛车大赛的筹备介绍

首届中国大学生方程式赛车大赛的筹备介绍 一、FSAE背景 1. 赛事目的 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年开办,比赛要求参赛的大学生以一年时间,开发一部排气量为610 c.c.以下的假日休闲赛车,组装必须简单,可以让小型工厂每天至少生产四部。 这项比赛重点不是在比快,而意在做出一辆安全而且容易操作的竞赛型车辆。SAE方程式(Formula SAE)系列赛将挑战本科生、研究生团队构思、设计与制造小型方程式赛车的能力。为了给予车队较高的设计弹性和自我表达创意与想象力的空间,在整车设计方面将作较小的限制。赛前车队通常需要8到12个月的时间设计、制造、测试和准备赛车。在与来自世界各地的大学代表队的交流与切磋中,赛事给了车队证明与展示其创造力和工程技术能力的机会。 Formula SAE赛事由汽车工程师协会(the Society of Automotive Engineers)赞助。SAE是一个拥有超过60000名会员的世界性的工程协会,致力与海、陆、空各类交通工具的发展进步。 Formula SAE是一项面对美国汽车工程师学会学生会员组队参与的国际赛事,于1980年在美国举办了第一届赛事。比赛的目的是设计、制造一辆小型的高性能赛车。目前美国、欧洲和澳大利亚每年都会定期举办该项赛事。 Formula SAE向年轻的工程师们提供了一个参与有意义的综合项目的机会。由参与的学生负责管理整个项目,包括时间节点的安排,做预算以及成本控制、设计、采购设备、材料、部件以及制造和测试。Formula SAE为在传统教室学习中的学生提供了一个真实世界的工程经历。Formula SAE队员经受考验,面对挑战,具有创造性思维,培养实践能力。队员们相对同龄人有专业的优势,这保证了他们与其他人合作时更高效地完成项目。 该项目的目标是由学生构思、设计、制造一辆小型方程式赛车。通过该项目重点考察和培养参与学生的知识水平、创造力和想象力。在这样一项具有非常意义的

大学生方程式赛车使用材料分析

大学生方程式赛车使用材料分析 机械工程学院 1116150107 包俊 中文摘要:本篇论文介绍了大学生方程式赛车所用的材料,主要从车身材料,底盘材料以及车轮材料三个方面介绍。材料是方程式赛车的基础,必须具有优良的性能。其中,车身材料主要采用的是碳纤维,它具有轻盈,抗冲击的性能;赛车底盘则采用蜂窝铝材和碳纤维合成的复合材料,其具有机械强度高,耐温性好,耐腐蚀性好等性能;而车轮材料则比较复杂,会根据比赛赛道的不同选用不同的轮胎,有的软,有的硬,每场比赛所使用的轮胎成分差别很大,但是其外框主要是尼龙和聚酯纤维的复杂编织物。 English Abstract: This paper introduces the formula of materials used for college students, mainly from the body material, material of the chassis and wheel material is introduced from three aspects. Material is a Formula One racing based, must have excellent performance, which, the body material is the main use of carbon fiber, it has a light, shock resistant performance; racing chassis uses the titanium alloy material, which has high mechanical strength, good temperature resistance, good corrosion resistance and other properties; while the wheel material more complex, depending on the race track choose different tires, some soft, some hard, every game the used tire composition varies greatly, but the frame is mainly nylon and polyester fiber complex woven fabric. 中国大学生方程式汽车大赛(简称“中国FSAE”)是一项由高等院校汽车工程或汽车相关专业在校学生组队参加的汽车设计与制造比赛。各参赛车队按照赛事规则和赛车制造标准,在一年的时间内自行设计和制造出一辆在加速、制动、操控性等方面具有优异表现的小型单人座休闲赛车,能够成功完成全部或部分赛事环节的比赛。而本文则主要对其车身所用材料展开探究,赛车主要由车身,底盘和轮胎构成,下面就从这三方面来分别详细地介绍其所用材料和性能特点。 车身材料:碳纤维 车身是一辆赛车的主体部分,其重要性不言而喻,而赛车对于速度的追求则理所当然地要求车身材料必须具有轻盈的特点。而作为赛车手的屏障,其又必须具有良好的抗冲击性能,这两种看似矛盾的要求必须在一种材料中体现,似乎有些困难,而碳纤维材料则很好地符合了这两样要求。碳纤维,又称碳化纤维,泛指一些以碳纤维编织或多层复合而成的材料。因为它又轻又坚硬,所以它的用途很广泛。碳纤维在汽车领

方程式赛车悬架系统设计分析中期报告

河北工业大学本科毕业设计(论文)中期报告 毕业设计(论文)题目:方程式赛车悬架系统设计分析 专业:车辆工程 学生信息:学号:082886;姓名:樊广阔;班级:车辆083 指导教师信息:教师号:86024;姓名:武一民;职称:教授 报告提交日期: 一、前期具体工作及取得进展 1.查阅FSAE赛车及相似汽车悬架结构,确定所设计赛车悬架结构。 根据文献及FSAE赛车实车相关图片初步确定采用不等长双横臂拉杆弹簧独立悬架,制动器形式采用盘式制动。上下两横臂采用A型结构,且由杆件代替,上下A臂不平行且不等长,为了保证运动时轮距变化不大采用上横臂短、下横臂长的结构形式。 悬架杆件采用SAE4130钢管,尺寸为12x1.5以及,并采用SA型外螺纹杆端关节轴承,型号为:SA8E。横臂与转向节的链接采用GE型向心关节轴承,型号为:GE8C。减震器及弹簧选取螺旋弹簧套在减震器外侧的结构,减震器的一端通过摇臂与拉杆连接,另一端连接在车架上。横向稳定杆与摇臂的连接同样采用外螺纹杆端关节轴承,型号为:SA6E。摇臂的旋转中心采用的是自润滑轴承,型号为10x14x20。整体结构的布置形式大概如下图所示: 2.初步确定悬架相关参数。 根据赛事规定6.3.1 赛车轮辋直径必须至少为203.2mm(8.0 英寸),因此结合查阅相关资料及简单计算轮辋采用13X8尺寸,即轮辋直径为330mm。轮胎选取Continental轮胎,型号为195/45R13,轮胎外径为510mm。 根据赛事规定6.2 离地间隙:在比赛中,在有车手乘坐时,赛车的静态离地间隙必需至少25.4mm(1 英寸),因此,初步设计赛车最小离地间隙为30mm。 根据赛事规定2.3 轴距赛车的轴距必须至少为1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧两车轮的接地面中心点之间的距离。因此,初步设计赛车轴距为1535mm。 根据赛事规定2.4 轮距赛车较小的轮距(前轮或后轮)必须不小于较大轮距的75%。 此次设计初步设计前轮距为1200mm,后轮距为1180mm。 根据赛事规定 6.1.1 赛车所有车轮必须安装有功能完善的、带有减震器的悬架。 在有车手乘坐的情况下,轮胎的跳动行程至少为50.8mm(2 英寸),其中向上25.4mm

大学生方程式赛车队员培养规划

锐狮电动方程式赛车队人员培养规划 2018.5.04 一、指导思想 社会是人才需求的提出方和最终的决定者,并长期处于市场主导地位。为了缩短毕业生的磨合期,提高学生能力,高校通过修正培养目标及培养计划、提供实践平台等方式以满足社会的需求;学生为了以后能尽快适应工作岗位,可以在在校期间,通过丰富理论知识、增加实践过程来完善自己。 大学生方程式赛车项目,是学生理论与实践相结合的平台,为培养学生的专业技能和团队协作能力奠定了基础。上海工程技术大学锐狮电动方程式赛车队提供了该项目的岗位培训与实践平台,该项目要求大学生团队在一年内完成一辆方程式赛车的设计、加工、组装、调试,并通过营销报告、设计报告、成本报告全方位锻炼学生能力,同时通过团队的管理、财务的运营、车队宣传交流及商业赞助协恰提高了学生管理、财务、交流、商务等方面能力,符合上海工程技术大学面向生产一线培养优秀人才的办学宗旨和建设现代化特色大学的办学理念,适应了我国社会、经济和工程技术发展对高等工程技术人才的需求。 二、培养目标 上海工程技术大学锐狮电动方程式车队面向全校各专业,培养具有扎实的理论基础,掌握工业设计、工程制图、工业制造、电子电工、商务营销、项目管理、财务会计等理论知识和实践能力的专才和全才。培养能够担任车队运营、发展任务的战略人才。培养具有零部件设计、生产工艺、成本控制、产品试验及质量控制等工程实践能力,具有良好的团队合作精神、创新意识和创业精神,具备适应现代行业快速发展的优良专业素养,能够在企业从事管理、财务、商务、设计、制造、研发、测试、质量控制等工作的工程应用型人才。 三、培养方案 1.各组根据各组培养规划进行组内培训,车队按期举办全体培训。 2.队员以各组培养规划为纲领,结合个人分工,自学为主,车队培训为辅。 3.通过学习完成知识体系构建,形成自主学习意识,并能够将理论与实践相结合。 四、能力要求 1. 工程知识:能够利用工程基础理论和专业知识解决一般工程问题。 2. 问题分析:能够应用自然科学和工程科学的基本原理,识别、表达、并通过文献分析复杂工 程问题,并获得有效结论。 3. 设计/开发解决方案:能够设计针对优化问题的解决方案,设计满足方程式赛车需求的系统、 零部件,熟悉项目整套运营方案,并能够在设计环节中体现创新意识。 4. 研究:能够基于科学原理并采用科学方法对复杂工程问题进行研究,包括设计实验、分析与 解释数据、并通过信息综合得到合理有效的结论。 5. 使用现代工具:能够针对复杂工程问题,选择与使用恰当的技术、资源、工具和软件,包括 对复杂工程问题的预测与模拟,并能够理解其局限性。 6. 个人和团队:能够在多学科背景下的团队中承担个体、团队成员以及负责人的角色。 7. 沟通:能够就复杂工程问题与相关负责人进行有效沟通,包括撰写设计报告和成本报告、陈 述发言或回应指令。并具备一定的国际视野,能够在跨文化背景下进行沟通和交流。 8. 项目管理:理解并掌握工程管理原理与经济决策方法,并能在多学科环境中应用。 9. 文件处理:能够按照规范编写各种文件,能够与正规公司进行邮件的接洽交流。 10.自主学习:大学不是填鸭式教育,也不可能靠督促来学习,但人与人之间的差距往往就在自 主学习中拉开,所以要具有自主学习的意识,能够根据目标快速学习并应用。

大学生方程式赛车悬架设计

大学生方程式赛车悬架设计 加布里埃尔·德·波拉爱德华多 圣保罗大学摘要 独立完成一次大学生方程式赛车的悬架设计。首先分析赛规,通常,赛规会对悬架的最小行程和轴距作出限制,并且给出本次设计所要达成的最终目的,除此之外还会评判出得分最高的一个团队。本文会讨论到轮胎的运动,并详细分析前后悬架的拉杆不等长的摆臂。维度论是基于CAD的尺寸限制发展出来的。在总的力与时间的图上分析了暂态稳定、控制和操纵性能。在分析运动学和动力学时创建了多体模型。该模型能模仿侧翻,驾驶和操纵并且能进行几何调整,使得弹簧和阻尼器实现其性能。 前言 美国汽车工程师学会举办的大学生方程式汽车大赛激励学生 们去设计、制作一个小的方程式风格的赛车,并参加比赛。竞争的基础是假设一个公司集合了一个工程师团队来制造一个小的方程式赛车。第一步是分析赛事规则,赛规限制悬架系统的最小轮距为50mm,轴距大于1524mm。FSAE悬架工作在一个狭窄的车辆动力学范围,这是由于赛道尺寸决定的有限过弯速度,140公里每小时为最高速度和60公里每小时为转弯最高速度。比赛的动态部分包括15.25m的直径防滑垫,91.44m的加速项目,0.8km的越野赛,44km耐力赛。 设计目标已经给定并且会评判出得分最高的十个团队。悬架系统的几何部分集中在一些悬架设计理念和亮点的基本领域。因此,

FSAE悬架设计应该集中在竞赛的限制因素方面。例如,车辆轮距宽度和轴距是决定汽车操纵性设计成功与否的关键因素。这两个尺寸不仅影响重量传递还影响转弯半径。设计目标是首先满足赛则,其次降低系统重量,创造最大的机械抓地力,提供快速响应,准确的传输驱动程序的反馈,并能调节平衡。 轮胎和车轮 悬架设计过程中采用了“由外而内”的方法,先选择满足赛车要求的轮胎,然后设计悬架以适应轮胎参数。短的比赛时间和低速的比赛项目都要求轮胎快速达到其工作温度。轮胎对于车辆操纵性很重要,设计团队应当充分地调查轮胎尺寸及可用的化合物材料。轮胎的尺寸在这一阶段的设计中很重要,因为在确定悬架的几何结构之前,轮胎的尺寸必须已知。例如,一个给定了车轮直径的轮胎高度决定,如果轮胎内部被组装起来了,下球接头应当离地面多近。 设计者应当意识到提供对于给定车轮直径的轮胎尺寸的数量是有限的。因此,考虑到轮胎对于汽车操纵性的重要性,选择轮胎的过程应当有条不紊。由于轮胎在地面上的部分对抓地力有很大的影响,有时希望使用宽的轮胎,增加牵引力。然而,切记宽的轮胎使回转质量增加,而这又使FSAE发动机的加速受到限制。 相比较使用宽轮胎而引起的牵引力的增加,这些增加的回转质量也许会对整车的性能产生更大的损害。宽轮胎不仅增大质量,而且使受热的橡胶数量增加。因此比赛用的轮胎必须设计成在某一特定的

ANSYS热应力分析命令流

/FILNAME,Double,1 !定义工作文件名。 /TITLE,Temperature Analysis !定义工作标题。 !* /PREP7 !定义单元。 ET,1,SOLID70 !* !定义材料属性。 MPTEMP,,,,,,,, !定义材料1。 MPTEMP,1,0 MPDATA,KXX,1,,238*3.6 !定义材料1的传热系数KXX1。MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,C,1,,500 !定义材料1的比热C1。MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,3e-6 !定义材料1密度DENS1。 !* MPTEMP,,,,,,,, !定义材料2。 MPTEMP,1,0 MPDATA,KXX,2,,15*3.6 !定义材料2的传热系数KXX2。MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,C,2,,100 !定义材料2的比热C2。MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,2,,2.2e-6 !定义材料2密度DENS2。 !* !建立几何模型。 BLC4,-80,-10,160,20,700 VOFFST,3,20, , !* !网格划分。 FLST,5,20,4,ORDE,2 FITEM,5,1 FITEM,5,-20 CM,_Y,LINE LSEL, , , ,P51X

CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1,10, , , , , , ,1 !定义网格大小。 !* TYPE, 1 MAT, 1 REAL, ESYS, 0 SECNUM, CM,_Y,VOLU VSEL, , , , 1 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y VSWEEP,_Y1 CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 TYPE, 1 MAT, 2 REAL, ESYS, 0 SECNUM, CM,_Y,VOLU VSEL, , , , 2 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y VSWEEP,_Y1 CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 !定义网格大小完成。 !* FINISH /SOL ANTYPE,4 !定义瞬态分析类型。

2019中国大学生方程式汽车大赛

中国大学生方程式汽车大赛 参赛确认回执

参赛免责条款 车队自愿参加年中国大学生方程式系列赛事。承诺遵守赛事规则及社会相关法律法规的要求,充分了解安全用电、用火知识和组委会相关规定,强化队员自我保护意识。在备赛及参赛的过程中,由车队队员造成的不符合各项安全准则和规定的事故、引起的纠纷及造成的一切后果由车队及学校承担。 若出现暴雨、飓风.泄洪、地震等极端气候或灾害而停止或暂停比赛,车队将以队员安全为重、服从现场管理者的指挥。

注:(以下提示文字可以删除) .只有经过审核满足要求的车队才可以进行正式报名,即只有“报名车队”才能下载到此参赛确认回执。 .请下载此参赛确认回执的车队,仔细完整地填写上方回执。第二页提示文字可以删除,并保存成文件,于年月日前上传至赛事管理系统。 .报名车队请于年月前将报名费电汇至收款账户,对公汇款请务必在汇款备注处写明:报名费。个人汇款请务必在汇款备注处写明学校,如:吉大报名费,并将汇款凭据以照片或者截图等方式留存。若在规定时间内未缴纳报名费的车队将自动失去参赛资格。(缴费时间为年月日年月日)汇款凭据文件命名为:车号学校名称赛事代码汇款凭据文件,并保存成文件(文件大小<),上传至赛事管理系统。. 组委会秘书处收到报名费后个工作日内核实车队实际的缴费情况与参赛确认回执和报名费提交凭证提交情况。实

际缴费情况为已缴费,该车队则成为年正式参赛车队。最终将以公告的形式公示正式参赛队名单。 注意:文件名称不符合规定或提交位置错误,均视为未提交。截止日期前未正确提交的相应文件的车队将自动失去参赛资格。 中国大学生方程式汽车大赛官网 赛事管理系

大学生方程式赛车悬架资料

Error No. 1 This picture shows a classic design error that all Judges hate, and is considered a "Mortal Sin". Every year several cars are presented like this as teams ignore the advice or directions they are given. The outer spherical bearings are threaded rod ends loaded in bending! The entire mass of the car, plus bump loads, weight transfer and brake torque are reacted to the chassis by bending the threaded shank of the lower joint. This is going to break! GTB! Do not do this! The upper rod end is being asked to react brake torque in bending. It is also being carried in single shear on top of the upright. These errors are not so serious, but still examples of poor design. The judges understand why teams do this. It makes camber adjustment easy, but there are better solutions. Teams will argue they have selected a rod end with sufficient bending capacity, but this argument will not hold with the judges. A Rod end with a sufficiently strong shank will be far too big and heavy, and as the thread roots are good stress raisers, the joint will probably crack and break anyway. In any case, we are talking about the Design Competition, and incorrect use of fasteners is not good design.

大学生方程式赛车设计说明书(制动与行走系统设计) (新)

毕业设计(论文) 题目大学生方程式赛车设计(制动与行走系统设计) 2013年5月30日

大学生方程式赛车制动与行走系统设计 摘要 Formula SAE自1978年在美国第一次举办以来,现已成为一项顶尖的国际赛事。按比赛规定,赛车必须在加速,制动和操控性能方面表现出色。其中,为保障车辆和驾驶人员的安全,赛车的制动与行走系统设计显得尤为重要。 本文主要阐述了Formula SAE赛车的制动与行走系统设计过程。本次设计参照上代及其他参赛团体的赛车,进行了整体优化。本文在分析大赛规则及往届成型赛车的基础上,通过计算分析设计出制动与行走系统的总体方案。其中,制动系统以制动器为核心,设计出制动操纵机构(踏板装置)及制动操纵驱动机构(II型液压双回路)。行走系统以轮胎为核心,依次进行轮辋、轮毂、立柱的设计。本次设计在分析研究国外经典赛车基础上,参照实物及经典模型,利用UG对各零件进行三维建模和装配,利用CAD、CAXA等软件建立模型进行运动干涉分析,保证设计的合理性及优良性。 最后,本次设计运用UG等软件,对制动系统中的连接件、紧固件、制动盘、制动踏板、制动油路等和行走系统中的立柱、轮毂、轮辋进行了仿真及有限元分析,并制造出样件,对样件装车试验,取得良好效果。最终本设计的结果,确保了本赛车具有出色的制动性和在极限工况下的安全性。 关键词:赛车,制动及行走系统,优化,仿真,有限元分析

COLLEGESTUDENTS'FORMULA RACING BRAKE AND WALKING SYSTEM DESIGN ABSTRACT Formula SAE held in the United States for the first time since 1978, has now become a top international event. The car's design must be in acceleration, braking and handling performance. Among them, in order to guarantee the safety of the vehicle and driver, braking and walking system design is especially This article mainly elaborated the Formula SAE racing car brake and important. walking system design process. Design with reference to the parent group and other participants of the car, on the whole optimization. Based on the analysis of the competition rules and past molding car, on the basis of analysis by calculation braking and walking system overall scheme are given. Among them, the braking system to brake as the core, designed the brake operating mechanism and brake control driving mechanism. Walking system to tire as the core, in turn to carry on the rim, hub, pillar design. Refer to physical objects and the classic case in design process, the parts to make use of UG three-dimensional modeling and assembly, optimize the braking control drive mechanism, using CAD, CAXA, such as motion interference analysis, to ensure the rationality of the design and the optimal benign. Using software such as UG, the design of the braking system of the fittings, fasteners, brake pedal, brake disc and walking system such as columns, in the hub, rim has carried on the simulation and finite element analysis, to ensure that this car has good brake and safety under limit conditions. KEY WORDS:car, brake and walking system, optimization, simulation, finite element analysis

大学生方程式赛车设计(前后悬架设计)(有cad图+三维图)

毕业论文 题目大学生方程式赛车设计(前、后悬架设计) 2013年05月30 日

大学生方程式赛车设计(前、后悬架设计) 摘要 本设计为中国大学生方程式汽车大赛(Formula SAE - China,简称"FSAE")赛车前、后悬架总成设计。悬架总成是汽车的一个重要组成部分,它的功用是把路面作用于车轮上的垂直反力、纵向反力和侧向反力以及这些反力所造成的力矩传递到车架上,以保证汽车的正常行驶。 本次设计根据大学生方程式汽车大赛的比赛规则及赛车设计具体参数要求,参考各种赛车悬架资料,分析各种悬架类型的优缺点,参考国际国内方程式汽车大赛的赛车设计方案,初选出了多连杆悬架和双横臂悬架,然后进行进一步的分析,并最终确定适合赛车运动的悬架形式---不等长双横臂式螺旋弹簧独立悬架。 设计中运用运动学原理分析各机构运动关系、确定尺寸参数,运用理论力学、材料力学知识计算悬架各部件的受力,以满足各零部件的强度要求。本次设计运用了CAD2008画平面图,并运用UG NX 7.0建立悬架模型,进行运动分析和高级仿真。 关键词:悬架,减振器,导向机构,定位参数,建模,运动分析

This design for Chinese University students formula car(front and rear suspension design) ABSTRACT This design for Chinese University students formula car contest (Formula SAE-China, referred to as "FSAE.") racing front and rear suspension design. Suspension Assembly is an important component of the car, its function is to act on the pavement on vertical force, longitudinal force and lateral force as well as the reaction caused by the moment passed to the frame, in order to ensure that the vehicle's normal driving.This design according to the formula of college car racing rules and concrete parameters design requirements, refer to the data of many racing suspension , analysis of the advantages and disadvantages of various suspension type, and ultimately determine the suitable for motor sport suspension---differ long double wishbone arm typed spiral spring independent suspension. Determine the use of unque length double wishbonecoil springindependent suspension,calculated and verified, to the rule of the game,and the actual needs of the cars’s roll center,select the suspension of the car-oriented institutions,and then according to the positioning of the wheel parameterspreliminary design calcuations on the dimensions of the upper and lower wishbone front and rear suspension and frame size as well as track and wheelbase dimensions,and the subsequent stress analysis under various conditions on the suspension,and determine the final suspension size and locationaramerers.In the design application kinematics analysis of the relationship between the various bodies exercise、determine the size parameters, use of theoretical mechanics, material mechanics calculation of the various components of suspension force to meet the strength

相关文档
最新文档