沿程阻力+建环1302+38

沿程阻力+建环1302+38
沿程阻力+建环1302+38

中国石油大学(华东)工程流体力学实验报告

实验日期:2015.5.14成绩:

班级:建环1302学号:1309010208姓名:郑佩凤教师:李成华

同组者:隋彦丽、刘广顺、刘西国

实验七、沿程阻力实验

一、实验目的填空

1.掌握测定镀锌铁管管道沿程阻力系数的方法;

2.在双对数坐标纸上绘制λ-Re 的关系曲线;

3.进一步理解沿程阻力系数随雷诺数的变化规律。

二、实验装置

在图1-7-1下方的横线上正确填写实验装置各部分的名称

本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。

另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。

F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计;C——计量水箱;V——阀门;K——局部阻力实验管路图1-7-1

图1-7-1 管流综合实验装置流程图

三、实验原理在横线正确写出以下公式

本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头损失计算公式:

h f=λ×(L/D)×v2/2g

(1-7-1)式中:λ——沿程阻力系数;

L——实验管段两端面之间的距离,m;

D——实验管内径,m;

g——重力加速度(g=9.8 m/s2);

v——管内平均流速,m/s;

h f——沿程水头损失,由压差计测定。

由式(1-7-1)可以得到沿程阻力系数λ的表达式:

2g(D/L)×(h f/v2)

(1-7-2)沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。

当实验管路粗糙度保持不变时,可得出该管的λ-Re的关系曲线。

四、实验要求填空

1.有关常数实验装置编号:No. 10

管路直径:D = 1.58 cm;水的温度:T = 20.0℃;

水的密度:ρ= 0.99823g/cm3;动力粘度系数:μ= 1.005mPa?s;

运动粘度系数:ν= 0.0100678 cm2/s;两测点之间的距离:L= 500 cm

2.实验数据处理见表1-7-2

表1-7-2 沿程阻力实验数据处理表

3、以其中一组数据写出计算实例(包含公式、数据及结果)。

以第一组数据为例

(1)汞柱差:Δ'h=h′-h″=96.3-2.9=93.4cm

沿程水头损失:h f=12.6Δ'h=12.6×93.4=1176.84cm

(2)运动粘度系数:ν=μ/ρ=1.005×10-6÷0.99823= 0.0100687cm2/s

(3)流量:Q=△h×A÷t=(48.20-12.90)×400÷38.12=370.41ml/s

(4)管内平均流速:v =Q÷A=370.41 /(3.14×0.79×0.79)= 189.02cm/s

(5)雷诺数:Re=Dv/ν=1.58×189.02 ÷0.010687=29663.369

(6)沿程阻力系:λ=2*g*D*h f/(L*v^2)=2×9.8×1.58×10^-2×1176.84×10^-2×(5×(189.02^2)×10^-4)=0.20401

4.在双对数坐标纸上绘制 -Re的关系曲/线。

五、实验步骤正确排序

(5 ).逐次关小V11,记录18组不同的压差及流量;

(2).打开阀门V10排气,排气完毕将阀门关闭;

(7).实验完毕后,依次关闭V11、实验管路左右两测点的球形阀,并打开两用式压差计上部的球形阀。

(1)..阀门V1完全打开。一般情况下V1是开着的,检查是否开到最大即可;(4)..用打气筒将水-气压差计的液面打到中部,关闭压差计上、下方的三个球形阀,将V11完全打开。待水流稳定后,记录压差计读数,同时用体积法测流量(压差5~7 cm汞柱时,打开压差计下方的两个球形阀,由汞-水压差计换用水-气压差计来读压差);(6)用量筒从实验管路中接足量的水,放入温度计5分钟后读出水的温度,查粘温表;

(3)打开实验管路左、右测点及压差计上方的球形阀,检查压差计左右液面是否水平。若不在,须排气(为防止汞发生外泄,排气时应在老师的指导下进行);

六、注意事项

1.本实验要求从大流量(注意一定要把阀门V11完全打开)开始做,逐渐调小流量,且在实验的过程中阀门V11不能逆转;

2.实验点分配要求尽量合理,在记录压差和流量时,数据要一一对应;3.使用量筒、温度计等仪器设备时,一定要注意安全;

4.做完实验后,将量筒、温度计放回原处,将秒表交回。

七、问题分析

h?

1.如将实验管安装成倾斜的,比压计中的读数差是不是沿程水头损失

f

仍然是,因为是等径流动,所以流速相等,即沿程水头损失等于测压管水头差,比压计读数为测压管水头,它包含位置水头位置差与压力水头差。管道水平时,比压计中的读数差等于两断面的压力水头差,管道倾斜,比压计中的读数差等于两断面的压力水头差和位置水头差之和,都反映水平管道两断面的沿程水头损失。所以无论是水平还是倾斜,比压计中的读数都是沿程水头损失。

2.随着管路使用年限的增加, -Re关系曲线会有什么样的变化?

随着管路使用年限的增加,管壁内部的粗糙度会增加,在层流段由于沿程阻力系数只与雷诺数有关,故在层流段λ-Re关系曲线变化不大;在紊流段,随着粗糙度的增加,沿程水头损失会随之增加,沿程阻力系数跟着增大,故λ-Re 关系曲线会上移一段距离。

3.当流量、实验管段长度相同时,为什么管径愈小,两断面的测压管液面差愈大?其间的变化规律如何?

由达西公式可知,当流量,试验管段长度相同时,管径越小,沿程水头损失会越大,沿程水头损失与测压管的液面差是相等的,所以管径愈小,两断面的测压管液面差愈大。

八、心得体会

通过本次试验,我掌握了测定镀锌铁管管道沿程阻力系数的方法,进一步理解了沿程阻力系数随雷诺数的变化规律。实验中对流量的调节很关键,要求认真细致,每次调节需要很小心,并且不能逆转。实验过程中需要多人配合,这也大大增强了我们的团队合作意识,没有所有人的共同努力,这次实验是不可能在短时间内顺利完成的。在每次的实验中,我都能在做实验的过程以及后面数据处理的过程中将书本上的知识加以验证,加深了理解,也获得了更多的感悟。

沿程阻力系数表

在模型图中可以找到沿管道的阻力系数,即λ、re和K/D的关系曲线,这是液压系统中常用的。K是管内壁的绝对粗糙度。 管道沿线水头损失计算:H=λ(L/D)[v^2/(2G)] 对于管内层流:λ=64/re(雷诺数re=VD/ν) 圆管粗糙过渡区:1/√(λ)=-2*LG[K/(3.7d)+2.51/re√(λ)] 对于管的湍流粗糙区:1/√(λ)=-2*LG[K/(3.7d)]也可用作λ=0.11(K/D)^0.25还有许多经验公式: 例如,钢管和铸铁管的Shevlev公式为:过渡粗糙区(V<1.2m/s):λ=(0.0179/D^0.3)*(1+0.867/V)^0.3;阻力平方面积(V>=1.2m/s):λ=0.21/D^0.3 摩擦阻力:流体流经一定直径的直管时,由于流体的内摩擦而产生阻力。电阻与距离的长度成正比。 简介

在计算管道沿程阻力损失(直管阻力)的公式中,λ-摩擦系数与雷诺数Re和壁面粗糙度ε有关,可以通过实验测量或计算。 层流 如何确定一个通道的阻力系数 对于层流,可以从理论上严格推断。 在工程中,湍流的确定有两种方法:一种是基于湍流半经验理论结合实验结果,另一种是直接根据实验结果综合阻力系数的经验公式。前者具有更一般的含义。 沿途阻力系数变化规律3-8计算沿途水头损失的经验公式3-3--8沿途水头损失的经验公式3-9局部水头损失3-9局部水头损失3-7沿程阻力系数的变化规律可从本章各节中了解。对于层流,沿程阻力系数的规律是已知的。到目前为止,还没有一个沿程阻力系数的理论公式。为了探索沿程阻力系数的变化规律,尼古拉斯进行了一系列实验研究,揭示了沿途水头损失的规律。下面介绍这一重要的实验研究成果。1尼古拉斯试验条件。

3_流体流动时摩擦阻力系数的测定

生物系统传输过程实验报告 实验报告 课程名称:生物系统传输过程实验 指导老师:叶章颖 成绩:______ 实验名称:流体流动时摩擦阻力系数的测定 实验类型:__探究型实验__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 一、实验目的 测定流体流动时的沿程阻力系数和局部阻力系数及不同流型下直管沿程阻力系数λ随雷诺数Re 的变化关系。掌握流量压强的测量方法。 二、实验装置 1.实验设备的基本情况 实验流程示意图见图1。 水泵2将储水槽1中的水抽出,送入实验系统,首先经玻璃转子流量计15、16测量流量,然后送入被测直管段测量流体在光滑管或粗糙管的流动阻力,或经10测量局部阻力后回到储水槽,水循环使用。被测直管段流体流动阻力△p 可根据其数值大小分别采用变送器12或空气-水倒置∪型管22来测量。 图1 流动阻力实验流程示意图 1-水箱;2-离心泵;3、4-放水阀;5、13-缓冲罐;6-局部阻力近端测压阀;7、15-局部阻力远端测压阀;8、20-粗糙管测压回水阀;9、19-光滑管测压回水阀;10-局部阻力管阀;11-U 型管进水阀;12-压力传感器;14-流量调节阀; 15、16-水转子流量计;17-光滑管阀;18-粗糙管阀; 21-倒置U 型管放空阀;22-倒置U 型管;23-水箱放水阀;24-放水阀; 专业:生物系统工程 姓名:邵建智 学号:3110100122 日期:2013.9.30 地点: 院楼D228

2.设备的主要技术数据 (1) 被测光滑直管段: 管径d —0.008m ; 管长L —1.69m ; 材料—不锈钢管 被测粗糙直管段: 管径 d —0.010m ; 管长L —1.69m ; 材料—不锈钢管 (2)被测局部阻力直管段: 管径 d —0.015m ;管长 L —1.2m ; 材料—不锈钢管 (3)压力传感器: 型号:LXWY 测量范围: 200 KPa (4)直流数字电压表: 测量范围: 0 ~ 200 KPa (5)离心泵: 型号: WB70/055 流量: 8(m 3/h) 扬程: 12(m) 电机功率: 550(W) (6)玻璃转子流量计: 型号 测量范围 精度 LZB —40 100~1000(L /h) 1.5 LZB —10 10~100(L /h) 2.5 3.实验设备的功能与特点 本实验装置可用于实验教学和科研。利用该实验装置,可学习和掌握光滑直管、粗糙直管的阻力系数与雷诺准数的测量方法;也可学习局部阻力的测量方法;学习几种压差测量方法;加深对流体流动阻力概念的理解。 本实验装置的特点: ⑴ 本实验装置数据稳定,重现性好,能给实验者明确的流体流动阻力概念。 ⑵ 雷诺准数的数据范围宽,可作出102~104三个数量级。能够测量出光滑管、粗糙管的阻力系数与雷诺准数的关系,同时也可以测量阀门局部阻力。 ⑶ 实验采用循环水系统,节约实验费用。 ⑷ 测量系统采用量程不同的两种流量计和压差测量仪表,测量精度较高。 ⑸ 采用压力传感器—数字表系统,测量大流量下的流体流动阻力, 实验数据稳定可靠。 三、实验原理 1. 直管摩擦系数λ与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: g P g P P h f f ρρ?=-=21 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) g u d l h g P f f 22λρ== ? (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3)

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

沿程阻力简便计算

第六章 流动阻力和水头损失 学习要点:熟练地掌握水头损失的分类和计算、层流与紊流的判别及其流速分布规律;掌握流动阻力的分区划分、各个分区沿程水头损失系数的影响因素,了解紊流脉动现象及其切应力的特征、人工加糙管道与工业管道实验结果的异同、沿程水头损失系数计算的经验公式、几种特殊的管路附件的局部水头损失系数等。 实际流体具有粘性,在通道流动时,流体部流层之间存在相对运动和流动阻力。流动阻力做功,使流体的一部分机械能不可逆地转化为热能而散发,从流体具有的机械能来看是一种损失。总流单位重量流体的平均机械能损失称为水头损失,只有解决了水头损失的计算问题, 第四章得到的伯努利方程式才能真正用于解决实际工程问题。 第一节 水头损失及其分类 流动阻力和水头损失的规律,因流体的流动状态和流动的边界条件而异,故应对流动阻力的水头损失进行分类研究。 一、水头损失分类 流体在流动的过程中,在流动的方向、壁面的粗糙程度、过流断面的形状和尺寸均不变的均匀流段上产生的流动阻力称之为沿程阻力,或称为摩擦阻力。沿程阻力的影响造成流体流动过程中能量的损失或水头损失(习惯上用单位重量流体的损失表示)。沿程阻力均匀地分布在整个均匀流段上,与管段的长度成正比,一般用f h 表示。 另一类阻力是发生在流动边界有急变的流场中,能量的损失主要集中在该流场及附近流场,这种集中发生的能量损失或阻力称为局部阻力或局部损失,由局部阻力造成的水头损失称为局部水头损失。通常在管道的进出口、变截面管道、管道的连接处等部位,都会发生局部水头损失,一般用j h 表示。 如图6—1所示的管道流动,其中,ab ,bc 和cd 各段只有沿程阻力,ab f h 、bc f h 、cd f h 是 各段的沿程水头损失,管道入口、管截面突变 及阀门处产生的局部水头损失,a j h 、b j h 、和c j h 是各处的局部水头损失。整个管道的水头损 失w h 等于各段的沿程损失和各处的局部损失的总和。 c b a c d bc ab j j j f f f j f w h h h h h h h h h +++++=+=∑∑ 二、水头损失的计算公式 1.沿程阻力损失 图6—1 水头损失

通风摩擦阻力系数

中华人民共和国煤炭工业部 矿井通风巷道摩擦阻力系数(a标)表 (试行) 主编部门:沈阳煤矿设计研究院 批准部门:煤炭工业部规划设计总院 试行日期:1985年1月1日 整理: 校核: 二ΟΟ三年一月

说明 1.井巷道通风摩擦阻力系数表,是我国自行实测的矿井巷道通风阻力系数,(除锚喷支护外其它各种支护巷道系验证测定)于1983年3月由煤炭工业部设计管理局主持召开了鉴定会,本表系根据鉴定会纪要精神,进行修改后,汇编而成。 2.表中摩擦阻力系数a标是标准状态下(t=20℃,P=760mmHg,ψ=60%)空气重率r=1.2kg ?/m3时的a值。 3.巷道类别划分原则,以支护特征、巷道壁面特征、巷道装备等与摩擦阻力系数相关的影响因素分类,不以巷道使用名称和进、回风道等分类。 4.表中凡是平巷的皆包含无行人台阶的倾斜巷道,凡是斜巷皆指设有行人台阶而言,通风行人巷为不铺轨的巷道,胶带输送机巷均铺设一条单轨轨道。 5.无轨道的锚喷胶带输送机巷道的a值,未能实测,暂可参照锚喷通风行人巷(无轨道、台阶)的a值与胶带机的附加a值综合选取。即光爆凸凹度<150mm,a=(10.9~17.6)×10-4;普爆凸凹度>150mm,a=(11.6~19.9)×10-4。 6.光面爆破与壁面凸凹度划分的标准以煤炭部制订的“煤矿井巷工程光面爆破、锚杆、喷浆、喷射混凝土支护施工试行规程”为准,普通爆破系指采用光面爆破的煤矿一般常用的爆破方法。 7.巷道壁面平滑与粗糙的划分标准,以粗糙度的平均突起高度为准。混凝土井巷壁面,壁面平滑的粗糙度平均突起高度为0.00025m,壁面粗糙的粗糙度平均突起高度为0.0007m,为测量和选取方便,将壁面经过抹光或粉刷的视为壁面平滑,壁面未经过抹光或未粉刷的视为壁面粗糙。 8.系数值的来源依据,除已注明资料出处之外的实测值,均可查找本资料的附件部分,以便于选取系数值时参考现场条件。 9.本表所给出的a值,应用时需要乘以10-4,并不需再考虑装有设备、台阶和工作面采煤机的a附加值。 10.经实测、资料统计提供各类的a附加值:装有胶带输送机的巷道,a附加值(4~10)×10-4;没有行人台阶的巷道,a附加值(1~3)×10-4;巷道堵塞较严重时,a附加值(3~10)×10-4;弯曲的巷道,a附加值(2~5)×10-4;巷道断面局部变化(单、双轨)a附加值3×10-4;铺轨无道渣填充的平巷a附加值(1~3)×10-4;工作面采煤机的a附加值(6~9)×10-4. 11.1mmH2O=9.80665Pa h摩=(a×L×U/S3)×Q2 =R×Q2

沿程阻力系数测定-实验报告

沿程水头损失实验 实验人 XXX 合作者 XXX XX 年XX 月XX 日 一、实验目的 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制lgh f ~-lg v 曲线; 2.掌握管道沿程阻力系数的量测技术和应用压差计的方法; 3.将测得的R e -λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验设备 本装置有下水箱、自循环水泵、[供水阀、稳压筒、实验管道、流量调节阀]三组,计量水箱、回水管、压差计等组成。实验时接通电源水泵启动,全开供水阀,逐次开大流量调节阀,每次调节流量时,均需稳定2-3分钟,流量越小,稳定时间越长;测流量时间不小于8-10秒;测流量的同时,需测记压差计、温度计[自备,应挂在水箱中]读数。三根实验管道管径不同,应分别作实验。 三、实验原理 由达西公式g v d L h r 22 ??=λ 得2 22422?? ? ??==d Q L gdh Lv gdh f f πλ=K ×h f /Q 2 另有能量方程对水平等直径圆管可得γ 2 1P P h f -= 对于多管式水银压差有下列关系 h f =(P 1-P 2)/γw =(γm /γw -1)(h 2-h 1+h 4-h 3)=12.6△h m Δh m = h 2-h 1+h 4-h 3 h f —mmH 2O 四、实验结果与分析 实验中,我们测量了三根管的沿程阻力系数,三根管的直径分别为10mm ,14mm ,20mm 。对每根管进行测量时,我们通过改变水的流速,在相距80cm 的两点处分别测量对应的压强。

得到表1至表3中的实验结果。 相关数据说明: 水温29.4℃,对应的动力学粘度系数为2 0.01/cm s ν= 流量通过水从管中流入盛水箱的体积和时间确定。水箱底面积为2 202 0S cm =?,记录水箱液面升高12h cm =(从5cm 到17cm 或者从6cm 到18cm )的时间t ,从而计算出流量 34800(/)() Sh Q cm s t t s = =; 若管道直径为D ,则水流速度为2 4Q v D π= ; 对三根管进行测量时,测量的两点之间距离均为80L cm =; 雷诺数Re vD ν = ;计算沿程阻力系数:层流164Re λ= ;紊流0.25 20.316R e λ-= 测量沿程阻力系数:2/f Kh Q λ=,其中25K /8gD L π=,29.8/g m s = 第一根管 表-1(52 1110,15.113/D mm K cm s ==)

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计 算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为:

(6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正

沿程阻力的实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验七、沿程阻力实验 一、实验目的 1.掌握测定镀锌铁管管道沿程阻力系数的方法。 2.在双对数坐标纸上绘制λ-Re关系曲线。 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力试验管路 图7-1 管流综合实验装置流程图

三、实验原理 本实验所用的管路水平放置且等直径,因此利用能量方程可以推导出管路两点间的沿程水力损失计算公式为: g v D L H f 22 ? =λ (1-7-1) 式中 λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失(由压差计测定),m 。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 22v h L D g f ?=λ (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,在紊流时与雷诺数、管壁粗糙度都有关。 当实验管路粗糙度保持不变时,可以得到该管的λ-Re 关系曲线。 四、实验要求 1.有关常数 实验装置编号:No. 4 管路直径:D =21058.1-?m ;水的温度:T = 20.0 ℃; 水的密度:ρ= 998.23 kg/m 3;动力粘度系数:μ= 101.055-3? Pa ?s ; 运动粘度系数:ν=610007.1-? m 2/s ; 两测点之间的距离:L = 5 m 2.实验数据记录及处理见表7-1和表7-2

沿程水头损失计算表

DN8DN10DN15DN20DN25DN32DN40DN50DN65DN80 DN100DN125DN150DN200DN250DN300DN350DN400DN500DN600DN700DN800DN900DN100 912.515.7521.252735.7541536880.5106131156207259311363410513614702800898998 0.10.82240.53660.39730.26920.19720.13690.11460.0820.05930.04770.03330.02530.02020.0140.01040.00820.00670.00570.00430.00340.00290.00240.00210.00180.2 2.7522 1.7956 1.32960.90080.65980.45810.38330.27460.19860.15950.11150.08470.06750.04670.03490.02750.02250.01920.01440.01140.00950.00810.00690.0060.3 5.6326 3.6748 2.7212 1.8436 1.35040.93750.78450.56190.40640.3264 0.22820.17330.13810.09560.07140.05630.04610.0393 0.02940.02330.01950.01650.01420.01240.49.4149 6.1425 4.5485 3.0815 2.2571 1.567 1.31130.93920.67930.54550.38140.28970.23080.15980.11940.09410.0770.06570.04910.03890.03270.02760.02370.02070.514.0759.1831 6.8 4.6069 3.3744 2.3427 1.9604 1.4042 1.01560.81550.57030.4330.34510.23890.17850.14070.11510.09830.07340.05810.04880.04120.03550.03090.619.612.7889.4693 6.4153 4.699 3.2623 2.73 1.9553 1.4142 1.1357 0.79410.6030.48050.33270.24860.1960.16030.1368 0.1022 0.08090.0680.05740.04940.043 0.725.98216.95112.5528.5038 6.2289 4.3244 3.6188 2.5919 1.8747 1.5054 1.05270.79930.6370.4410.32950.25980.21250.18140.13550.10730.09010.07610.06550.05710.833.21321.66916.04610.8717.9626 5.528 4.626 3.3134 2.3964 1.9244 1.3456 1.02180.81430.56370.42120.33210.27160.23190.17330.13720.11520.09720.08370.07290.941.29226.9419.94913.5159.8993 6.8726 5.7512 4.1193 2.9793 2.3925 1.6729 1.2704 1.01230.70080.52370.41280.33770.28820.21540.17050.14330.12090.1040.0907150.21432.76124.25916.43512.0388.3576 6.9939 5.0093 3.6231 2.9094 2.0344 1.5448 1.23110.85230.63690.50210.41060.35050.26190.20740.17420.1470.12650.11031.159.97839.13128.97619.63114.3799.98268.3538 5.9834 4.3276 3.4751 2.43 1.8452 1.4704 1.0180.76070.59970.49050.41870.31290.24770.20810.17560.15110.13171.270.34545.89533.98523.02416.86411.7089.79787.0176 5.0756 4.0758 2.85 2.1642 1.7246 1.19390.89220.70330.57530.49110.36690.29050.24410.20590.17720.15451.382.55753.86339.88527.02119.79213.74111.4998.2359 5.9567 4.7834 3.3448 2.5399 2.024 1.4012 1.04710.82540.67510.57630.43060.34090.28640.24170.2080.18131.495.74762.46846.25731.33822.95415.93613.3369.5517 6.9084 5.5476 3.8792 2.9457 2.3474 1.6251 1.21440.95730.7830.66840.49940.39540.33220.28030.24120.21031.5109.9171.71153.10135.97526.35118.29415.30910.9657.9306 6.3684 4.4532 3.3815 2.6947 1.8655 1.394 1.09890.89890.76730.57330.45390.38140.32180.27690.24141.6125.0681.59160.41740.93129.98120.81417.41812.4769.02327.2458 5.0667 3.8474 3.0659 2.1226 1.5861 1.2504 1.02270.8730.65230.51640.43390.36610.3150.27461.7141.1892.10868.20546.20833.84623.49819.66414.08410.1868.1799 5.7198 4.3434 3.4611 2.3962 1.7906 1.4115 1.15450.98550.73640.5830.48980.41330.35560.311.8158.28103.2676.46551.80437.94526.34322.04515.7911.429.1705 6.4126 4.8694 3.8803 2.6864 2.0074 1.5825 1.2943 1.10490.82560.65360.54910.46340.39870.34761.9176.35115.0685.19757.7242.27829.35224.56217.59312.72410.2187.1449 5.4255 4.3234 2.9932 2.2367 1.7632 1.4422 1.2310.91990.72820.61190.51630.44430.38732 195.4 127.49 94.402 63.955 46.846 32.523 27.216 19.493 14.099 11.322 7.9167 6.0116 4.7905 3.3165 2.4783 1.9537 1.598 1.364 1.01930.8069 0.678 0.572 0.4922 0.4291 2.1215.43140.55104.0870.51151.64835.85630.00621.49115.54412.4828.7282 6.6278 5.2815 3.6565 2.7323 2.1539 1.7617 1.5038 1.12380.88960.74750.63070.54270.47312.2236.4415 4.26114.2377.38656.68339.35232.93123.58717.0613.6999.57937.2741 5.7965 4.013 2.9987 2.364 1.9335 1.6505 1.23330.97640.82030.69220.59560.51922.3258.42168.6124.8584.58161.95443.01135.99325.7818.64614.97310.477.9504 6.3355 4.3861 3.2776 2.5838 2.1133 1.8039 1.348 1.06710.89660.75650.6510.56752.4281.38183.58135.9492.0966 7.45846.83339.1912 8.0720.30216.30311.48.6567 6.8983 4.7758 3.5688 2.8133 2.3011 1.9642 1.4678 1.16190.97630.82370.70880.61792.5305.3219 9.2147.599.9373.19750.81742.52530.45822.02917.6912.379.39317.4852 5.1821 3.8723 3.0526 2.4968 2.1313 1.5926 1.2608 1.05930.89380.76910.6705 2.6 330.23215.45159.54108.0879.16954.96345.99532.94423.82719.13413.379 10.16 8.096 5.6049 4.1883 3.3017 2.7005 2.3052 1.7226 1.3637 1.14580.96670.83190.7252 2.7356.12232.34172.05116.5685.37759.27249.60135.52725.69520.63414.42810.9568.7307 6.0444 4.5167 3.5606 2.9123 2.4859 1.8576 1.4706 1.2356 1.04250.89710.78212.8382.99249.87185.03125.3591.81863.74453.34338.20727.63422.1915.51711.7839.3894 6.5004 4.8575 3.8292 3.132 2.6735 1.9978 1.5815 1.3288 1.12120.96480.84112.9410.83268.04198.48134.4798.49368.37957.22240.98529.64323.80416.64512.63910.072 6.973 5.2106 4.1076 3.3597 2.8679 2.143 1.6965 1.4254 1.2027 1.0350.90223439.6528 6.84212.4143.9105.473.17661.23643.8631.72225.4741 7.81313.52610.7797.4622 5.5762 4.3958 3.5954 3.0691 2.2934 1.8155 1.5254 1.2871 1.10760.96553.1469.45306.28226.8153.65112.557 8.13565.38746.83333.87227.21 9.0214.44311.5097.9679 5.9541 4.6937 3.8391 3.2771 2.4488 1.9386 1.6288 1.3743 1.1826 1.03093.2500.23326.36241.67163.73119.9383.25869.67349.90336.09328.98320.26715.3912.2648.4903 6.3445 5.0014 4.0908 3.4919 2.6093 2.0657 1.7356 1.4644 1.2602 1.09853.3531.98347.08257.01174.12127.5488.54374.09653.0738.38430.82321.55316.36713.0429.0292 6.7472 5.3189 4.3504 3.7136 2.775 2.1968 1.8458 1.5574 1.3401 1.16833.4564.71368.43272.82184.83135.3893.9978.65456.33640.74632.7222.87917.37413.8459.58477.1623 5.6462 4.6181 3.9421 2.9457 2.332 1.9593 1.6532 1.4226 1.24013.5598.42390.42289.1195.86143.4799.683.34959.69843.17834.67324.24518.41114.67110.1577.5898 5.9832 4.8937 4.1773 3.1215 2.4712 2.0763 1.7519 1.5075 1.3142 沿程水头损失计算表 流速 管径

摩擦系数及其计算

达芬奇1508年提出假设,摩擦系数一般为0.25 阿芒汤1699年,摩擦系数0.3 比尤里芬格1730年,摩擦系数0.3 库伦,十八世纪,确定压力对摩擦系数的影响,并求出几种材料配合的摩擦系数的不同数值。 俄国,科捷利尼科夫、彼得罗夫,十九世纪中叶,摩擦偶件的摩擦系数并非不变摩擦系数影响因素: 1材料本性及摩擦表面是否有膜(润滑油、氧化物、污垢) 2静止接触的延续时间 3施加载荷的速度 4摩擦组合件的刚度及弹性 5滑动速度 6摩擦组合件的温度状态 7压力 8物体的接触特性,表面尺寸,重叠系数 9表面质量及粗糙度 A Static Friction Model for Elastic—Plastic Contacting Rough Surfaces. 形状误差对过盈联接摩擦力的影响分析及其修正 摩擦分类: 1动摩擦力,对应于很大的、不可逆的相对位移,相对位移大小与外施力无关。2非全静摩擦力,对应于很小的、局部可逆的相对位移,位移大小与外施力成正比,称为初位移,微米级。 3全静摩擦力,对应于初位移的极限值,初位移转变成相对位移。 根据运动学特征划分 滑动摩擦、旋转摩擦(变相的滑动摩擦)、滚动摩擦 根据表面状态,是否润滑的特征 1纯净摩擦,无吸附膜、氧化物等 2干摩擦,表面间无润滑油、污垢等 3边界摩擦,表面被一层润滑油分开,润滑油极薄(<0.1微米) 4液体摩擦 5半干摩擦 6半液体摩擦 静摩擦系数,克服两物体的接触耦合、使之摆脱静止状态所耗费的最大切向力对应接触物体所受压力载荷的比率。 滑动摩擦系数,克服两物体相对移动的阻力(超出初位移的范围以外)所耗费的切向力对应接触物体所受压力载荷的比率。 滚动阻力系数,··· 库伦方程,采用的滚动摩擦系数 T——滚动摩擦力,r——圆柱体的半径,P——接触物体所受压力 接触面积、粗糙度、载荷的影响 由于固体表面的粗糙度及波纹度,使得两个固体表面总是在个别的点上发生接触。

管道沿程损失实验(总)

实验三 管道沿程损失实验 实验类型:验证性实验 学 时: 2 适用对象:热能与动力工程专业、建筑环境与设备工程专业、环境工程专业、测控技术与仪器专业 一、实验目的 1、通过实验理解和掌握管道沿程损失的计算方法; 2、了解沿程损失的影响因素。 二、实验要求 1、掌握管道沿程损失系数与雷诺数和管壁相对粗糙度间的定性和定量关系; 2、学会用三角堰测量流量的方法和波纹管差压计的使用方法。 三、实验原理 1、沿程损失的表达式 流体沿等直径管道流动时,将产生沿程损失f h ,f h 与管长L 、管内径d 、管壁当量粗糙度?、平均流速υ、流体密度ρ、动力粘度μ及流态间存在一个复杂的函数关系。 根据相似原理分析,f h 可表示如下: 2f Re,2L h f d d g υ?? ?= ??? 令 Re, f d λ?? ?= ??? 则 g d L h 22 f υλ= (3-1) 式中 λ——沿程损失系数。 2、沿程损失的测量原理 沿程损失f h 由实验方法求得。在水平实验管道的两个测点处,取I-I 和II-II 两个缓变流截面,以管道中心线为基准面,则管内不可压缩定常流动在两缓变流面间的伯努利方程为: f 2 2 22211122h g g p z g g p z +++=++ υρυρ (3-2) 由于管道水平放置,故上式中,z 1=z 2;同时因实验管道为等直径圆管,所以有g g 222 2 2 1υυ= 。 因此,式(3-2)可改写为: g p p h ρ2 1f -= (3-3)

式中 ()12p p -——两缓变流截面间的压强差(Pa ),由波纹管差压计测得。 实验管道内的平均流速υ由三角堰所测流量及管道内径计算求得: 2 4πV q d υ= (3-4) 实验管道两测点间的长度L 和管道内径d 均已知,因此,可求出该管道在某一工况下 的沿程损失系数: 2 f 2υ λL gdh = (3-5) 通过调节实验管道上流量调节阀的开度可改变管道内流体的平均流速υ,从而可测得不同Re 数下的沿程损失系数。 3、沿程损失的变化规律 沿程损失f h 服从以下四种不同的规律: (1)层流区 沿程损失f h 与平均流速成一次方关系,λ可按下式计算: Re 64 = λ , 2300Re < (3-6) (2)紊流水力光滑管区 沿程损失f h 与平均流速的1.75次方成正比,λ可按下面的经验公式计算: 25 .03164.0Re = λ ,5 400010Re << (3-7) 0.237 0.2210.0032Re λ=+ ,56 10310Re <

沿程阻力系数表

沿管道的阻力系数可以在模型图中找到,即λ,re和K / D的关系曲线,通常在液压系统中可用。K是管内壁的绝对粗糙度。 沿管道的水头损失的计算:H =λ(L / D)[v ^ 2 /(2G)] 对于管道层流:λ= 64 / re(雷诺数Re = VD /ν) 对于圆管的粗过渡区:1 /√(λ)=-2 * LG [K /(3.7d)+ 2.51 / re√(λ)] 对于圆管的湍流粗糙区域:1 /√(λ)=-2 * LG [K /(3.7d)]也可以用作λ= 0.11(K / D)^ 0.25 也有许多经验公式: 例如,钢管和铸铁管的舍夫列夫公式为:过渡粗糙区(V <1.2m / s):λ=(0.0179 / D ^ 0.3)*(1 + 0.867 / V)^ 0.3;电阻平方面积(V> = 1.2m / s):λ= 0.21 / D ^ 0.3摩擦阻力:当流体流过一定直径的直管时,由于流体的内摩擦而产生阻力。电阻与距离的长度成正比。 简单的介绍

在用于计算沿管道的电阻损耗(直管电阻)的公式中,λ-摩擦系数与雷诺数Re和壁粗糙度ε有关,可以通过实验测量或计算。 层流 一路电阻系数的确定方法 对于层流,可以严格从理论推论得出。 在工程中,湍流是通过以下两种方式确定的:一种是基于湍流的半经验理论并结合实验结果,另一种是直接基于实验结果来合成阻力系数的经验公式。前者具有更普遍的意义。 沿程阻力系数的变化规律3-8 计算沿程水头损失的经验公式3 3--8 8 计算沿程水头损失的经验公式3-9 局部水头损失3 3--9 9 局部水头损失3-7 沿程阻力系数的变化规律由本章各节可知,沿程阻力系数的规律,除了层流已知外,对于紊流到目前为止,尚没有沿程阻力系数的理论公式。尼古拉孜为了探求沿程阻力系数的规律,进行了一系列试验研究,揭示了沿程水头损失的规律。下面介绍这一重要的试验研究成果。

摩擦系数及其计算

精心整理达芬奇1508年提出假设,摩擦系数一般为0.25 阿芒汤1699年,摩擦系数0.3 比尤里芬格1730年,摩擦系数0.3 库伦,十八世纪,确定压力对摩擦系数的影响,并求出几种材料配合的摩擦系数的不同数值。 俄国,科捷利尼科夫、彼得罗夫,十九世纪中叶,摩擦偶件的摩擦系数并非不变 摩擦系数影响因素: 1材料本性及摩擦表面是否有膜(润滑油、氧化物、污垢) 2静止接触的延续时间 3施加载荷的速度 4 5 6 7压力 8 9 1 2 3 1 2 3 4 5 6 滑动摩擦系数,克服两物体相对移动的阻力(超出初位移的范围以外)所耗费的切向力对应接触物体所受压力载荷的比率。 滚动阻力系数,··· 库伦方程,采用的滚动摩擦系数 T——滚动摩擦力,r——圆柱体的半径,P——接触物体所受压力 接触面积、粗糙度、载荷的影响 由于固体表面的粗糙度及波纹度,使得两个固体表面总是在个别的点上发生接触。 两个相互叠合的表面只是在其某些凸部发生接触,而这些凸部的总接触面积只占接触轮廓所限定的总表面面积的极小部分。随着压力增大,接触面积增大。凸部的直径几分之一微米至30~50微米(高度小于80微米)。

载荷增大,各点的直径增大,随后面积的增大主要是由于接触点数目的增多。 名义(几何)接触面积——由接触物体的外部尺寸描绘出来. 轮廓接触面积——由物体的体积压皱所形成的面积;真实面积即轮廓接触面上;轮廓接触面积与压力载荷有关。 真实(物理)接触面积——物体接触的真实微小面积总和,也是压力载荷的函数,并且在名义面积尺寸的1/100000至1/10的范围内变化,由接触表面的机械性能及粗糙度而定。 接触点的总数目及每一个接触点的尺寸随着载荷的增大而增大,但当载荷继续增大时,接触面积的增大主要是依靠接触点的数目的增加,尺寸几乎不再变化。 对于粗糙表面来说,需要耗费更大的力,使凸部变形,从而获得一定的接触面积;光滑表面,凸部变形不大时,就能获得很大的接触面积(试验知,光滑表面的接触点上的应力约为材料硬度的一半,粗糙表面的接触点应力为硬度的2-3倍)。 L a =δ=若认为第三个量度中所有凸部具有相同的截面轮廓,则lb S ?=,b ——被研究表面的宽度。但若凸部具有球形,则单个接触面积相应的等于2l π?。若认为接触点具有相同的半径,则2S r n ?π=。 为得出真实面积,除总宽度外,必须有个别点的半径方面的数据, 在第一种和第二种情况下,真实接触面积与互相接近程度成正比。 令()S x ??=,当0x =,()P x S ?=;当x h =,()0x ?=。 S P ——轮廓投影图的基础面积,称为计算接触面积,但x ——棒的高度,相对于经过最短的棒 的零位截面而言的。 令棒上的单位载荷q 为绝度压缩(x-a )的函数,即

管路沿程阻力系数测定实验

实验二 管路沿程阻力系数测定实验 一、实验目的 1、掌握流体流经管道时沿程阻力损失的测定方法。 2、测定流体经过直管时的沿程阻力,确定沿程阻力 λ 与 Re 的关系。 3、学会压差计和流量计的使用。 二、实验成果及要求 1. 有关常数。 实验装置台号 圆管直径d1=15cm, d2=20cm, d3=25cm ,量测段长度L=85cm 。及 计算(见表1)。 2.绘图分析* 绘制lg υ~lgh f 曲线,并确定指数关系值m 的大小。在厘米纸上以lg υ为横坐标,以lgh f 为纵坐标,点绘所测的lg υ~lgh f 关系曲线,根据具体情况连成一段或几段直线。求厘米纸上直线的斜率 2 212lg lg lg lg υυ--= f f h h m 将从图上求得的m 值与已知各流区的m 值(即层流m=1,光滑管流区m=1.75,粗糙管紊流区m=2.0,紊流过渡区1.75

表1 记录及计算表

图1 λ与 Re 的关系图

三、实验分析与讨论 1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影响实验成果? 答:在管道中的,水头损失直接反应于水头压力。测力水头两端压差就等于水头损失。如果管道倾斜安装,不影响实验结果。但压差计应垂直,如果在特殊情况下无法垂直,可乘以倾斜角度转化值。 2.据实测m 值判别本实验的流动型态和流区。 答:f h lg ~v lg 曲线的斜率m=1.0~1.8,即f h 与8.10.1-v 成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。 3.本次实验结果与莫迪图吻合与否?试分析其原因。 答:钢管的当量粗糙度一般为0.2mm ,常温下,s cm /01.02=ν,经济流速 s cm /300,若实用管径D=(20~100)cm ,其5106?=e R ~6103?,相应的 d ? =0.0002~0.001,由莫迪图可知,流动均处在过渡区。 若需达到阻力平方区,那么相应的610=e R ~6109?,流速应达到(5~9)m/s 。这样高速的有压管流在实际工程中非常少见。而泄洪洞的当量粗糙度可达(1~9)mm ,洞径一般为(2~3)m ,过流速往往在(5~10)m/s 以上,其e R 大于710,故一般均处于阻力平方区。

相关文档
最新文档