垂径定理题型分析

垂径定理题型分析
垂径定理题型分析

垂径定理题型分析

垂径定理:

垂径定理五条件,一个垂直三平分;一条直线过圆心,知二明三把理明;平分弦时要谨慎,此弦不可为直径;两条直径都平分,哪能啥时都垂直.

解题规律:见弦常作弦心距,连接半径用勾股

题型一:求弦长

1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( )

A .4

B .6

C .7

D .

8

2.在半径为12 cm 的圆中,垂直平分半径的弦的长为( )cm

A 、33

B 、27

C 、123

D 、63

3.已知AB 是⊙O 的弦,O C ⊥A B ,C 为垂足,若OA=2, O C=1

则AB 的长为( )

A 、5

B 、25

C 、3 、23

4.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 O

图 4E

D C B A

5.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.

6.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,

且CD =l ,则弦AB

的长是

P B

A O D

O B

C A 7题

7.如图,直径是50cm 圆柱形油槽装入油后,油深CD 为15cm ,求油面宽度AB

题型二:求半径(直径)

1.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( )

A .23cm

B .32cm

C .42cm

D .43cm

2.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个

隧道所在圆的半径OA 是___________米

3.如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。已知:AB=24cm ,CD=8cm

(1)求作此残片所在的圆(不写作法,保留作图痕迹);

(2)求(1)中所作圆的半径.

A C D B

4.1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)

O

D A

B C

题型三:求弦心距

1.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( )

A .2

B .3

C .4

D .

5

2.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( )

A .9cm

B .6cm

C .3cm

D .cm 41

3.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm

4.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于

5.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm 题型四:求拱高

1.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为

( )

A .5米

B .8米

C .7米

D .53米

2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m

3.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB 为0.6米.

(1)求此时的水深(即阴影部分的弓形高);

(2)当水位上升到水面宽为0.8米时,求水面上升的高度.

题型五:求两平行线间距离

.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A B O

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

二项式定理知识点及典型题型总结

、基本知识点 n On 1n 1. 1 rnrr nn, 1、二项式疋理:(a b) Ca 6a b C.a b C n b (n N ) 2、几个基本概念 (1)二项展开式:右边的多项式叫做(a b)n的二项展开式 (2)项数:二项展开式中共有n 1项 (3)二项式系数:C n (r 0,1,2, ,n)叫做二项展开式中第r 1项的二项式系数 (4)通项:展开式的第r 1项,即T r 1 C;a n r b r (r 0,1, ,n) 3、展开式的特点 (1) 系数都是组合数,依次为c,,c:,c n,…,c n (2) 指数的特点①a的指数由厂0(降幕)。 ②b的指数由0 * n (升幕)。 ③a和b的指数和为n。 (3) 展开式是一个恒等式,a, b可取任意的复数,n为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等?即C m c:m (2)增减性与最值 二项式系数先增后减且在中间取得最大值 n 当n是偶数时,中间一项取得最大值c n2 n 1 n 1 当n是奇数时,中间两项相等且同时取得最大值=CF 二项式定理 c0 c1 c2 (3)二项式系数的和:Cn Cn Cn Cn C:奇数项的二项式系数的和等于偶数项的二项式系数和2n 即C0+Cn+L W + L =2n-1

二项式定理的常见题型 一、求二项展开式 1?“ (a b)n”型的展开式 例1?求(3 . x1 )4的展开式;a J x 2. “(a b)n”型的展开式 —1 例2?求)4的展开式; J V 3?二项式展开式的“逆用” 例3?计算 1 3C:9C2 27 C3 .... ( 1)勺匕:; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知(£.. X)9的展开式中x3的系数为9,常数a的值为_______________ x \ 2 4 2.确定二项展开式的常数项 例5. (-x 31 )10展开式中的常数项是_________________ 3' X

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结 知识点精讲 一、二项式定理 ()n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100+?++?++=+--( )* N n ∈. 展开式具有以下特点: (1)项数:共1+n 项. (2)二项式系数:依次为组合数n n n n n C C C C ,?,,,2 1 . (3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地, ()n n n n n n x C x C x C x +?+++=+22111. 二、二项式展开式的通项(第1+r 项) 二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ?=.其中r n C 的二项式系数.令变量(常用x )取1, 可得1+r T 的系数. 注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r r n r n b a C -是第1+r 项,而不是第r 项; ②在通项公式r r n r n r b a C T -+=1中,含n r b a C T r n r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的 情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指n n n n n C C C C ,?,,,2 1 而言,不包括字母b a ,所表示的式子中的系数.例如: ()n x +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而r x 的系数应该是 r n r n C -2(即含r x 项的系数). (2)二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即 22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=. ②二项展开式中间项的二项式系数最大. 如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2 最大;如果二项式的幂指数n 是奇数,中间项有两项,即为第21+n 项和第 12 1 ++n 项,它们的二项式系数21-n n C 和21 +n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和 011+12n n n n n n C C C ++?+==() .

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n ΛΛ 2、几个基本概念 (1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项 (3)二项式系数:),,2,1,0(n r C r n Λ=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r Λ==-+ 3、展开式的特点 (1)系数 都是组合数,依次为C 1n ,C 2n ,C n n ,…,C n n (2)指数的特点①a 的指数 由n 0( 降幂)。 ②b 的指数由0 n (升幂)。 ③a 和b 的指数和为n 。 (3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C (3)二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和.即 m n n m n C C -=n n n k n n n n C C C C C 2 210=+???++???+++∴L L 0213n-1 n n n n C +C +=C +C +=2

二项式定理的常见题型 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式;a 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式; 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2(x x a -的展开式中3x 的系数为4 9 ,常数a 的值为 2.确定二项展开式的常数项

2020年高考理科数学 《二项式定理》题型归纳与训练及参考答案

2020年高考理科数学 《二项式定理》题型归纳与训练 【题型归纳】 题型一 二项式定理展开的特殊项 例 在二项式5 21??? ??-x x 的展开式中,含4x 的项的系数是( ) A .10- B .10 C .5- D .5 【答案】B 【解析】对于()()r r r r r r r x C x x C T 3105525111--+-=??? ??-=,对于2,4310=∴=-r r ,则4x 的项的系数是()101225=-C 【易错点】公式记错,计算错误。 【思维点拨】本题主要考查二项式定理的展开公式,知道什么是系数,会求每一项的系数. 题型二 求参数的值 例 若二项式n x x ??? ? ?+21的展开式中,第4项与第7项的二项式系数相等,则展开式6x 的系数为________.(用数字作答) 【答案】9 【解析】根据已知条件可得: 96363=+=?=n C C n n , 所以n x x ??? ? ?+21的展开式的通项为23999912121C r r r r r x C x x T --+??? ??=??? ??=,令26239=?=-r r ,所以所求系数为921292=??? ??C . 【易错点】分数指数幂的计算 【思维点拨】本题主要考查二项式定理的展开公式,并用其公式求参数的值. 题型三 展开项的系数和 例 已知()()()()10 102210101...111x a x a x a a x -++-+-+=+,则8a 等于( ) A .180- B .180 C .45 D .45- 【答案】B

【解析】由于()()[]1010121x x --=+,又()[]10 12x --的展开式的通项公式为: ()[]()()r r r r r r r r x C x C T -???-=--??=--+12112101010101,在展开式中8a 是()81x -的系数,所以应取8=r , ∴()1802128108 8=??-=C a . 【易错点】对二项式的整体理解 【思维点拨】本题主要对二项式定理展开式的综合考查,学会构建模型 题型四 二项式定理中的赋值 二项式()932y x -的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和. 【答案】(1)9 2 (2)-1 (3)2 159- 【解析】设()9927281909...32y a y x a y x a x a y x ++++=+ (1)二项式系数之和为9992919 092...=++++C C C C . (2)各项系数之和为()132 (9) 9210-=-=++++a a a a (3)由(2)知1...9210-=++++a a a a ,令1,1-==y x ,得992105...=++++a a a a ,将两式相加,得2 15986420-=++++a a a a a ,即为所有奇数项系数之和. 【思维点拨】本题主要学会赋值法求二项式系数和、系数和,难点在于赋值 【巩固训练】 题型一 二项式定理展开的特殊项 1.在 ()10 2-x 的展开式中,6x 的系数为( ) A .41016C B .41032C C .6108C - D .61016C - 【答案】A

高三复习:二项式定理-知识点、题型方法归纳

绵阳市开元中学高2014级高三复习 《二项式定理》 知识点、题型与方法归纳 制卷:王小凤 学生姓名:___________ 一.知识梳理 1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N * )这个公式所表示的定 理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式. 其中的系数 C r n (r =0,1,…,n )叫 二项式系数. 式中的C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n a n -r b r . 2.二项展开式形式上的特点 (1)项数为n +1. (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n . 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项 1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1 . 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理 二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项 式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) A.6 B.7 C.8 D.9 解:由条件得 C 5n 35=C 6n 36,∴ n ! 5!(n -5)! = n !6!(n -6)! ×3, ∴3(n -5)=6,n =7.故选B. 例2:(2014·大纲)? ????x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 解:? ????x y -y x 8展开式的通项公式为T r +1=C r 8? ????x y 8-r ? ????-y x r =()33842281r r r r C x y ---, 令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 4 8=70.故填70. 【题型二】求()()m n a b x y +++展开特定项 例1:在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74 B .121 C .-74 D .-121 解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 3 8(-1)3=-121. 【题型三】求()()m n a b x y +?+展开特定项 例1:(2013·全国课标卷Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A.-4 B.-3 C.-2 D.-1 解:(1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax · C 1 5x =10x 2+5ax 2=(10+5a )x 2.

项式定理知识点和各种题型归纳带答案

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

高中数学选修2-3题型总结

高中数学选修2-3题型总结(重点) 本书重点:排列组合、概率 第一章 计数原理 第二章 概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n 类办法中有mn 种不同的方法,那么完成这件事一共有N=m1+m2+…+mn 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n 步有mn 种不同的方法,那么完成这件事共有N=m1×m2×…×mn 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用 m n A 表示, m n A =n(n-1)… (n-m+1)=)!(! m n n -,其中m,n ∈N,m ≤n, 注:一般地 0n A =1,0!=1, n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用 m n C 表示: . )!(!! !)1()1(m n m n m m n n n C m n -=+--= 6.【了解】组合数的基本性质:(1) m n n m n C C -=;(2) 11 --+=n n m n m n C C C ;(3) k n k n C C k n =--11; (4) n n k k n n n n n C C C C 20 10 ==+++∑= ;(5) 1 1 1++++-=+++k m k k m k k k k k C C C C ;(6) k n m n m k k n C C C --=。 7.定理1:不定方程x1+x2+…+xn=r 的正整数解的个数为1 1--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x1+x2+…+xn=r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x1,x2,…,xn),将xi 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n 2、几个基本概念 (1)二项展开式:右边得多项式叫做得二项展开式 (2)项数:二项展开式中共有项 (3)二项式系数:叫做二项展开式中第项得二项式系数 (4)通项:展开式得第项,即 3、展开式得特点 (1)系数 都就是组合数,依次为C,C,C,…,C (2)指数得特点①a 得指数 由n 0( 降幂)。 ②b 得指数由0 n(升幂)、 ③a与b 得指数与为n 、 (3)展开式就是一个恒等式,a,b 可取任意得复数,n为任意得自然数、 4、二项式系数得性质: (1)对称性: 在二项展开式中,与首末两端等距离得任意两项得二项式系数相等、即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当就是偶数时,中间一项取得最大值 当就是奇数时,中间两项相等且同时取得最大值= (3)二项式系数得与: 奇数项得二项式系数得与等于偶数项得二项式系数与、即

二项式定理得常见题型 一、求二项展开式 1、“"型得展开式 例1、求得展开式;a 2、“”型得展开式 例2、求得展开式; 3、二项式展开式得“逆用" 例3、计算; 二、通项公式得应用 1。确定二项式中得有关元素 例4、已知得展开式中得系数为,常数得值为 2。确定二项展开式得常数项 例5、展开式中得常数项就是 3、求单一二项式指定幂得系数 例6、展开式中得系数就是

三、求几个二项式得与(积)得展开式中得条件项得系数 例7。得展开式中,得系数等于 例8。得展开式中,项得系数就是 四、利用二项式定理得性质解题 1.求中间项 例9、求(得展开式得中间项; 。 2.求有理项 例10、求得展开式中有理项共有项; 3.求系数最大或最小项 (1)特殊得系数最大或最小问题 例11、在二项式得展开式中,系数最小得项得系数就是; (2)一般得系数最大或最小问题 例12、求展开式中系数最大得项; (3)系数绝对值最大得项 例13、在(得展开式中,系数绝对值最大项就是________;

高中数学知识点总结-第十章排列组合和二项式定理

高中数学第十章-排列组合二项定理 考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. §10. 排列组合二项定理 知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有..重复..元素.. 的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的 一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--= 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11 --=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数

二项式定理经典例题总结资料

二项式定理经典例题 总结

二项式定理 一、二项式定理的推导 ()n b a +展开式如何? ()()__________ ______________________________32=+=+b a b a ()?10=+b a 例析()?4 =+b a 归纳()=+n b a ____________________________________________________ 二、二项式定理的有关概念 1、二项展开式 2、项数 3、二项式系数 4、二项展开式的通项 5、二项式()n b a +展开式的特点 ① ② ③ 注意:①二项式()n b a +的第1+r 项是_________和二项式()n a b +展开式的第1+r 项是__________,所以______________________ ②二项式系数即__________与二项展开式中对应项的系数___________,所以___________.

例如:()5 21x +第3项的二项式系数与第3项的系数 ③()n b a -的展开式? ④当1,1==b a 时,()n n 2_____________________________11==+即___________________________________________________ 典型例题:二项式定理的应用 例1、展开6 12???? ??-x x 例2、求()7 21x +的展开式的第4项的二项式系数和系数. 例3、求15 21??? ? ?+a a 展开式中含9a 项的系数. 三、杨辉三角 ()n b a +展开式的二项式系数,当n 取正整数时可以单独列成下表: ___________________________称为“杨辉三角”. 四、二项式系数的性质 1、每一行的两端都是____,其余每个数都等于它“_____”两个数的和.. 即____________________________ 2、对称性(等距性):每一行中,与首末两端“等距离“的两个数________. 即___________________________ 3、增减性与最大值: ①若二项式的幂指数n 是偶数,那么二项展开式中间一项,即 ________________二项式系数最大.

高中数学二项式定理题型总结

二项式定理 知识点归纳 1.二项式定理及其特例: (1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -* +=+++++∈ , (2)1 (1)1n r r n n n x C x C x x +=+++++ 2.二项展开式的通项公式:r r n r n r b a C T -+=1)210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性 4 二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以 外的每一个数都等于它肩上两个数的和 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r , 定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) (1)对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=) 直线2 n r = 是图象的对称轴 (2)增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12 n n C -,1 2n n C +取得最大值 (3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++ , 令1x =,则0122n r n n n n n n C C C C C =++++++ 题型讲解 例1 如果在(x + 4 21x )n 的展开式中,前三项系数成等差数列,求展开式中的有理项 解:展开式中前三项的系数分别为1, 2 n , 8 )1(-n n ,由题意得2× 2 n =1+ 8)1(-n n ,得n =8设第r +1项为有理项, T 1 +r =C r 8· r 2 1 ·x 4 316r -,则r 是4的倍数,所以r =0,4,8,有理项为T 1=x 4,T 5= 8 35x ,T 9= 2 2561 x 点评:求展开式中某一特定的项的问题常用通项公式,用待定系数法确定r 例2 求式子(|x |+| |1x -2)3的展开式中的常数项 解法一:(|x |+ | |1x -2)3=(|x |+ | |1x -2)(|x |+ | |1x -2)(|x |+ | |1x -2)得到常数项的情况有:①三个括号 中全取-2,得(-2)3;②一个括号取|x |,一个括号取 | |1x ,一个括号取-2,得C 1 3C 1 2(-2)=-12,∴常数项为(-2) 3 +(-12)=-20解法二:(|x |+ | |1x -2)3=(||x - | |1x )6设第r +1项为常数项,则T 1+r =C r 6·(-1)r ·( | |1x )r ·|x | r -6= (-1)6·C r 6·|x | r 26-,得6-2r =0,r =3∴T 3+1=(-1)3·C 3 6=-20 例3 ⑴求(1+x +x 2+x 3)(1-x )7的展开式中x 4的系数;⑵求(x +x 4-4)4的展开式中的常数项; ⑶求(1+x )3+(1+x )4+…+(1+x )50的展开式中x 3 的系数 解:⑴原式= x x --114 (1-x )7=(1-x 4)(1-x )6,展开式中x 4的系数为(-1)4C 4 6 -1=14⑵(x + x 4-4) 4 = 4 4 2 ) 44(x x x +-= 4 8 )2(x x -,展开式中的常数项为C 4 48 2 ·(-1)4=1120 ⑶方法一:原式

高三复习二项式定理知识点题型方法归纳

高三复习二项式定理知识点题型方法归纳 This model paper was revised by LINDA on December 15, 2012.

绵阳市开元中学高2014级高三复 习 《二项式定理》 知识点、 题型与方法归纳 制卷:王 小凤 学生姓名:___________ 一.知识梳理 1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式. 其中的系数C r n (r =0,1,…,n )叫二项式系数. 式中的 C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1 =C r n a n -r b r . 2.二项展开式形式上的特点 (1)项数为n +1. (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1 n ,一 直到C n -1n ,C n n . 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等.即 r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1 122n n n n C C -+=取得最 大值. (3)各二项式系数和:C 0n +C 1n +C 2 n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3 n +C 5n +…=2 n -1 . 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b + a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b

【高考数学】排列组合与二项式定理典型例题整合

概念、方法、题型、易误点及应试技巧总结 十、排列、组合和二项式定理 1.排列数m n A 中1,n m n m ≥≥∈N 、、组合数m n C 中,1,0,n m n m n m ≥≥≥∈、N . (1)排列数公式 !(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21n n A n n n n ==--?。如(1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为 (答:3);(2)满足2886x x A A -<的x = (答:8) (2)组合数公式 ()(1)(1)!()(1)21!!m m n n m m A n n n m n C m n A m m m n m ?-??-+===≤?-???-;规定01!=,01n C =.如已知16m n m n m n C C A +++=,求 n ,m 的值(答:m =n =2) (3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11 k k n n kC nC --=;④1121++++=++++r n r n r r r r r r C C C C C ;⑤!(1)!!n n n n ?=+-;⑥11(1)!!(1)! n n n n =-++. 2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如 (1)将5封信投入3个邮筒,不同的投法共有 种(答:53);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合{}1,2,3和 {}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23) ;(4)72的正约数(包括1和72)共有 个(答:12);(5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A 、B 、 C 、 D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法(答:480);(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9);(8)f 是集合{},,M a b c =到集合{}1,0,1N =-的映射,且()()f a f b + ()f c =,则不同的映射共有 个(答:7);(9)满足}4,3,2,1{=C B A 的 集合A 、B 、C 共有 组(答:47) 3.解排列组合问题的方法有: (1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。如(1)某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1到6的6种不同花色的石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有_____种(答:300);(2)某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0. 千位、百位上都能取0. 这样设计出来的密码共有_______种(答:100);(3)用0,1,2,3,4,5这六个数字,可以组成无重复数字的四位偶数_______个(答:156);(4)某班上午要上语、数、外和体育4门课,如体育不排在第一、四节;语文不排在第一、二节,则不同排课方案种数为_____(答:6); (5)四个不同的小球全部放入编号为1、2、3、4的四个盒中。①恰有两个空盒的放法有__________种;②甲球只能放入第2或3号盒,而乙球不能放入第4号盒的不同放法有_________种(答:84;96);(6)设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的5个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有_________种(答:31) (2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。如在平面直角坐标系中,由六个点(0,0),(1,2),(2,4),(6,3),(-1,-2),(-2,-1)可以确定三角形的个数为_____(答:15)。 (3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。如(1)把4名男生和4名女生排成一排,女生要排在一起,不同的排法种数为_____(答:2880);(2)某人射击8枪,命中4枪,4枪命中中恰好有3枪连在一起的情况的不同种数为_____(答:20);(3)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是_____(答:144) (4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排

高考数学题型归纳汇总

高考数学题型归纳汇总 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简 单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事 件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立 事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率. 1.有关平行与垂直线线、线面及面面的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题包括论证、计算角、与距离等中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较 为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中 解决问题的规律--充分利用线线平行垂直、线面平行垂直、面面平行垂直相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: 1根据定义--证明两平面没有公共点; 2判定定理--证明一个平面内的两条相交直线都平行于另一个平面; 3证明两平面同垂直于一条直线。 1. 导数概念的理解。 2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。复合 函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导 法则,接下来对法则进行了证明。 3. 要能正确求导,必须做到以下两点:

二项式定理经典例题总结

二项式定理 一、二项式定理的推导 ()n b a +展开式如何? ()()__________ ______________________________32=+=+b a b a ()?10=+b a 例析()?4 =+b a 归纳()=+n b a ____________________________________________________ 二、二项式定理的有关概念 1、二项展开式 2、项数 3、二项式系数 4、二项展开式的通项 5、二项式()n b a +展开式的特点 ① ② ③ 注意:①二项式()n b a +的第1+r 项是_________和二项式()n a b +展开式的第1+r 项是__________,所以______________________ ②二项式系数即__________与二项展开式中对应项的系数___________,所以___________. 例如:()5 21x +第3项的二项式系数与第3项的系数 ③()n b a -的展开式? ④当1,1==b a 时,()n n 2_____________________________11==+即___________________________________________________ 典型例题:二项式定理的应用 例1、展开6 12???? ? ?-x x 例2、求()721x +的展开式的第4项的二项式系数和系数.

例3、求15 21??? ? ?+a a 展开式中含9a 项的系数. 三、杨辉三角 ()n b a +展开式的二项式系数,当n 取正整数时可以单独列成下表: ___________________________称为“杨辉三角”. 四、二项式系数的性质 1、每一行的两端都是____,其余每个数都等于它“_____”两个数的和.. 即____________________________ 2、对称性(等距性):每一行中,与首末两端“等距离“的两个数________. 即___________________________ 3、增减性与最大值: ①若二项式的幂指数n 是偶数,那么二项展开式中间一项,即________________二项式系数最大. ②若二项式的幂指数n 是奇数,那么二项展开式中间两项,即_________________二项式系数最大. 4、二项式系数和为_____.即____________________________________________________ 典型例题(一):二项式定理通项的直接应用 例1、(12天津)在5 212??? ? ?-x x 的二项展开式中,x 的系数为______ 例2、(12重庆) 821???? ??+x x 展开式中常数项为_______ 例3、(10陕西))(5 R x x a x ∈??? ??+展开式中3x 的系数为10,则实数a 为_____ 例4、(10安徽)6 ??? ? ??-x y y x 展开式中,3x 的系数为_______ 例5、(06山东)已知n x i x ???? ? ?-2展开式中第三项与第五项系数之比为143-,则展开式中的常数项为______

相关文档
最新文档