高中物理基础知识总结

高中物理基础知识总结
高中物理基础知识总结

高中物理

力学中三种常见力及物体的平衡

1、力的概念的理解

(1)力的本质

①力的物质性②力的相互性③力的矢量性④力作用的独立性

(2)力的效果

一是使物体发生形变;二是改变物体的运动状态。(即产生加速度)

①力作用的瞬时效果——产生加速度a=F/m

②力的作用在时间上的积累效果——力对物体的冲量I=Ft

③力的作用在空间上的积累效果——力对物体做的功W=Fscos α。

(3)力的三要素:大小、方向、作用点。

①两个力相等的条件:力的大小相等,方向相同。

(4)力的分类

①性质力②效果力

2、对重力概念理解

(1)重力是地球对物体的万有引力的一个分力。

(2)重力加速度g

①地球表面的重力加速度在赤道上最小,两极最大。(mg R Mm G

≈2)

②海拔越高重力加速度越小。(g h R R g 2??? ??+=') (3)重心—重力的作用点叫做物体的重心。

①质量分布均匀、形状规则的物体其重心在物体的几何中心上。

②悬挂的物体,绳子的拉力必过物体的重心,和物体的重力构成一对平衡力。

3、弹力

(1)弹力产生的条件:①相互接触②有弹性形变

(2)方向:与物体形变的方向相反,受力物体是引起形变的物体,施力物体是发生形变的物体。

(3)弹力的大小的计算

①根据平衡条件②根据动力学规律(牛顿第二定律)

③根据公式:F=kx、ΔF=KΔx

④控制变量法处理多弹簧形变引起的物体的位置的改变问题。

4、摩擦力

(1)摩擦力产生的条件:①接触面粗糙②有压力③有相对运动(或相对运动趋势)

(2)静摩擦力的方向

①假设法②反推法

(3)静摩擦力的大小(其数值在0到最大静摩擦力之间。)

①根据平衡条件②根据动力学规律

(4)滑动摩擦力的方向

滑动摩擦力的方向与物体相对运动方向相反是判断滑动摩擦力方向的依据。(5)滑动摩擦力的大小

根据公式F=μN计算。

滑动摩擦力的大小与物体的运动速度、接触面的面积没有关系。

力的合成与分解、共点力作用下物体的平衡

1、合力与分力

合力与分力是等效替代关系

2、平行四边形定则 相关数学知识:①正弦定理:332211sin sin sin θθθF F F == ②余弦定理:θcos 2212221F F F F F -+=

3、合力的范围∣F 1-F 2∣≤F ≤F 1+F 2

应用判断物体在受到三个力或三个以上力能否平衡问题即合力能否为零。

4、三角形法则

①矢量三角形中的等效替代关系

②用矢量三角形求极值问题

若物体受到三个力的作用时,该三个力依次首尾

相接构成

三角形,则该物体所受合力为零。

若物体受到三个力的作用始终处于平衡状态,且一个力为恒力,一个力的方向不变,另一个力的变化引起的各力的变化情况,可由三角形法则判断。

5、力的分解的唯一性

将一个已知力F 进行分解,其解是不唯一的。要得到唯一的解,必须另外考虑唯一性条件。常见的唯一性条件有:

(1).已知两个不平行分力的方向,可以唯一的作出力的平行四边形,对力F 进行分解,其解是唯一的。

(2)已知一个分力的大小和方向,可以唯一的作出力的平行四边形,对

力F 进行分解,其解是唯一的。

2

图 F 2

F 1

6、力的分解有两解的条件:

(1).已知一个分力F 1的方向和另一个分力F 2的大小,由图9可知: 当F 2=Fsin θ时,分解是唯一的。

当Fsin θ

解。当F 2>F 时,分解是唯一的。

(2).已知两个不平行分力的大小。如

图10所示,分别以F 的始端、末端为圆心,以F 1、F 2为半径作圆,两圆有两个交点,所以F 分解为F 1、F 2有两种情况。存在极值的几种情况。

①已知合力F 和一个分力F 1的方向,另一个分力F 2存在最小值。

②已知合力F 的方向和一个分力F 1,另一个分力F 2存在最小值。

7、共点力作用下物体平衡处理方法

要注意运用等效关系(合力与分力)注意运用力的几何关系。注意判断力的方向。

(1)整体法和隔离法

(2)合成与分解法

(3)正交分解法

(4)相似三角形法

(5)对称法在平衡中的应用

图10

直线运动

一、匀变速直线运动公式

1.常用公式有以下四个:at V V t +=0,202

1at t V s +=,

as V V t 2202=- t V V s t 20+= ⑴以上四个公式中共有五个物理量:s 、t 、a 、V 0、V t ,这五个物理量中只有三个是独立的,可以任意选定。只要其中三个物理量确定之后,另外两个就唯一确定了。每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。

⑵以上五个物理量中,除时间t 外,s 、V 0、V t 、a 均为矢量。一般以V 0的方向为正方向,以t=0时刻的位移为零,这时s 、V t 和a 的正负就都有了确定的物理意义。

应用公式注意的三个问题

(1)注意公式的矢量性

(2)注意公式中各量相对于同一个参照物

(3)注意减速运动中设计时间问题

2.匀变速直线运动中几个常用的结论

①Δs=aT 2,即任意相邻相等时间内的位移之差相等。可以推广到s m -s n =(m-n)aT 2 ②202t t

V V V +=,某段时间的中间时刻的即时速度等于该段时间内的平均速度。

22202

t s V V V += ,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速

度)。 可以证明,无论匀加速还是匀减速,都有2

2s t V V <。

3.初速度为零(或末速度为零)的匀变速直线运动做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:

at V = , 221

at s = , as V 22= , t V s 2

= 以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。

4.初速为零的匀变速直线运动

①前1s 、前2s 、前3s ……内的位移之比为1∶4∶9∶……

②第1s 、第2s 、第3s ……内的位移之比为1∶3∶5∶……

③前1m 、前2m 、前3m ……所用的时间之比为1∶

2∶3∶……

④第1m 、第2m 、第3m ……所用的时间之比为1∶()12-∶(23-)

∶…… 5、自由落体运动是初速度为零的匀加速直线运动,竖直上抛运动是匀减速直线运动,可分向上的匀减速运动和竖直向下匀加速直线运动。

二、匀变速直线运动的基本处理方法

1、公式法 课本介绍的公式如2022002,2

1,v v as at t v s at v v t t -=+=+=等,有些题根据题目条件选

择恰当的公式即可。但对匀减速运动要注意两点,一是加速度在代入公式时一定是负值,二是题目所给的时间不一定是匀减速运动的时间,要判断是否是匀减速的时间后才能用。

2、比值关系法 初速度为零的匀变速直线运动,设T 为相等的时间间隔,则有:

①T 末、2T 末、3T 末……的瞬时速度之比为:

v 1:v 2:v 3:……v n =1:2:3:……:n

② T 内、2T 内、3T 内……的位移之比为:

s 1:s 2:s 3: ……:s n =1:4:9:……:n 2

③第一个T 内、第二个T 内、第三个T 内……的位移之比为:

s Ⅰ:s Ⅱ:s Ⅲ:……:s N

=1:3:5: ……:(2N-1) 初速度为零的匀变速直线运动,设s 为相等的位移间隔,则有:

④前一个s 、前两个s 、前三个s ……所用的时间之比为:

t 1:t 2:t 3:……:t n =1::3:2……:n

⑤ 第一个s 、第二个s 、第三个s ……所用的时间t Ⅰ、t Ⅱ、t Ⅲ ……t N 之比为: t Ⅰ:t Ⅱ:t Ⅲ :……:t N =1:()():23:12-- ……:()1--n n

3、平均速度求解法

在匀变速直线运动中,整个过程的平均速度等于中间时刻的瞬时速度,也等于初、末速度和的一半,即:t

s v v v v t t =+=

=202。求位移时可以利用:()t v v t v s t +==021 4、图象法

5、逆向分析法

6、对称性分析法

7、间接求解法

8、变换参照系法

在运动学问题中,相对运动问题是比较难的部分,若采用变换参照系法处理此类问题,可起到化难为易的效果。参照系变换的方法为把选为参照物的物理量如速度、加速度等方向移植到研究对象上,再对研究对象进行分析求解。

三、匀变速直线运动规律的应用—自由落体与竖直上抛

1、自由落体运动是初速度为零、加速度为g 的匀加速直线运动。

2、竖直上抛运动

竖直上抛运动是匀变速直线运动,其上升阶段为匀减速运动,下落阶段为自由落体运动。它有如下特点:

(1).上升和下降(至落回原处)的两个过程互为逆运动,具有对称性。有下列结论:

①速度对称:上升和下降过程中质点经过同一位置的速度大小相等、方向相反。 ②时间对称:上升和下降经历的时间相等。

(2).竖直上抛运动的特征量:①上升最大高度:S m =g

V 220.②上升最大高度和从最大高度点下落到抛出点两过程所经历的时间:g

V t t 0=

=下上. (3)处理竖直上抛运动注意往返情况。

追及与相遇问题、极值与临界问题

一、追及和相遇问题

1、追及和相遇问题的特点 追及和相遇问题是一类常见的运动学问题,从时间和空间的角度来讲,相遇是指同一时刻到达同一位置。可见,相遇的物体必然存在以下两个关系:一是相遇位置与各物体的初始位置之间存在一定的位移关系。若同地出发,相遇时位移相等为空间条件。二是相遇物体的运动时间也存在一定的关系。若物体同时出发,运动时间相等;若甲比乙早出发Δt,则运动时间关系为t 甲=t 乙+Δt。要使物体相遇就必须同时满足位移关系和运动时间关系。

2、追及和相遇问题的求解方法

分析追及与相碰问题大致有两种方法即数学方法和物理方法。

首先分析各个物体的运动特点,形成清晰的运动图景;再根据相遇位置建立物体间的位移关系方程;最后根据各物体的运动特点找出运动时间的关系。

方法1:利用不等式求解。利用不等式求解,思路有二:其一是先求出在任意时刻t,两物体间的距离y=f(t),若对任何t,均存在y=f(t)>0,则这两个物体永远不能相遇;若存在某个时刻t,使得y=f(t)0 ,则这两个物体可能相遇。其二是设在t时刻两物体相遇,然后根据几何关系列出关于t的方程f(t)=0,若方程f(t)=0无正实数解,则说明这两物体不可能相遇;若方程f(t)=0存在正实数解,则说明这两个物体可能相遇。

方法2:利用图象法求解。利用图象法求解,其思路是用位移图象求解,分别作出两个物体的位移图象,如果两个物体的位移图象相交,则说明两物体相遇。

3、解“追及、追碰”问题的思路

解题的基本思路是(1)根据对两物体运动过程的分析,画出物体的运动示意图(2)根据两物体的运动性质,分别列出两个物体的位移方程。注意要将两物体运动时间的关系反映在方程中(3)由运动示意图找出两物体间关联方程(4)联立方程求解。

4、分析“追及、追碰”问题应注意的问题:

(1)分析“追及、追碰”问题时,一定要抓住一个条件,两个关系;一个条件是两物体的速度满足的临界条件,追和被追物体的速度相等的速度相等(同向运动)是能追上、追不上、两者距离有极值的临界条件。两个关系是时间关系和位移关系。其中通过画草图找到两物体位移之间的数量关系,是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯,对帮助我们理解题意,启迪思维大有裨益。

(2)若被追及的物体做匀减速直线运动,一定要注意追上前该物体是否停止。

(3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如:刚好、恰巧、最多、至少等,往往对应一个临界状态,满足一个临界条件。

二、极值问题和临界问题的求解方法。

该问题关键是找准临界点

牛顿第二定律的理解与方法应用

一、牛顿第二定律的理解。

1、矢量性

合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。

2、瞬时性

加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。

3、同一性(同体性)

m

合F a =中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。

4、相对性 在m

合F a =中,a 是相对于惯性系的而不是相对于非惯性系的即a 是相对于没有加速度参照系的。

5、独立性

理解一:F 合产生的加速度a 是物体的总加速度,根据矢量的合成与分解,则有物体在x 方向的加速度a x ;物体在y 方向的合外

力产生y 方向的加速度a y 。牛顿第二定律分量式为:∑∑==y x x ma F ma F y 和。

二、方法与应用

1、整体法与隔离法(同体性)

选择研究对象是解答物理问题的首要环节,在很多问题中,涉及到相连接的几个物体,研究对象的选择方案不惟一。解答这类问题,应优先考虑整体法,因为整体法涉及研究对象少,未知量少,方程少,求解简便。但对于大多数平衡问题单纯用整体法不能解决,通常采用“先整体,后隔离”的分析方法。

2、牛顿第二定律瞬时性解题法(瞬时性)

牛顿第二定律的核心是加速度与合外力的瞬时对应关系,做变加速运动的物体,其加速度时刻都在变化,某时刻的加速度叫瞬时加速度,而加速度由合外力决定,当合外力恒定时,加速度也恒定,合外力变化时,加速度也随之变化,且瞬时力决定瞬时加速度。解决这类问题要注意:

(1)确定瞬时加速度的关键是正确确定瞬时合外力。

(2)当指定某个力变化时,是否还隐含着其它力也发生变化。

(3)整体法、隔离法的合力应用。

3、动态分析法

4、正交分解法(独立性)

(1)、平行四边形定则是矢量合成的普遍法则,若二力合成,通常应用平行四边形定则,若是多个力共同作用,则往往应用正交分解法

(2)正交分解法:即把力向两个相互垂直的方向分解,分解到直角坐标系的两个轴上,再进行合成,以便于计算解题。

5、结论求解法:结论:物体由竖直圆周的顶点从静止出发,沿不同的光滑直线轨道运动至圆周上另外任一点所用的时间相同。

三、牛顿定律的应用

1、脱离问题

一起运动的两物体发生脱离时,两物体接触,物体间的弹力为零,两物体的速度、加速度相等。

曲线运动、运动的合成与分解、平抛运动

1、深刻理解曲线运动的条件和特点

(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。

(2)曲线运动的特点:○1在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。○3做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。

(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。

2、深刻理解运动的合成与分解

(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

运动的合成与分解基本关系:○1分运动的独立性;○2运动的等效性(合运动和分运动是等效替代关系,不能并存);○3运动的等时性;○4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)

(2)互成角度的两个分运动的合运动的判断

合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速

度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。

①两个直线运动的合运动仍然是匀速直线运动。

②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。

③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。

(3)怎样确定合运动和分运动

①合运动一定是物体的实际运动

②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。

③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。

3、绳端速度的分解

此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)

4、小船渡河问题

17、一条宽度为L的河流,水流速度为V s,已知船在静水中的速度为V c,那么:

(1)怎样渡河时间最短?

(2)若V c>V s,怎样渡河位移最小?

(3)若V c

分析与解:(1)如图2甲所示,设船上头斜向上游与河岸成任意角θ,这

时船速在垂直于河岸方向的速度分量V 1=V c sin θ,渡河所需时间为:θ

sin c V L t =. 可以看出:L 、V c 一定时,t 随sin θ增大而减小;当θ=900时,sin θ=1,

以,当船头与河

岸垂直时,渡河时间最短,c

V L t =min .

(2)如图2乙所示,渡河的最小位移即河的宽度。为了使渡河位移等于L ,必须使船的合速度V 的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:V c cos θ─V s =0.

所以θ=arccosV s /V c ,因为0≤cos θ≤1,所以只有在V c >V s 时,船才有可能

垂直于河岸横渡。

(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图2丙所示,设船头V c 与河岸成θ角,合速度V 与河岸成α角。可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以V s 的矢尖为圆心,以V c 为半径画圆,当V 与圆相切时,α角最大,根据cos θ=V c /V s ,船头与河岸的夹角应为:θ=arccosV c /V s

.

2

图2甲

图2乙

图2丙

船漂的最短距离为:

θ

θsin )cos (min c c s V L V V x -=. 此时渡河的最短位移为:L V V L s c

s ==θcos . 5、平抛运动

(1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。

(2).平抛运动的处理方法

通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。

(3).平抛运动的规律

以抛出点为坐标原点,水平初速度V 0方向为沿x 轴正方向,竖直向下的方向为y 轴正方向,建立如图1所示的坐标系,在该坐标系下,对任一时刻t.

①位移

分位移t V x 0=, 221gt y =,合位移2220)21()(gt t V s +=,0

2tan V gt =

?. ?为合位移与x 轴夹角. ②速度

分速度0V V x =, V y =gt, 合速度220)(gt V V +=,0

tan V gt =

θ. θ为合速度V 与x 轴夹角

图1

(4).平抛运动的性质

做平抛运动的物体仅受重力的作用,故平抛运动是匀变速曲线运动。29、如图4所示,排球场总长为18m,

设球网高度为2m,运动员站在离网3m

的线上(图中虚线所示)正对网前跳起将

球水平击出。(不计空气阻力)

(1)设击球点在3m线正上方高度为2.5m

处,试问击球的速度在什么范围内才能使

球即不触网也不越界?

(2)若击球点在3m线正上方的高度小余某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度?

思路分析:排球的运动可看作平抛运动,把它分解为水平的匀速直线运动和竖直的自由落体运动来分析。但应注意本题是“环境”限制下的平抛运动,应弄清限制条件再求解。关键是要画出临界条件下的图来。

解答:(1)如图,设球刚好擦网而过

擦网点x1=3m,y1=h2-h1=2.5-2=0.5m

据位移关系:得

x vt

y gt

v x

g

y

=

=

?

?

?

??

=

1

2

2

2

代入数据可求得,即为所求的速度下限。

v m s

1

310

=/

设球刚好打在边界线上,则落地点x2=12m,y2=h2=2.5m,代入上面速

图4

3m

18m

2m

度公式可求得:

v m s 2122=/

欲使球既不触网也不越界,则球初速度v 0应满足:

3101220m s v m s //<<

(2)设击球点高度为h 3时,球恰好既触网又压线,如图所示。

再设此时排球飞出的初速度为v ,对触网点x 3=3m ,y 3=h 3-h 1=h 3-2代入(1)中速度公式可得:

v h =-<>32

513

对压界点x 4=12m ,y 4=h 3,代入(1)中速度公式可得:

v h =<>12523

<1>、<2>两式联立可得h 3=2.13m

即当击球高度小于2.13m 时,无论球被水平击出的速度多大,球不是触网,就是出界。

6、圆周运动

线速度、角速度、周期间的关系

r ③v T

②T r ①v ?===ωπωπ22 皮带传动问题

① 皮带上的各点的线速度大小相等

② 同一轮子上的各点的角速度相等,周期相等。

万有引力定律天体运动

一、万有引力定律

(1)开普勒三定律

①所有行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 ②对每个行星而言太阳和行星的连线在相等的时间内扫过相同的面积

③所有行星轨道的半长轴R 的三次方与公转周期T 的二次方的比值都相同,即常量T R =23

,常用开普勒三定律来分析行星在近日点和远日点运动速率的大小。

(2)万有引力定律:○

1自然界的一切物体都相互吸引,两个物体间的引力的大小,跟它们的质量乘积成正比,跟它们的距离的平方成反比。○2公式:221r

m m G F =, G=6.67×10-11N.m 2/kg 2.○

3适用条件:适用于相距很远,可以看做质点的两物体间的相互作用,质量分布均匀的球体也可用此公式计算,其中r 指球心间的距离。

(3)三种宇宙速度:

1第一宇宙速度V 1=7.9Km/s,人造卫星的最小发射速度; ○2第二宇宙速度V 2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度;(3)第三宇宙速度V 3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度。

注意:①V 1=7.9Km/s 是最小的发射速度,但是是最大的运行速度。当V 1=7.9Km/s 时,卫星近表面运行,V 运=7.9Km/s 。

②当7.9Km/s

二、万有引力定律的应用:

1、开普勒三定律应用

所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等,这就

是开普勒第三定律,也叫周期定律.我们把行星的椭圆轨道近似地当作圆,若用r 代表轨道半径,T 代表公转周期,则开普勒第三定律的表达式为r3/T2=k.

因用周期T 表示,则把224T

a n π=代入基本方程2224T m r Mm G π=即得:k GM T r ==2234π 显然这个量k 只与恒星的质量M 有关,而与行星其他任何物理量均无关。

2、各物理量与轨道半径的关系

若已知人造卫星绕地心做匀速率圆周运动的轨道半径为 r ,地球的质量为M 。 由n ma r Mm G =2得卫星运行的向心加速度为2

21r r M G a n ∝= 由r v m r Mm G 22=得卫星运行的线速度为:r

r GM v 1∝= 由r m r Mm G

22ω=得卫星运行的角速度为: 2331r r GM ∝=ω 由r T m r Mm

G 222??? ??=π得卫星运行的周期为:2332)4(r GM r T ∝=π 由r v m r

Mm G 22=得卫星运行的动能:r r GM m E k 121∝= 即随着运行的轨道半径的逐渐增大,向心加速度an 、线速度v 、角速度ω、动能Ek 将逐渐减小,周期T 将逐渐增大.

3、会讨论重力加速度g 随离地面高度h 的变化情况。

4、会用万有引力定律求天体的质量。

通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。

以地球的质量的计算为例

高中物理必修一公式大全

高中物理必修一公式大全 掌握好物理公式是解决物理题目必不可少的,为方便学生学习,下面是整理的高中物理必修一公式大全,希望大家喜欢。 基本符号 Δ代表变化的 t代表时间等,依情况定,你应该知道 T代表时间 a代表加速度 v。代表初速度 v代表末速度 x代表位移 k代表进度系数 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时

v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2 一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动。 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t

③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平 t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a0;反向则a0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算: 1m/s=3.6km/h。

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理知识点归纳总结归纳

高中物理知识总结归纳 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:及物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只及弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,及物体相对运动或相对运动趋势的方向相反,及物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件可以判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解. ②静摩擦力大小:静摩擦力大小可在0及f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解. 5.物体的受力分析

人教版高中物理必修二知识点及题型总结

第五章曲线运动 一、知识点 (一)曲线运动的条件:合外力与运动方向不在一条直线上 (二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则) (三)曲线运动的分类:合力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动) (四)匀速圆周运动 1受力分析,所受合力的特点:向心力大小、方向 2向心加速度、线速度、角速度的定义(文字、定义式) 3向心力的公式(多角度的:线速度、角速度、周期、频率、转)(五)平抛运动 1受力分析,只受重力 2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式 3速度与水平方向的夹角、位移与水平方向的夹角 (五)离心运动的定义、条件 二、考察内容、要求及方式 1曲线运动性质的判断:明确曲线运动的条件、牛二定律(选择题)2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(选择、填空) 3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表

示方式、合力提供向心力(计算题) 3运动的合成与分解:分运动与和运动的等时性、等效性(选择、填空) 4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算) 5离心运动:临界条件、最大静摩擦力、匀速圆周运动相关计算(选择、计算) 第六章万有引力与航天 一、知识点 (一)行星的运动 1地心说、日心说:内容区别、正误判断 2开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律 1万有引力定律:内容、表达式、适用范围 2万有引力定律的科学成就 (1)计算中心天体质量 (2)发现未知天体(海王星、冥王星) (三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、最大环绕速度;脱离地球引力绕太阳运动;脱离太阳系)

物理学业水平测试必记公式大全【原创】

物理学业水平测试必记公式大全【原创】 一、运动学基本公式 1.匀变速直线运动基本公式: 速度公式:at v v t +=0 位移公式:202 1at t v x + = 推论公式(无时间):ax v v t 22 02=- 2、计算平均速度t x v ??= 2 t v v v +=【只能算匀变速运动的平均速度】 3、打点计时器 (1)两种打点计时器 (a )电磁打点计时器: 工作电压(6V 以下) 交流电 频率50HZ (b )电火花打点计时器:工作电压(220v ) 交流电 频率 50HZ 【计数点要看清是相邻的打印点(间隔)还是每隔个点取一个计数点(间隔0.1s)】 (2)纸带分析 (a (b)求某点速度公式:t x v v t 22==【会根据纸带计算某个计数点的瞬时速度】 二、力学基本规律 1、不同种类的力的特点 (1).重力:mg G =(2r GM g ∝ ,↓↑g r ,,在地球两极g 最大,在赤道g 最小) (2). 弹力: x k F ?= 【弹簧的劲度系数k 是由它的材料,粗细等元素决定的,与它受不受力以及在弹 性线度内受力的大小无关】 (3).滑动摩擦力 N F F ?=μ;【在平面地面上,FN=mg ,在斜面上等于重力沿着斜面的分力】 静摩擦力F 静 :0~F max ,【用力的平衡观点来分析】 2.合力:2121F F F F F +≤≤-合 【对应题型每年必考】 三、牛顿运动定律 (1)惯性:只和质量有关 (2)F 合=ma 【用此公式时,要对物体做受力分析】 (3)作用力和反作用力:大小相等、方向相反、性质相同、同时产生同时消失,作用在不同的物体上(这是与平衡力最明显的区别) (4)运用牛顿运动定律解题

高中物理基础知识点总结

2019高中物理基础知识点总结 2019高中物理基础知识点篇一 一、力学 a) 运动学 参照系质点运动的位移和路程、速度、加速度相对速度 向量和标量向量的合成和分解 匀速及匀变速直线运动及其图像运动的合成抛体运动圆周运动 刚体的平动和绕定轴的转动 质心质心运动定理 b)牛顿运动定律力学中常见的几种力 牛顿第一、二、三运动定律惯性系的概念 摩擦力 弹性力胡克定律 万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) 开普勒定律行星和人造卫星运动 惯性力的概念 c) 物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件重心

物体平衡的种类 d)动量 冲量动量动量定理动量守恒定律 反冲运动及火箭 e)冲量矩质点和质点组的角动量角动量守恒定律 f) 机械能 功和功率 动能和动能定理 重力势能引力势能质点及均匀球壳壳内与壳外的引力势能公式(不要求导出) 弹簧的弹性势能 功能原理机械能守恒定律 碰撞 g) 流体静力学 静止流体中的压强 浮力 h)振动 简谐振动振幅频率和周期相位振动的图像 参考圆振动的速度和加速度 由动力学方程确定简谐振动的频率 阻尼振动受迫振动和共振(定性了解) i) 波和声 横波和纵波波长、频率和波速的关系波的图像

波的干涉和衍射(定性) 驻波 声波声音的响度、音调和音品声音的共鸣乐音和噪声多普勒效应 2019高中物理基础知识点篇二 二、热学 a) 分子动理论 原子和分子的量级 分子的热运动布朗运动温度的微观意义 分子力 分子的动能和分子间的势能物体的内能 b)热力学第一定律 热力学第一定律 c) 热力学第二定律 热力学第二定律可逆过程与不可逆过程 d)气体的性质 热力学温标 理想气体状态方程普适气体恒量 理想气体状态方程的微观解释(定性) 理想气体的内能 理想气体的等容、等压、等温和绝热过程(不要求用微积分运算) e) 液体的性质

人教版高一物理知识点归纳总结

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

高中物理必修一公式总结.doc

物理公式及图像总结高一物理必修 1 知识点总结 章节具体内容主要相关公式 ①参考系 1、运动、空间②建立一维、二维坐标系描述空 二运动和时间间位置 ③时间和时刻 ①质点 的描述2、质点和位移 3、速度和加速 ②位移和路程 ③矢量和标量 ①平均速度和瞬时速度 ②加速度 ▲平均速度 v s t 三匀度 ③匀速直线运动的位移图象 ④匀速直线运动的速度图象 ①匀变速直线运动的特点 ②匀变速直线运动的公式、规律 ③匀变速直线运动的速度图象 ▲加速度a v t v o t ▲ v t v o at ▲匀变速直线运动平均速度 变 1、匀变速直线速运动的规律 直 线 运 动 2、匀变速直线的 运动的实验研研究 究④匀变速直线运动的位移图象 ①用打点计时器或频闪照相方法 研究匀变速直线运动。 ②利用纸带会计算某点的瞬时速 度和物体运动的加速度 ③经历匀变速直线运动的实验研 究过程 v v t v o 2 ▲匀变速直线运动的位移 s vt v o v t t v t 1 at2 o 2 2 ▲v t2 v o2 2as ▲相同时间间隔内位移差 s aT 2 ▲ v v t v0 v o a t 2 2 ▲各个点的瞬时速度 v n s n s n 1 2T

3、自由落体运 动 1、重力与重心四 相 互 2、形变与弹力作 用 3、摩擦力 1、力的合成五 力 2、力的分解与 平 3、力的平衡衡 4、平衡条件的 应用 1、牛顿第一定六 律 力 2、牛顿第二定与 律 运 3、牛顿第三定动 律①自由落体运动的特点 ②自由落体运动的性质 ③自由落体运动的公式、规律 ④自由落体运动规律探索的回眸 ①力的图示与力的示意图 ②重力及其测量,弹簧测力计 ③重心和稳定 ①形变、弹性 ②胡克定律 ③弹力的应用 ①滑动摩擦、动摩擦因数 ②静摩擦 ③摩擦力的调控 ①力的平行四边形定则 ②合力的计算①力的作 用效果及分解 ②力的正交分解 ③力的分解的应用 ①共点力作用下的平衡条件 ②平衡的种类和稳度 ①平衡条件的应用 ①伽利略的理想实验 ②牛顿第一定律 ③物体的惯性 ①牛顿第二定律及其应用 ②力学单位制 ①牛顿第三定律 ▲ v t gt ▲s 1 gt2 2 ▲ v t2 2 gs ▲ G mg ▲弹力 F kx (胡克定律) ▲滑动摩擦力f N ▲力的正交分解 F x F cos F y F sin ▲共点力下物体平衡条件: F合0 ▲牛顿第二定律 F ma ▲作用力和反作用力 F F

高中基础物理知识点总结

物理 一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。 三个大小相等的共面共点力平衡,力之间的夹角为1200。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则312123 sin sin sin F F F ααα==(拉密定理)。 5.物体沿斜面匀速下滑,则tan μα=。 6.两个一起运动的物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10. 轻杆一端连绞链,另一端受合力方向:沿杆方向。 二、运动学: 1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。 2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212+=+== 3.匀变速直线运动: 时间等分时, S S aT n n -=-12 , 位移中点的即时速度V V V S 212222=+, V V S t 22 > 纸带点痕求速度、加速度: T S S V t 221 2+= ,212T S S a -=,()a S S n T n =--12 1 4.匀变速直线运动,v 0 = 0时:

新课标高考高中物理学史归纳总结

新课标高考高中物理学史归纳总结 【新课标高考高中物理学史归纳总结(新人教版)】 必修部分:(必修 1、必修2) 一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先

新人教版高中物理公式总结(全)-理科适用

一、力学 1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关) 2、重力: G = mg (g 随高度、纬度、地质结构而变化,g 极>g 赤,g 低纬>g 高纬) 3、合力:求F 1、F 2的合力的公式: θcos 2212221F F F F F ++=合 两个分力垂直时: 2221F F F +=合 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围:? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f = μN (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。 ②μ为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动 快慢以及正压力N 无关。 (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 0≤ f 静≤ f m (f m 为最大静摩擦力) 说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、万有引力: (1)公式:F=G 221r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2 (2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F 万=F 向 即 '422 222mg ma r T m r m r v m r Mm G =====πω 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 2 324GT r M π=

(完整版)重点高中物理选修3-3知识点总结归纳(最新整理)

3 6V 0 L =3 V A M v 一、分子动理论 精心整理 高三物理复习资料选修 3—3 考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同 N = 6.02 ?1023 mol -1 (3) 对微观量的估算: ①分子的两种模 型:球形和立方体(固体液体通常看成球形,空气分子占据空间 d = 看成立方体) ②利用阿伏伽德罗 0 常数联系宏观量与微观量 a.分子质量: m = M mol b.分子体积: v = V mol N A N A c 分子数量: n = M M v N A = M N A = V N A = V N A mol mol mol mol 2、分子永不停息的做无规则的热运动(布朗运动扩散现象) (1) 扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明 分子间有间隙,温度越高扩散越快 (2) 布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高, 布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀造成。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3) 热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图 1 中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图 1 图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高考物理基础知识总结

高考物理基础知识总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度s v= t (定义式) 2.有用推论2022t v -v =as 3.中间时刻速度 02t t/2v +v v =v= 4.末速度v t =v o +at 5.中间位置速度s/2v 6.位移02122t/s=vt=v t+at =v t 7.加速度0t v -v a=t 以v o 为正方向,a 与v o 同向(加速)a >0;反向则a <0 8.实验用推论Δs=aT 2 Δs 为相邻连续相等时间(T )内位移之差 9.主要物理量及单位:初速(v o ):m/s 加速度(a ):m/s 2 末速度(v t ):m/s 时间(t ):秒(s) 位移(s ):米(m ) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3) 0t v -v a=t 只是量度式,不是决定式; (4)其它相关内容:质点/位移和路程/s--t 图/v--t 图/速度与速率/。 2) 自由落体 1.初速度v o =0 2.末速度v t =gt 3.下落高度12 2h=gt (从v o 位置向下计算) 4.推论v t 2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律; (2)a=g =9.8≈10m/s 2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移012 2s=v t-gt 2.末速度v t = v o - gt (g =9.8≈10m/s 2 ) 3.有用推论v t 2 -v o 2=-2gS 4.上升最大高度H m =v o 2/2g (抛出点算起) 5.往返时间02v t=g (从抛出落回原位置的时间)

高一物理笔记总结归纳

高一物理笔记总结归纳 学习物理要学会对知识点进行归纳整理,高一物理笔记都整理好了吗?下面是小编为大家整理的高一物理笔记,希望对大家有所帮助! 高一物理笔记总结 一、运动学的基本概念 1、参考系:运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都 是相对于参考系在而言的。通常以地面为参考系。 2、质点: (1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。 (2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的 影响可以忽略。且物体能否看成质点,要具体问题具体分析。 (3)物体可被看做质点的几种情况: ①平动的物体通常可视为质点。 ②有转动但相对平动而言可以忽略时,也可以把物体视为质点。 ③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响 不能忽略时,不能把物体看做质点,反之,则可以。 【注】质点并不是质量很小的点,要区别于几何学中的“点”。 3、时间和时刻: 时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起 始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。 4、位移和路程: 位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量; 路程是质点运动轨迹的长度,是标量。 5、速度: 用来描述质点运动快慢和方向的物理量,是矢量。 (1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移 的方向相同。平均速度对变速运动只能作粗略的描述。

(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。 6、加速度:用量描述速度变化快慢的的物理量,其定义式为。 加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。 补充:速度与加速度的关系 1、速度与加速度没有必然的关系,即: (1)速度大,加速度不一定也大; (2)加速度大,速度不一定也大; (3)速度为零,加速度不一定也为零; (4)加速度为零,速度不一定也为零。 2、当加速度a与速度V方向的关系确定时,则有: (1)若a 与V方向相同时,不管a如何变化,V都增大。 (2)若a 与V方向相反时,不管a如何变化,V都减小。 二、匀变速直线运动的规律及其应用: 1、定义:在任意相等的时间内速度的变化都相等的直线运动。 2、匀变速直线运动的基本规律,可由下面四个基本关系式表示: (1)速度公式 (2)位移公式 (3)速度与位移式 (4)平均速度公式 3、几个常用的推论: (1)任意两个连续相等的时间T内的位移之差为恒量 △x=x2-x1=x3-x2=……=xn-xn-1=aT2 (2)某段时间内时间中点瞬时速度等于这段时间内的平均速度,。 (3)一段位移内位移中点的瞬时速度v中与这段位移初速度v0和末速度vt的关系为。 4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论: ①1T末,2T末,3T末……瞬时速度之比为:

高中物理基础知识总结大全

高中物理公式总结 物理定理、定律、公式表 一、质点的运动(1)------直线运动 1)匀变速直线运动 1、平均速度V平=s/t(定义式) 2、有用推论Vt2-Vo2=2as 3、中间时刻速度Vt/2=V平=(Vt+Vo)/2 4、末速度Vt=Vo+at 5、中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6、位移s=V平t=Vot+at2/2=Vt/2t 7、加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9、主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3、6km/h。 注: (1)平均速度就是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只就是量度式,不就是决定式; (4)其它相关内容:质点、位移与路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1、初速度Vo=0 2、末速度Vt=gt 3、下落高度h=gt2/2(从Vo位置向下计算) 4、推论Vt2=2gh 注: (1)自由落体运动就是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9、8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1、位移s=Vot-gt2/2 2、末速度Vt=Vo-gt (g=9、8m/s2≈10m/s2) 3、有用推论Vt2-Vo2=-2gs 4、上升最大高度Hm=Vo2/2g(抛出点算起) 5、往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:就是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1、水平方向速度:Vx=Vo 2、竖直方向速度:Vy=gt 3、水平方向位移:x=Vot 4、竖直方向位移:y=gt2/2 5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

(完整版)高中物理学史最全归纳总结

物理学史在高考中是占有一席之地的,大家不妨在假期的时候多看看这篇《物理学史汇总》,赶紧收藏吧! 1.力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)

6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 11、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

相关文档
最新文档