组合预测模型

组合预测模型
组合预测模型

组合预测模型

1灰色神经网络(GNN)预测模型

灰色神经网络预测方法是灰色预测方法和人工神经网络方法相结合的算法,即保留灰色预测方法中“累加生成” 和“累减还原” 运算,不再求参数,而是由BP神经网络来建立预测模型和求解模型参数。

利用这种灰色神经网络进行负荷预测的算法如下。

1)对电力负荷的原始数据序列进行“累加生成”运算,得到累加序列。

2)利用BP神经网络能够拟合任意函数的优势解决累加序列并非指数规律的问题。训练BP神经网络,逼近累加数据序列Y。

3)利用现有已经训练好的BP神经网络进行预测,输出累加序列的预测值。

4)将累加数据的预测值进行“累减还原”运算,得到电力负荷的原始数据序列预测值。

2果蝇优化算法(FOA)

果蝇优化算法(fruit fly optimization algorithm,FOA)是由潘文超教授于2011年提出的一种基于果蝇觅食行为推演出寻求全局优化的新方法。这是一种交互式进化计算方法,通过模仿果蝇群体发现食物的行为,FOA能够达到全局最优。在实际中FOA已经被应用于许多领域,包括交通事件,外贸出口预测,模拟滤波器的设计等。依照果蝇搜寻食物的特性,将其归纳为以下几个重要步骤。

1)参数初始化:FOA的主要参数为最大迭代次数maxgen,种群规模sizepop,初始果蝇群的位置(X_axis,Y_axis)和随机飞行距离FR。

2)种群初始化:赋予果蝇个体利用嗅觉搜寻食物之随机方向与距离。

3)种群评价:首先,由于无法得知食物的位置,需要计算果蝇到原点的距离(Dist)。再计算气味浓度判定值(S)此值为距离的倒数。通过将气味浓度判断值(S)代入气味浓度判断函数(或称为适应度函数),求出果蝇个体位置的气味浓度(Smell)。并找出群体中气味浓度值最大的果蝇个体。

4)选择操作:保留最大气味浓度值和x、y坐标,此时,果蝇通过视觉飞往的最大浓度值的位置。进入迭代寻优,重复实施步骤2)~3),并判断味道浓度是否优于前一迭代味道浓度,若是则执行步骤4)。若味道浓度不再优于先前迭代的味道浓度值,或迭代次数达到最大,循环结束。

3GNN-FOA预测模型

GNN-FOA预测模型的程序结构框图如图1所示。采用果蝇优化算法(FOA)为灰色神经网络(GNN)模型参数a,b1和b2 进行迭代动态微调,使模型侦测能力提高,并获得最佳的GNN模型参数以进行预测。详情如下。

1)参数初始化。在果蝇优化算法的参数设定上,随机初始化果蝇群体位置区间X_axis,Y_axis∈[-50,50],迭代的果蝇寻食的随机飞行距离区间FR ∈[-10,10] ,种群规模sizepop = 20 ,而迭代次数max gen = 100 。

2)初始进化。设置初始迭代次数为0,设定果蝇个体i 寻食随机飞行方向rand()和飞行距离。其中rand()表示任意值产生函数。在GNN-FOA程序中,使用两个变量

[X(i,:),Y(i,:)] 来描述果蝇个体i 的飞行距离。分别设

3)初步计算和数据预处理。计算果蝇个体i距离原点的距离Disti 和气味浓度判断值Si。其中

在GNN-FOA程序中,使用D(i,1),D(i,2),D(i,3) 来表示,用(S(i,1),S(i,2),S(i,3)) 表示Si 。将Si 输入到GNN 预测模型进行年电力负荷预测。在GNN-FOA 程序中,参数a,b1和b2由(S(i,1),S(i,2),S(i,3)) 表示,分别设

通过年负荷预测结果,气味浓度值Smelli(或称为适应度函数)便可计算出来。该气味浓度Smelli 通过均方差(RMSE)来表征网络输出预测值与实际值之间的误差。4)产生种群后代。种群后代通过果蝇算法步骤2)~3)生成,然后输入到GNN模型中,重新计算气味浓度值,迭代加一,置gen = gen + 1。

5)循环结束。当达到最大迭代次数时,停止条件满足,并获得GNN模型的最佳参数。若否,则返回执行步骤2)。

4组合程序

close all

clear

clc

% 16084

IN=1:42;

sr=zeros(1,42);

sr(1)=1080.94;

sr(2)=1083.03;……

sr(41)=1728.79;

sr(42)=1871.16;

OUT=sr;

[X,minx,maxx,T,mint,maxt]=premnmx(IN,OUT);

q=50;

q1=0;

while(q1

q=q0;

[M,N]=size(X);

[L,N]=size(T);

net=newff(minmax(X),[q,L],{'tansig','purelin'},'trainlm');

net.trainParam.lr=0.05;

net.trainParam.epochs=10000;

net.trainParam.goal=1e-6;

[net,tr]=train(net,X,T);

Y=sim(net,X);

Y=postmnmx(Y,mint,maxt);

%灰色关联分析,调整网络隐层节点

p=0.5;

e=0.5;

%此两个系数的设定是根据一些论文,已经实验的尝试得出的an=repmat(net.b{1},1,N);

op=tansig(net.iw{1,1}*X+an);

op1=op';

T0=T';

T1=repmat(T0,1,q);

DIF=abs(T1-op1);

MIN=min(min(DIF));

MAX=max(max(DIF));

Si=(MIN+p*MAX)./(DIF+p*MAX);

ri=sum(Si)/N;

D=find(ri>=e);

[q0,q1]=size(D);

q0=q1;

end

q0;

ri;

D;

q=q1;

%进行测试

PRD=1:42;

PRD=PRD';

P=tramnmx(PRD,minx,maxx);

TNEW=sim(net,P');

TNEW=postmnmx(TNEW,mint,maxt);

YY=OUT;

YC=TNEW;

figure

plot(t,YY,'r*',t,YC,'b--+')

RES0=YC-YY;

res0=RES0./YY;

figure

bar(t,res0)

%***随机初始果蝇群体位置。

X_axis=10*rand();

Y_axis=10*rand();

%***设置参数。

maxgen=100; %迭代次数

sizepop=20; %种群规模

%***果蝇寻优开始,利用嗅觉寻找食物。

for i=1:sizepop

%***附与果蝇个体利用嗅觉搜寻食物之随机方向与距离。

X(i)=X_axis+2*rand()-1;

Y(i)=Y_axis+2*rand()-1;

%***由于无法得知食物位置,因此先估计与原点之距离(Dist),再计算味道浓度判定值(S),此值为距离之倒数。

D(i)=(X(i)^2+Y(i)^2)^0.5;

S(i)=1/D(i);

%***味道浓度判定值(S)代入味道浓度判定函数(或称为Fitness function)以求出该果蝇个体位置的味道浓度(Smelli)。

Smell(i)=-5+S(i)^2;

end

%***找出此果蝇群体的中味道浓度最低的果蝇(求极小值)。[bestSmell bestindex]=min(Smell);

%***保留最佳味道浓度值与x、y 坐标,此时果蝇群体利用视觉往该位置飞去。

X_axis=X(bestindex);

Y_axis=Y(bestindex);

Smellbest=bestSmell;

%***果蝇迭代寻优开始

for g=1:maxgen

%***附与果蝇个体利用嗅觉搜寻食物之随机方向与距离。

for i=1:sizepop

X(i)=X_axis+2*rand()-1;

Y(i)=Y_axis+2*rand()-1;

%***由于无法得知食物位置,因此先估计与原点之距离(Dist),再计算味道浓度判定值(S),此值为距离之倒数。

D(i)=(X(i)^2+Y(i)^2)^0.5;

S(i)=1/D(i);

%***判定值(S)代入判定函数以求出该果蝇位置的味道浓度(Smelli)。Smell(i)= -5+S(i)^2;

end

%***找出此果蝇群体的中味道浓度最低的果蝇(求极小值)。[bestSmell bestindex]=min(Smell);

%***判断味道浓度是否优于前一迭代味道浓度,若是则保留最佳味道浓度值与x、y 坐标,此时果蝇群体利用视觉往该位置飞去。

if bestSmell

X_axis=X(bestindex);

Y_axis=Y(bestindex);

Smellbest=bestSmell;

end

%***每代最优Smell 值纪录到yy 数组中,并记录最优迭代坐标

yy(g)=Smellbest;

Xbest(g)=X_axis;

Ybest(g)=Y_axis;

end

%***绘制迭代味到浓度与果蝇飞行路径趋势图

figure(1)

plot(yy)

title('Optimization process','fontsize',12)

xlabel('Iteration Number','fontsize',12);

ylabel('Smell','fontsize',12);

figure(2)

plot(Xbest,Ybest,'b.');

title('Fruit fly flying route','fontsize',14) xlabel('X-axis','fontsize',12);

ylabel('Y-axis','fontsize',12);

【CN109992608A】一种基于频域的多模型融合预测方法和系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910230755.3 (22)申请日 2019.03.26 (71)申请人 浙江大学 地址 310013 浙江省杭州市西湖区余杭塘 路866号 (72)发明人 姜晓红 杜定益 吴健 孙浩  吴朝晖  (74)专利代理机构 杭州天勤知识产权代理有限 公司 33224 代理人 胡红娟 (51)Int.Cl. G06F 16/2458(2019.01) G06F 17/14(2006.01) (54)发明名称 一种基于频域的多模型融合预测方法和系 统 (57)摘要 本发明公开了一种基于频域的多模型融合 预测方法和系统,包括:建立数据库实时存储监 控器测量所得的数据;对原始时序数据预处理, 包括异常值检测及缺失值处理;对干净的时序数 据通过小波变换转为频域数据;建立循环神经网 络及可加性回归模型对频域系数进行预测;选取 最优权重和阈值得到最佳预测结果。本发明通过 对预处理之后的时序数据变换到频域上进行分 析处理,并融合不同模型得到最佳预测结果,克 服了传统时序预测模型预测周期短,预测精度低 等缺点。权利要求书1页 说明书6页 附图3页CN 109992608 A 2019.07.09 C N 109992608 A

权 利 要 求 书1/1页CN 109992608 A 1.一种基于频域的多模型融合预测系统,包括计算机存储器、计算机处理器以及存储在所述计算机存储器中并可在所述计算机处理器上执行的计算机程序,其特征在于,所述计算机存储器中存有以下模块: 数据库系统模块,用于存储监控器测量得到的原始时序数据,同时提供与其他模块之间的数据连接查询; 数据预处理模块,用于对数据库系统模块存储的原始时序数据进行预处理; 频域变换模块,用于将预处理后的原始时序数据进行频域变换,转为频域特征数据并进行存储; 趋势预测模块,内含循环神经网络模型和可加性回归模型,用于对频域特征数据中的高频与低频部分进行系数预测,并将结果重构为时序时间数据; 模型融合模块,用于将趋势预测模块中重构后得到的时序时间数据进行融合,输出最优预测数据。 2.根据权利要求1所述的基于频域的多模型融合预测系统,其特征在于,所述数据库系统模块包括若干张用于存储实时数据的数据库表。 3.根据权利要求1所述的基于频域的多模型融合预测系统,其特征在于,所述数据预处理模块包括异常值检测和缺失值处理两个部分。 4.根据权利要求1所述的基于频域的多模型融合预测系统,其特征在于,所述频域变换模块进行频域变换时,采用DB3小波作为基小波,分解层数为三层。 5.根据权利要求1所述的基于频域的多模型融合预测系统,其特征在于,趋势预测模块中,所述的循环神经网络采用LSTM模型,迭代次数设置为2000,单隐层中节点个数为6,并采用Adam算法对梯度下降过程进行优化;所述的可加性回归模型采用prophet模型,增长趋势采用logistics模型,季节性周期设置为7。 6.根据权利要求1所述的基于频域的多模型融合预测系统,其特征在于,所述模型融合模块通过权重因子ρ和突变点阈值a将趋势预测模块中重构后得到的时序时间数据进行融合;所述权重因子ρ采用网格法逐一试验分析,选取最佳权重,所述突变点阈值a采用与平均值的偏差超过三倍标准差的值作为临界阈值。 7.一种利用权利要求1~6任一所述的基于频域的多模型融合预测系统进行预测的方法,其特征在于,包括以下步骤: (1)将监控器实时测量得到的原始时序数据存储到数据库系统模块中; (2)利用数据预处理模块对原始时序数据进行预处理,包括剔除错误值、空值以及填补缺失值; (3)使用频域变换模块将预处理后的原始时序数据进行频域变换,转为频域特征数据并进行存储; (4)分别采用循环神经网络模型及可加性回归模型对频域特征数据的高频与低频部分进行预测,得到相应的预测结果,之后通过小波重构算法将预测得到的频域系数重构为时序时间数据; (5)将重构后得到的时序时间数据进行融合,输出最优预测数据。 8.根据权利要求7所述的基于频域的多模型融合预测系统进行预测的方法,其特征在于,步骤(5)中,通过权重因子ρ和突变点阈值a对重构后得到的时序时间数据进行融合。 2

基于BP神经网络的预测模型

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

相关系数模型(相关系数)组合预测模型及应用

相关系数模型(相关系数)组合预测模型及应用第23卷第2期 科技通报 BULLETINOFSCIENCEANDTECHNOLOGY Vol.23No.2Mar.2007 2007年3月 组合预测模型及应用 李 (南昌航空工业学院 曦 数学与信息科学学院,江西南昌330034)

摘要:通过主成分分析的方法,将非线性预测中的二次多项式预测、指数预测及灰色预测等3种不同 的预测方法组合在一起,提出了一种新的组合预测方法,并利用该方法对江西省的国民生产总值进行了预测。 关键词:灰色预测;非线性回归;组合预测;主成分分析:O159 :A :1001-7119(2007)02-0159-04 TheApplicationofTheModelforCombinationForecasting LIXi (DepartmentofInformationandComputationalScience,NanchangInstituteofAeronauticalTechnology,

Nanchang,Jangxi,330034,China) Abstract:Basedonthetwo-polynomialregressionforecasting,exponentregressionforecastingandgrayforcasting,anewkindofcombinationforecasting(method)ispresentbyapplyingthemethodofprincipalcomponentanalysis.TheGDPofJiangxiprovinceisforecastedbythismethod. Keywords:grayforecasting;nonlinearityregression;combinationforecasting;principalcomponentanalysis 经济指标的准确预测是国家对宏观经济正确调控的必要前提,但经济系统是一个非常复杂的系非线性的、不确定性的作用关系;因此要准确地预测某一趋势,必须从多个方面统,其中存在着时变的、

基于神经网络的预测控制模型仿真

基于神经网络的预测控制模型仿真 摘要:本文利用一种权值可以在线调整的动态BP神经网络对模型预测误差进行拟合并与预测模型一起构成动态组合预测器,在此基础上形成对模型误差具有动态补偿能力的预测控制算法。该算法显著提高了预测精度,增强了预测控制算法的鲁棒性。 关键词:预测控制神经网络动态矩阵误差补偿 1.引言 动态矩阵控制(DMC)是一种适用于渐近稳定的线性或弱非线性对象的预测控制算法,目前已广泛应用于工业过程控制。它基于对象阶跃响应系数建立预测模型,因此建模简单,同时采用多步滚动优化与反馈校正相结合,能直接处理大时滞对象,并具有良好的跟踪性能和较强的鲁棒性。 但是,DMC算法在实际控制中存在一系列问题,模型失配是其中普遍存在的一个问题,并会不同程度地影响系统性能。DMC在实际控制中产生模型失配的原因主要有2个,一是诸如建模误差、环境干扰等因素,它会在实际控制的全程范围内引起DMC的模型失配;二是实际系统的非线性特性,这一特性使得被控对象的模型发生变化,此时若用一组固定的阶跃响应数据设计控制器进行全程范围的控制,必然会使实际控制在对象的非建模区段内出现模型失配。针对DMC模型失配问题,已有学者进行了大量的研究,并取得了丰富的研究成果,其中有基于DMC控制参数在线辨识的智能控制算法,基于模型在线辨识的自校正控制算法以及用神经元网络进行模型辨识、在辨识的基础上再进行动态矩阵控制等。这些算法尽管进行在线辨识修正对象模型参数,仍对对象降阶建模误差(结构性建模误差)的鲁棒性不好,并对随机噪声干扰较敏感。针对以上问题,出现了基于误差校正的动态矩阵控制算法。这些文献用基于时间序列预测的数学模型误差代替原模型误差,得到对未来误差的预测。有人还将这种误差预测方法引入动态矩阵控制,并应用于实际。这种方法虽然使系统表现出良好的稳定性,但建立精确的误差数学模型还存在一定的困难。 本文利用神经网络通过训练学习能逼近任意连续有界函数的特点,建立了一种采用BP 神经网络进行预测误差补偿的DMC预测控制模型。其中神经网络预测误差描述了在预测模型中未能包含的一切不确定性信息,可以归结为用BP神经网络基于一系列过去的误差信息预测未来的误差,它作为模型预测的重要补充,不仅降低建立数学模型的负担,而且还可以弥补在对象模型中已简化或无法加以考虑的一切其他因素。 本文通过进行仿真,验证了基于神经网络误差补偿的预测控制算法的有效性及优越性,

BP神经网络预测模型及应用

B P神经网络预测模型及 应用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

B P神经网络预测模型及应用 摘要采用BP神经网络的原理,建立神经网络的预测模型,并利用建立的人工神经网络训练并预测车辆的销售量,最后得出合理的评价和预测结果。 【关键词】神经网络模型预测应用 1 BP神经网络预测模型 BP神经网络基本理论 人工神经网络是基于模仿生物大脑的结构和功能而构成的一种信息处理系统。该网络由许多神经元组成,每个神经元可以有多个输入,但只有一个输出,各神经元之间不同的连接方式构成了不同的神经网络模型,BP网为其中之一,它又被称为多层前馈神经网络。 BP神经网络预测模型 (1)初始化,给各连接权值(wij,vi)及阐值(θi)赋予随机值,确定网络结构,即输入单元、中间层单元以及输出层单元的个数;通过计算机仿真确定各系数。 在进行BP网络设计前,一般应从网络的层数、每层中的神经元个数、初始值以及学习方法等方面进行考虑,BP网络由输入层、隐含层和输出层组成。隐含层神经元个数由以下经验公式计算: (1)

式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7. BP网络采用了有一定阈值特性的、连续可微的sigmoid函数作为神经元的激发函数。采用的s 型函数为: (2) 式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7.计算值需经四舍五入取整。 (2)当网络的结构和训练数据确定后,误差函数主要受激励函数的影响,尽管从理论分析中得到比的收敛速度快,但是也存在着不足之处。当网络收敛到一定程度或者是已经收敛而条件又有变化的时候,过于灵敏的反映会使得系统产生震荡,难于收敛。因此,对激励函数进行进一步改进,当权值wij (k)的修正值Δwij(k) Δwij(k+1)<0时,,其中a为大于零小于1的常数。这样做降低了系统进入最小点时的灵敏度,减少震荡。 2 应用 车辆销售量神经网络预测模型 本文以某汽车制造企业同比价格差、广告费用、服务水平、车辆销售量作为学习训练样本数据。如表1。 表1 产品的广告费、服务水平、价格差、销售量 月份广告费 (百万元)服务水平价格差

旅游需求预测方法与模型评述

2008年9月 甘肃省经济管理干部学院学报 Sep te mber 2008第21卷第3期 Journal of Gansu Econom ic Manage ment I nstitute Vol 121 No 13 旅游需求预测方法与模型评述 3 殷书炉,杨立勋 (西北师范大学经济管理学院,甘肃兰州 730070) 摘 要:对旅游需求预测研究始于上世纪60年代,绝大多数研究成果出现于80年代以后,然而对此类研究进行整理和述评的论文较少。因此,文章系统论述了各种方法与模型在旅游需求预测中的应用,并对其预测效果做了简略评价,同时指出了将来的研究重点和发展趋势。 关键词:旅游需求;预测模型;发展趋势 中图分类号:F224.9;F59 文献标识码: A 文章编号:100924830(2008)0320042204 一、引言 随着经济全球化和国际交流的不断深化,国际旅游业得到了长足的发展。旅游业对于平衡国际收支,改善贸易结构具有不可替代的作用,同时又是扩大对外开放、促进对外交流的重要手段。因此在过去20年里旅游研究也得到了前所未有的发展,而旅游需求模型与预测更是研究的重点。 本文在综合介绍旅游需求预测中各种模型运用的基础之上,对这些模型的优缺点做出相应的评价,同时分析了今后旅游预测的研究重点和发展趋势。 二、旅游需求预测中模型的应用 (一)计量模型 经济预测方法常用的有两类,一类是解释性预测方法,即找出预测变量的相关影响因素,建立回归模型,进行分析和预测。另一类是时间序列分析方法,它只依赖于预测变量的历史观测数据和其背后的规律,通过相应的数学模型拟合出变化趋势,从而进行预测。 Kulendran et al .(2000)[1] 研究发现误差修正模型EC M (Err or Correcti on Model )优于天真1(Naive 1)和季节性自回归移动平均法(S AR I M A )。L i et al .(2006)[2] 将误差修正模型EC M 和T VP (Ti m e Varying Para meter )两者的优点相结合而提出T VP -EC M ,并验证了比其他单一的分析方法有更好的预 测效果。线性回归L (L inear )和滞后线性模型LL (Lag L inear )在许多旅游预测中都有应用,但预测效 果都不甚理想。 近乎理想需求方法A I D S (A l m ost I deal De mand Syste m )有很好的经济学理论基础,它特别适合于旅 游需求的弹性分析。L i,Song,W itt (2006)[3] 将T VP 分别和EC M -LA I D S 与长期线性近乎理想需求方法LR -LA I D S 组成T VP -EC M -LA I D S,T VP -LR -LA I D S,并且证明这种组合模型的预测能力更好。 联立方程组主要强调的是各单个方程之间的内在联系,在社会管理方面应用较多,比如对G DP 、电 力需求的预测。Turner,W itt (2001)[4] 运用联立方程组探讨了假日游、商务游和探亲游的内在关联,并对旅游需求做了分析与预测。 (二)时间序列模型 由于旅游业存在着明显的季节性,因而季节这个显著特征变量成了重要的考察因素。融合季节性的自回归移动平均法(S AR I M A )也就得到了广泛研 究和运用。Goh ,La w (2002)[5] 在对香港的旅游预测中,选用了多种时间序列模型,分别是天真法Na 2ive 、移动平均法MA 、指数平滑法ES 、自回归移动平 — 24—3 收稿日期:2008-04-01 作者简介:殷书炉(1982-),男,安徽太湖人,西北师范大学经济管理学院研究生,研究方向:数量经济学; 杨立勋(1965-),男,甘肃武山人,西北师范大学教授,研究方向:宏观经济统计分析及国民经济核算。

运筹学实验1预测模型

实验一、需求预测模型 预测是用科学的方法预计、推断事物发展的必要性或可能性的行为,即根据过去和现在预计未来,由已知推断未知的过程。 预测分析的具体方法很多,概括起来主要有两种:定量预测法和定性预测法。定量预测法是在掌握与预测对象有关的各种要素的定量资料的基础上,运用现代数学方法进行数据处理,据以建立能够反映有关变量之间规律性联系的各类预测模型的方法体系。定量预测法又可分为时间系列预测法和因果关系预测法。定性预测法是由有关方面的专业人员根据个人经验和知识,结合预测对象的特点进行综合分析,对事物的未来状况和发展趋势做出推测的预测方法。它一般不需要进行复杂的定量分析,适用于缺乏完备的历史资料或有关变量之间缺乏明显的数量关系等情况下的预测。定性预测法又可分为德尔菲法、各部门主管集体讨论法、销售人员意见汇集法、消费市场调查法等。 定性预测法和定量预测法在实际应用中相互补充、相辅相成。定量分析法虽然较精确,但许多非计量因素无法考虑;定性分析法虽然可以将非计量因素考虑进去,但估计的准确性在很大程度上受预测人员的经验和素质的影响,难免产生预测结论因人而异,带有一定的主观随意性。因此,在实际工作中常常是二者结合,相互取长补短,以提高预测的准确性和预测结论的可信度。 不管何种机构,如果按照以下步骤进行预测,将会使自己的预测结果更加有效:⑴明确定预测目标;⑵将需求规划和预测结合起来;⑶识别影响需求预测的主要因素;⑷理解和识别顾客群;⑸决定采用适当的预测方法;⑹确定预测效果的评估方法和误差的测度方法。 通过上面的介绍,我们知道,需求预测的方法很多,而在本次实验中,我们主要训练学生如何使用Excel来完成定量预测法中时间序列预测法的计算和分析工作。 一、实验目的 1、掌握如何建立时间序列预测模型,并能根据不同的系统需求框架选择合适的预 测方法。 2、掌握如何用Excel完成时间序列预测模型的计算和数据分析工作,包括回归分 析、预测误差的测定。 二、实验内容 1、时间序列预测法的相关知识 任何预测方法的目的都是预测系统需求部分和估计随机需求部分。系统需求部分的数据在一般形式下包含有需求水平、需求趋势和季节性需求。它也可能表现为如下列方程所示的多种形式。 ○复合型:系统需求=需求水平×需求趋势×季节性需求 ○附加型:系统需求=需求水平+需求趋势+季节性需求 ○混合型:系统需求=(需求水平+需求趋势)×季节性需求 运用于既定预测的系统需求部分的具体形式,取决于需求的性质。针对每种形式,企业都可以采用静态法和适应法这两种方法。 下面我们将通过一个实例来阐述时间序列预测法中的静态法和适应法,在预测过程中,我们假定系统需求是混合型,即系统需求=(需求水平+需求趋势)×季节性需求。 2、引例 天然气在线公司利用现有的管道设施供应天然气,同时满足各个分销商的网上紧急订购需求。该公司自2003年第二季度成立以来,需求一直在增长。计划年度将从某给定年度的第二季度开始,并延续到下一年的第一季度。公司正在规划其必备的生产能力及从2006年第

多模型融合推荐算法——从原理到实践

1 研发背景 互联网时代也是信息爆炸的时代,内容太多,而用户的时间太少,如何选择成了难题。电商平台里的商品、媒体网站里的新闻、小说网站里的作品、招聘网站里的职位……当数量超过用户可以遍历的上限时,用户就无所适从了。 对海量信息进行筛选、过滤,将用户最关注最感兴趣的信息展现在用户面前,能大大增加这些内容的转化率,对各类应用系统都有非常巨大的价值。 搜索引擎的出现在一定程度上解决了信息筛选问题,但还远远不够,其存在的两个主要弊端是:第一搜索引擎需要用户主动提供关键词来对海量信息进行筛选。当用户无法准确描述自己的需求时,搜索引擎的筛选效果将大打折扣,而用户将自己的需求和意图转化成关键词的过程有时非常困难(例如“找家附近步行不太远就可以到的餐厅,别太辣的”)。更何况用户是懒惰的,很多时候都不愿意打字。第二是搜索结果往往会照顾大多数用户的点击习惯,以热门结果为主,很难充分体现出个性化需求。 解决这个问题的最好工具就是——推荐系统(Recommendation System)。 推荐系统的效果好坏,体现在推荐结果的用户满意度上,按不同的应用场景,其量化的评价指标包括点击率、成交转化率、停留时间增幅等。为了实现优秀的推荐效果,众多的推荐算法被提出,并在业界使用。但是其中一类方法非常特殊,我们称为多模型融合算法。融合算法的意思是,将多个推荐算法通过特定的方式组合的方法。融合在推荐系统中扮演着极为重要的作用,本文结合达观数据的实践经验为大家进行系统性的介绍。 为什么需要融合推荐算法 推荐系统需要面对的应用场景往往存在非常大的差异,例如热门/冷门的内容、新/老用户,时效性强/弱的结果等,这些不同的上下文环境中,不同推荐算法往往都存在不同的适用场景。不存在一个推荐算法,在所有情况下都胜过其他的算法。而融合方法的思想就自然而然出现了,就是充分运用不同分类算法各种的优势,取长补短,组合形成一个强大的推荐框架。俗话说就叫“三个臭皮匠顶个诸葛亮”。 在介绍融合方法前,先简单介绍几类常见推荐算法的优缺点 基于物品的协同过滤(Item-based Collaborative Filtering)是推荐系统中知名度最高的方法,由亚马逊(Amazon)公司最早提出并在电商行业内被广泛使用。

多模型拟合与组合预测

多模型拟合与组合预测 对时间序列建模好比替人物画速写;简单几笔素描突出人的特点并由此推测人物个性。时间序列模型也能模拟数据特征、提炼数据信息、预测数据规律。然而,正如每张素描仅能反映人物某一侧面,多个角度的素描才能完整逼真人物形象,非线性复杂时间序列的数学模型仅是该序列的某种简化和抽 象,其所包含 的变量和参数必定是有所选择并十分有限的。不同模型对同一序列的描述往往各有特点、各有适用场合、也各有不足之处。理论和实践表明,多模型的拟合与组合预测能提高模拟的功效和预测的精度。 事实上,在预测实践中,对于同个问题,我们常采用不同的预测方法。不同的预测方法其预测精度往往也不相同。一般是以预测误差平方和作为评价预测方法优劣的标准,从各种预测方法中选取预测误差平方和最小的预测方法。不同的预测方法往往能提供不同的有用信息,如果简单地将预测误差平方和较大的方法舍弃,将推动一些有用的信息。科学的作法是将不同的预测方法进行适当组合,形成组合预测方法。其目的是综合利用各种预测方法所提供的信息,以提高预测精度。 早在1954年,美国人Schmitt 曾经采用组合预测方法对美国37个最大城市的人口进行预测使预测精度提高。1959年,J.M.Bate t C 。W 。J 。G 拒有对组合预测方法进行比较系统的研究,研究成果引起预测学者的重视。此后,国外关于组合预测的研究成果层出不究,我国近十几年也很重视组合预测的研究,取得一系列研究成果。 采用组合预测的关键是确定单个预测方法的加权系数。设对于同一个问题有 )2(≥n 种预测方法。给出如下记号:t y 为实际观察值;it f 为第i 种方法的预测值; it t it f y e -=为第i 种方法的预测误差;i k 为第i 种方法的加权系数, ∑∑====n i n i it i t i f k f k 1 1 ;1为组合预测方法的预测值;t t t f y e -=为组合预测方法的预测 误差,于是∑==-=n i it i t t t f k f y e 1 。其中,N t n i ,,2,1;,,2,1 ==。 记组合预测方法的预测误差平方和∑==N i t e J 1 2,则 ?? ????=∑∑ ∑ ===)(11 1 N t jt it j i n j n i e e k k J 记组合预测方法的预测加权系数向量为T n n k k k ],,,[21 =K ,第i 种预测方法的预测误差向量为T iN i i i e e e ],,,[21 =E ,预测误差矩阵为,,[21E E e = ],n E ,于是

组合预测模型

组合预测模型 1灰色神经网络(GNN)预测模型 灰色神经网络预测方法是灰色预测方法和人工神经网络方法相结合的算法,即保留灰色预测方法中“累加生成” 和“累减还原” 运算,不再求参数,而是由BP神经网络来建立预测模型和求解模型参数。 利用这种灰色神经网络进行负荷预测的算法如下。 1)对电力负荷的原始数据序列进行“累加生成”运算,得到累加序列。 2)利用BP神经网络能够拟合任意函数的优势解决累加序列并非指数规律的问题。训练BP神经网络,逼近累加数据序列Y。 3)利用现有已经训练好的BP神经网络进行预测,输出累加序列的预测值。 4)将累加数据的预测值进行“累减还原”运算,得到电力负荷的原始数据序列预测值。 2果蝇优化算法(FOA) 果蝇优化算法(fruit fly optimization algorithm,FOA)是由潘文超教授于2011年提出的一种基于果蝇觅食行为推演出寻求全局优化的新方法。这是一种交互式进化计算方法,通过模仿果蝇群体发现食物的行为,FOA能够达到全局最优。在实际中FOA已经被应用于许多领域,包括交通事件,外贸出口预测,模拟滤波器的设计等。依照果蝇搜寻食物的特性,将其归纳为以下几个重要步骤。 1)参数初始化:FOA的主要参数为最大迭代次数maxgen,种群规模sizepop,初始果蝇群的位置(X_axis,Y_axis)和随机飞行距离FR。 2)种群初始化:赋予果蝇个体利用嗅觉搜寻食物之随机方向与距离。

3)种群评价:首先,由于无法得知食物的位置,需要计算果蝇到原点的距离(Dist)。再计算气味浓度判定值(S)此值为距离的倒数。通过将气味浓度判断值(S)代入气味浓度判断函数(或称为适应度函数),求出果蝇个体位置的气味浓度(Smell)。并找出群体中气味浓度值最大的果蝇个体。 4)选择操作:保留最大气味浓度值和x、y坐标,此时,果蝇通过视觉飞往的最大浓度值的位置。进入迭代寻优,重复实施步骤2)~3),并判断味道浓度是否优于前一迭代味道浓度,若是则执行步骤4)。若味道浓度不再优于先前迭代的味道浓度值,或迭代次数达到最大,循环结束。 3GNN-FOA预测模型 GNN-FOA预测模型的程序结构框图如图1所示。采用果蝇优化算法(FOA)为灰色神经网络(GNN)模型参数a,b1和b2 进行迭代动态微调,使模型侦测能力提高,并获得最佳的GNN模型参数以进行预测。详情如下。 1)参数初始化。在果蝇优化算法的参数设定上,随机初始化果蝇群体位置区间X_axis,Y_axis∈[-50,50],迭代的果蝇寻食的随机飞行距离区间FR ∈[-10,10] ,种群规模sizepop = 20 ,而迭代次数max gen = 100 。 2)初始进化。设置初始迭代次数为0,设定果蝇个体i 寻食随机飞行方向rand()和飞行距离。其中rand()表示任意值产生函数。在GNN-FOA程序中,使用两个变量 [X(i,:),Y(i,:)] 来描述果蝇个体i 的飞行距离。分别设 3)初步计算和数据预处理。计算果蝇个体i距离原点的距离Disti 和气味浓度判断值Si。其中

需求预测模型

浅析卷烟需求预测的基本方法当前,卷烟市场呈现“工、商、零”三维一体的新型格局,市场的卷烟货源投放来自于卷烟需求预测,卷烟需求预测工作的虚实影响到卷烟市场的货源满足率。作为最贴近市场、最了解市场、最熟悉客户的客户经理,我们无疑在卷烟市场需求预测方面占有举足轻重的地位,其预测准确率的高低直接关系到“按客户订单组织货源”的可行性及“卷烟市场营销上水平”的进程。 卷烟需求预测就是在卷烟市场调研和对卷烟销售历史数据分析的基础上,运用科学分析方法,对市场需求及未来变化趋势进行分析研究,从而预测未来市场需求和变化趋势的过程。卷烟需求预测一般分为定性预测法和定量预测法。定性预测法是利用对业务知识熟悉、具有丰富经验和较强的综合分析能力的业务人员或专家学者,根据卷烟销售历史资料和相关资料,对卷烟未来销售趋势做出性质上的判断和预测。 定量预测法则是利用销售历史资料,运用一定的数学分析方法和数学模型,找到数据或影响变量之间的规律性联系,以此对卷烟需求或销售的变化趋势做出定量的分析和预测。 卷烟是一种特殊消费商品,其销量以时间为序列,呈现一定的销售规律,但由于消费者的不确定因素,单靠定性或定量预测方法是不能准确预测其销量的。在实际工作中,往往是定性和定量分析和预测方法结合使用。以定性分析确定卷烟市场需求发展趋势,然后以定量预测方法确定数学模型,从而对卷烟市场需求和销售变化

情况做出准确和精确的判断和预测。下面,我将结合“镇巴辖区卷烟销售情况”,对现用的卷烟需求预测方法之“移动平均法”做以实例说明。一、现有方法介绍: <一)、方法说明: 移动平均预测法是一种重要的时间预测方法,它能反映数据的变化趋势,具有较好的修匀历史数据、消除随机波动影响的作用。对具有长期趋势变动和季节性变动的时间序列数据,经过移动平均调整后,可以消除不规律的变动,从而较好地揭示经济现象的长期发展趋势。<二)、计算公式: n y y y M n t t t t ---+++= K 211 注: 1 t M 为第t 期的移动平均值, t y 代表第t 期的实际销量,n 代表平均预测法的跨 度周期<通常取n=3、n=5) <三)、方法步骤: 见下表,以镇巴2018年5月份需求预测为例: 镇巴2018年5月份需求预测(移动平均法>

需求预测方法 (2)

需求预测方法 常用的物资需求预测方法主要包括基于时间序列模型的移动平均预测法、指数平滑预测法、趋势外推预测法等;基于因果分析模型的回归分析预测法,基于统计学习理论以及结构风险最小原理的支持向量机预测方法,基于人工智能技术的人工神经网络算法。归纳如图1: 图1:物资需求预测方法 一、 时间序列法 1.定义:将预测对象按照时间顺序排列起来,构成一个所谓的时间序列,从所构成的这一组时间序列过去的变化规律,推断今后变化的可能性及变化趋势、变化规律,就是时间序列预测法。 2.概况: 时间序列法主要考虑以下变动因素:①趋势变动,②季节变动,③循环变动,④不规则变动。 若以S t ,T t ,C t ,I t 表示时间序列的季节因素S t ,长期趋势波动、季节性变动、不规则变动.则实际观测值与它们之间的关系常用模型有 加法模型: 乘法模型: 混合模型: 时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。 t t t t I S T x ++=t t t t I S T x ??=)() )t t t t t t t t I T S x b I T S x a +?=+?=

3.时间序列常用分析方法:移动平均法、指数平滑法、季节变动法等 (1)移动平均法 ①简单移动平均法:将一个时间段的数据取平均值作为最新时间的预测值。该时间段根据要求取最近的。例如:5个月的需求量分别是10,12,32,12,38。预测第6个月的需求量。 =27。 可以选择使用3个月的数据作为依据。那么第6个月的预测量Q=32+12+38 3 ②加权移动平均法:将每个时段里的每组数根据时间远近赋上权重。例如:上个例子,3个月的数据,可以按照远近分别赋权重0.2,0.3,0.5。那么第6个月的预测量Q=0.2×32+0.3×12+0.5×38=29(只是在简单移动平均的基础上考虑了不同时段影响的权重不同,简单移动平均默认权重=1.) (2)指数平滑法 基本思想:预测值是以前观测值的加权和,且对不同的数据给予不同的权数,新数据给予较大的权数,旧数据给予较小的权数。 指数平滑法的通用算法: 指数平滑法的基本公式:St=aYt+(1-a)St-1 式中, St--时间t的平滑值; Yt--时间t的实际值; St-1--时间t-1的平滑值; a--平滑常数,其取值范围为[0,1] 具体方法:一次指数平滑、二次指数平滑、三次指数平滑。 方法的选取:指数平滑方法的选用,一般可根据原数列散点图呈现的趋势来确定。当时间数列无明显的趋势变化,可用一次指数平滑预测。如呈现直线趋势,选用二次指数平滑法;若实际数据序列呈非线性递增趋势,采用三次指数平滑预测方法。如呈现抛物线趋势,选用三次指数平滑法。或者,当时间序列的数据经二次指数平滑处理后,仍有曲率时,应用三次指数平滑法。 (3)季节变动法 根据季节变动特征分为:水平型季节变动和长期趋势季节变动 ①水平型季节变动: 是指时间序列中各项数值的变化是围绕某一个水平值上下周期性的波动。若时间序列呈水平型季节变动,则意味着时间序列中不存在明显的长期趋势变动而仅有季节变动和不规则变动。

组合预测方法中的权重算法及应用.

组合预测方法中的权重算法及应用 [ 08-09-19 16:57:00 ] 作者:权轶张勇 传编辑:Studa_hasgo122 摘要系统地分析了组合预测模型的权重确定方法,并估计各种权重的理论精度,以此指导其应用。文章还首次提出用主成分分析确定组合模型权重的方法,最后以短期(1年)负荷预测为例,检验各种权重下组合预测模型的精度。 关键词组合模型权重预测精度负荷预测 1 常用的预测方法及预测精度评价标准 正确地预测电力负荷,既是社会经济和居民生活用电的需要,也是电力市场健康发展的需要。超短期负荷预测,可以合理地安排机组的启停,保证电网安全、经济运行,减少不必要的备用;而中长期负荷预测可以适时安排电网和电源项目投资,合理安排机组检修计划,有效降低发电成本,提高经济效益和社会效益。 常用的负荷预测方法有算术平均、简单加权、最优加权法、线性回归、方差倒数、均方倒数、单耗、灰色模型、神经网络等。 囿于不同的预测模型的理论基础和所采用的信息资料的不同,上述单一预测模型的预测结果经常千差万别,预测精度有高有低,为了充分发挥各种预测模型的优点,提高预测质量,可以在各种单一预测模型的基础上建立加权平均组合预测模型。为此,必须研究组合预测模型中权重的确定方法及预测精度的理论估计。 设Y表示实际值,■表示预测值,则称Y-■为绝对误差,称■为相对误差。有时相对误差也用百分数■×100%表示。分析预测误差的指标主要有平均绝对误差、最大相对误差、平均相对误差、均方误差、均方根误差和标准误差等。 2 组合预测及其权重的确定 现实的非线性系统结构复杂、输入输出变量众多,采用单个的模型或部分的因素和指标仅能体现系统的局部,多个模型的有效组合或多个变量的科学综合才能体现系统的整体特征,提高预测精度。 为了表达和书写方便,下面从组合预测的角度来描述模型综合的方法和类型。设{xt+l},(t=1,2,...,T)为观测值序列,对{xt+l},(l=1,2,...,L)用J个不同的预测模型得到的预测值为xt+l,则组合模型为: ■T+L=■*9棕j■T+L(j) 式中,*9棕j(j=1,2,…,J)为第j个模型的权重,为保持综合模型的无偏性,*9棕j应满足约束条件■*9棕j=1 确定权重常用的方法有专家经验、算术平均法、方差倒数法、均方倒数法、简单加权法、离异系数法、二项式系数法、最优加权法和主成分分析法等等。下面仅简单介绍最优加权法和主成分分析法。 最优加权法是依据某种最优准则构造目标函数Q,在满足约束条件的情况下 ■*9棕j=1,通过极小化Q以求得权系数。 设{xt},(t=1,2,…T)为观测序列,已经为其建立J个数学模型,则最优加权模型的组合权系数*9棕j,(j=1,2,…J)是以下规划问题的解:

基于多源融合特征提取的在线广告预测模型

第45卷第1期V o l.45 N o.1计算机工程 C o m p u te r E n g in e e rin g 2019年1月 January 2019 ?人工智能及识别技术?文章编号:1000-3428(2019)01-0178-08 文献标志码:A中图分类号:TP181 基于多源融合特征提取的在线广告预测模型 刘冶1’2’3,刘荻1!2,王砚文3’4,傅自豪2’3,印鉴1’2 (1.中山大学数据科学与计算机学院,广州510006;2.广东省大数据分析与处理重点实验室,广州510006; 3.火烈鸟网络(广州)股份有限公司数据中心,广州510630; 4.香港理工大学电子计算学系,中国香港999077) 摘要:针对智能移动终端应用平台上的广告点击率(C T R)预测问题,在传统P C端W e b平台在线广告C T R预测 方法的基础上,提出一个新的智能移动终端在线广告投放业务架构。基于此架构,构建基于机器学习的在线广告 预测模型,对用户基本信息、广告内容、用户使用环境等多源特征进行融合提取,实现在线广告C T R的精确预测。 结合移动A P P应用环境的特点,将用户历史行为数据加人预测模型进一步提高C T R预测性能。实验结果表明,该 模型具有较高的C T R预测准确率。 关键词:计算广告;广告点击率;特征选择;机器学习;预测模型 中文引用格式:刘冶,刘荻,王砚文,等.基于多源融合特征提取的在线广告预测模型[J].计算机工程,2019,45(1): 178-185,191 . 英文引用格式:L IU Y e,L IU D i,W A N G Y a n w e n,et a l.O nline advertising prediction m odel based on m u ltip le source fusion feature extraction[J].Com puter E n g in e e rin g,2019,45 (1) :178-185,191. Online Advertising Prediction Model Based on Multiple Source Fusion Feature Extraction L I U Y e1,2,3,L I U D i1,2,W A N G Y a n w e n3,4,F U Z ilia o23,Y I N Jia n1 2 (1. S c h o o l o f D a t a a n d C o m p u t e r S c i e n c e,S u n Y a t-s e n Universit;^,G u a n g z h o u 510006,C h i n a; 2. G u a n g d o n g Provincial K e y L a b o r a t o r y of B i g D a t a Anal;^sis a n d P r o c e s s i n g,G u a n g z h o u 510006,C h i n a; 3. D a t a C e n t e r,F l a m i n g o N e t w o r k C o.,L t d.,G u a n g z h o u 510630,C h i n a; 4. D e p a r t m e n t of C o m p u t i n g,T h e H o n g K o n g P o lytechnic U n i v e r s i t y,H o n g K o n g 999077,C h i n a) [A b s tr a c t] A im in g at the problem o f advertising C lic k Through Rate( C T R) prediction on application p la tfo rm,this paper proposes a novel online advertising business architecture fo r in te llig e n t m ob ile devices based on the tra d itio n a l C TR prediction m ethod on PC W eb p la tfo rm.W ith this architecture,an online advertising prediction m odel based on machine learning i s designed to integrate and extract the m u ltip le source features such as user in fo rm a tio n,advertising content and user usage e n viro n m e n t,so as to achieve accurate prediction o f online advertising C T https://www.360docs.net/doc/6b16267065.html, bined withi the characteristics o f the m obile APP application e n viro n m e n t,the C T R prediction p im proved by adding the u s e r’s h isto rica l behavior data in to the prediction m o d e l.E xperim ental results show that this m odel has a h igh accuracy rate o f C T R p re d ictio n. [K e y w o rd s] com putational a d ve rtisin g;advertising C lic k T hrough Rate( C T R); feature selection;machine pr+diction m o d+l D O I:10. 19678/j.issn.1000-3428.0049207 0概述 近年来,互联网已成为人们生活中的重要部分,在线广告也日益成为互联网经济的一个主要组成部分。随着技术的进步,在线广告的投放逐渐向精准化的方向演进[17]。在线广告的精准投放就是对投放的环境和给定的用户进行分析,通过不同算法来选择与给定用户最匹配的广告,并进行定向投放[37]。 计算广告的核心任务是在特定环境下为特定用户选择最合适的广告展示。点击率(C lic k T h ro u g h 基金项目:广东省科技计划项目(2012A010701013);广州市科技计划项目(2013J4500059);广州市天河区科技计划项目(201601Y G152, 201701Y G127);广东省大数据分析与处理重点实验室开放基金(2017017,201805)。 作者简介:刘冶(1989—),男,博士研究生,主研方向为机器学习、神经网络、网络挖掘;刘荻,硕士;王砚文,博士研究生;傅自豪,硕士;印鉴,教授、博士、博士生导师。 收稿日期"2017-11-07 修回日期"2018-01-08 E-m ail:jourkliu@ 163. c o m

相关文档
最新文档