有源频率选择表面反射特性的分析

有源频率选择表面反射特性的分析
有源频率选择表面反射特性的分析

- 1 -

有源频率选择表面反射特性的分析

寇松江

东南大学毫米波国家重点实验室,南京 (210096)

E-mail :kousongjiang@https://www.360docs.net/doc/6b18085514.html,

摘 要:本文使用CST 仿真分析软件,采用电抗加载的方法研究了有源频率选择表面的反射特性,分析了工作于X 频段的方环缝隙型、四腿环缝型、Y 形环缝型三种透波型FSS 结构,给出了其谐振特性与所加载电抗的变化关系。有源FSS 中的有源器件可等效为某种形式的电抗,通过电抗加载的分析,可为有源FSS 的分析与设计提供理论依据。

关键词:有源频率选择表面,电抗加载,反射系数

中图分类号:TN011

1.引言

频率选择表面(FSS )是军事隐身技术的重要组成部分,在军事领域有着非常重要的作用。使用无源FSS 构成的装备,一旦成型,其谐振频率、工作带宽等电磁特性均无法改变,不能灵活地适应外部电磁环境的变化。使用有源FSS ,就可以克服这些缺陷。有源FSS 是指在FSS 中加入PIN 管或变容二极管等有源器件构成的FSS 结构,通过调节有源器件偏置电压或偏置电流,可改变FSS 的谐振特性[1]。从等效电路角度看,有源器件可等效为电抗,而电抗加载可以改变FSS 的谐振特性[2] [3],因此,通过对FSS 进行电抗加载的分析,可以为有源FSS 的分析提供依据 [4]。

本文使用CST 仿真分析软件,利用电抗加载的方法研究有源FSS 。首先对文献中记载的算例进行了仿真分析,并与文献结果进行比对,证明了此种分析方法的可行性;然后分析了工作于X 频段的方环缝隙型、四腿环缝型、Y 形环缝型三种有源FSS 的谐振特性,给出了反射系数与所加载电抗的变化关系,为有源FSS 的分析提供依据。

2.仿真结果与文献的对比(圆环缝隙型有源FSS 的分析)

图1 圆环缝隙型FSS 单元结构 图2 仿真结果与文献的对比 A.E.Martynyuk 等学者对圆环缝隙单元组成的FSS 进行了电抗加载的分析[5],圆环缝隙型FSS 单元结构如图1,该单元被印刷在厚0.102mm 的介质板上,介质板的介电常数为r ε=2.4,圆环外径r 1=4.03mm,内径r 2=3.5mm,阵列周期D x =11.43mm,D y =10.13mm, 电抗加载

- 2 -

位置如图1中所示,使用平面波激励,输入电场为Y 方向。文献[5]指出了谐振特性随所加载电抗的变化规律:当使用电容加载时,谐振频率减小,当使用电感加载时,谐振频率增加,而使用小电阻加载时表现出全反射的特性,并且所加电容值越大,谐振频率越低,所加电感值越小,谐振频率越高。本文使用CST 仿真软件对这款FSS 进行了仿真分析,仿真结果与文献记载吻合,反射系数曲线如图2所示。

3.方环缝隙型有源FSS 的分析

图3 方形缝隙型FSS 单元结构 图4 方形缝隙型FSS 的反射系数 方环缝隙型FSS 单元结构如图3,该单元被周期性印刷在厚0.1mm 的介质板上,介质板介电常数r ε=2.4, D x =D y =10mm ,l 1=7.28mm ,l 2=6.28mm, 电抗加载位置如图3中所示,使用平面波激励,入射电场为Y 方向。无加载时,FSS 谐振于12GHz ,谐振波长约为缝隙的周长。使用电容C=0.05、0.10、0.15pF 加载时谐振频率降低,电容值越大,谐振频率越低;使用电感L =5nH 、3nH 加载时,谐振频率增大,电感值越小,谐振频率越高;使用电阻R=2Ω加载时,FSS 呈现出全反射的特性。反射系数曲线如图4所示。

4.四腿环缝型有源FSS 的分析

图5 四腿环缝型FSS 单元结构 图6 四腿环缝型FSS 的反射系数 四腿环缝型FSS 单元结构如图5所示,该单元被周期性印刷在厚0.1mm 的介质板上,介质板r ε=2.4, D x =D y =10mm ,l 1=7.94mm ,l 2=6.94mm, l 3=2mm, l 4=1mm, 电抗加载位置如图5中所示,使用平面波激励,入射电场为Y 方向。分别使用电容C=0.05、0.10、0.15pF,电阻R=2Ω,电感L =3nH 、5nH 加载,反射系数曲线如图6所示。从图中可看出,无加

载时,FSS谐振于11.56GHz 。当使用电容加载时,谐振频率减小,当使用电感加载时,谐振频率增加,而使用小电阻加载时,FSS表现出全反射的特性,并且所加电容值越大,谐振频率越低,所加电感值越小,谐振频率越高,谐振频率与所加电抗的变化关系与方形缝隙型FSS相似。

5.Y形环缝型有源FSS的分析

图7 Y形环缝型FSS单元结构图8 Y形环缝型FSS的反射系数

Y形环缝型FSS单元结构如图7所示,该单元被印刷在厚0.1 mm的介质板上,介质板r

ε=2.4, D x=D y=10mm, l1=3.97mm,l2=3.47mm, l3=2mm, l4=1mm, 电抗加载位置如图1中所示,使用平面波激励,入射电场沿Y方向。反射系数曲线如图8所示。无加载时,FSS 谐振于12.072GHz ,谐振波长约为缝隙的周长。分别使用电容C=0.05、0.10、0.15pF,电阻R=2Ω,电感L=3nH、5nH加载,从图8中可看出电抗的加载改变了FSS的谐振特性,谐振特性的变化与方形缝隙型FSS相似,但在相同电抗加载时,谐振频率的变化幅度稍小。

由以上分析结果可以看到,使用电抗加载时,方环缝隙型、四腿环缝型、Y形环缝型FSS的谐振特性具有相同的变化趋势,这种谐振频率与所加载电抗的变化关系也适用于其它缝隙型FSS。我们可以从等效电路的观点来解释这种变化,缝隙型FSS可等效为并联电路, 当使用电容加载时,相当于增加了电路的总电容,因而谐振频率减小;当使用电感加载时, 相当于减小了电路的总电感,因而谐振频率增加;当使用小电阻加载时,入射端口被短路,呈现出全反射的特性。

6.结论

本文使用电磁仿真软件,分析了电抗加载的方环缝隙型、四腿环形缝隙型、Y形环缝型三种透波型FSS结构,分析结果表明:使用电抗加载可以有效地改变FSS的谐振特性。本文研究结果可为设计相关结构的电可调的有源FSS提供理论依据。

参考文献

[1] M Philippakis, C Martel, D Kemp, et al. Application of FSS structures to selectively control the propagation

of signals into and out of buildings. Technical report, ERA Technology, Cleeve road, Leatherhead, Surrey, KT22 7SA, U.K., 2004.

[2] C Mias. Frequency selective surfaces loaded with surface-mount reactive opponents. IEE Electron. Lett., vol.

39, no. 9, May 2003,pp.724-726

[3] L EPP, C CHAN and R MITTRA. The study of FSS surfaces with varying surface impedance and lumped

elements. IEEE Int. Antennas Propagation Symp. Dig., Vol. 27, 26-30 Jun. 1989 , pp. 1056-1059

[4] TK Chang, RJ Langley and EA Parker. Active frequency-selective surfaces. IEE Proc., Microw., Antennas

Propag., Vol.143, no.1, Feb. 1996, pp.62-66

[5] AE Martynyuk, JI Martinez Lopez and NA Martynyuk. IEE Electron. Lett ., vol. 41, no. 1, Jan. 2003,pp.2-4

- 3 -

Analysis of Reflection Characteristics of

Active Frequency Selective Surfaces

Kou Songjiang

State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, PRC, 210096

Abstract

The reflection characteristics of several active frequency selective surfaces (FSS) are analyzed using CST simulators. The FSS structures, which are based on square loaded slot, four-legged loaded slot, three-legged loaded slot resonators, are loaded by active components which are represented by lumped reactive elements. Their relevant resonant performances with various loading are simulated in X band, and the corresponding results can act as theoretical references in analysis and design of FSS.

Keywords:Active frequency selective surface, reactive loading, reflection coefficient

- 4 -

频率选择表面分析方法

频率选择表面的研究起始于上世纪60年代,国内外大批学者均为之投入了大量精力进行广泛深入的工作,提出了各种不同的数学分析与计算方法,如交分法,等效电路法,模式匹配法,谱方法等,这些计算方法主要可分为两大类,即标量分析方法与矢量分析方法。前者包括变分法,等效电路法等,其仅可通过计算获得关于反射透射系数的幅度信息,通用性差,但计算量小,耗时短;后者包括模式匹配法,谱方法等,其通过计算不仅可获得反射透射系数的幅度信息,还可以获得相关的相位与极化信息,通用性强,但计算量大且耗时长。 值得一提的是,国内研究目前普遍采用模式匹配法进行计算分析,该方法不仅适用于求解任意单元形 状及排列方式的无限大平面FSS 结构,还可应用于多层的FSS 以及均匀层状衬底等组合结构。但这种方法 依然存在不足,即处理复杂多层FSS 时计算量非常大,而且在数值求解过程中,选择适合复杂单元形状的 基函数非常困难,因而难以保证解的收敛速度,降低了有效性。 与一般模式匹配法相比,谱方法原理上也能分析任意单元形状的FSS 结构,在求解无限大FSS 问题时 与模式匹配法相当,该方法在求解过程中要求选取合适的基函数来保证收敛性,但可直接用于求解有耗FSS 的散射问题,与迭代技术相结合可以求解有限尺寸的FSS 散射问题。并且谱方法利用了场的周期性,注意 电流分布的周期性特征,所以求解模型简单,计算量小,是一种很好的方法。 谱展开法 在周期性结构的分析中,谱展开法是一种重要的分析方法。 Floquet 定理; 一维周期结构如图2.5所示。设入射平面波z TM ()0j wt z E E e ?-= 则空间沿x 方向相距为m 个周期的两点之间场为 cos ,(,,)x jm D x x mD y w x y w e βθ-ψ( +,) =ψ 式中ψ 为电磁场的某一分量。m 为一整数,β为传播常数,x D 为沿x 方向的周期长度,θ为入射角,上式即是Floquet 定理。 如果这个周期结构的单元是偶极子等贴片型类型,则入射场在单元上将感应出电压,并产生电流,如果我们将其中一个单元的电流作为基准单元电流(表示为0I ),则距它m 个周期的单元电流表示为m I 。根据Floquet 定理,两者的关系为 cos 0x j mD m I I e βθ-=

实验四 控制系统频率特性的测试(实验报告)

实验四 控制系统频率特性的测试 一. 实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。 二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性 相频特性 (2)实验方法 设有两个正弦信号: 若以)(t x ω为横轴,以)(y t ω为纵轴,而以t ω作为参变量,则随t ω的变化,)(t x ω和 )(y t ω所确定的点的轨迹,将在 x--y 平面上描绘出一条封闭的曲线(通常是一个椭圆)。这 就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym ,φ,

四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。 (2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性 答:可以。在实验过程中一个频率可同时记录2Xm,2Ym,2y0。 (2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。 (3)对用频率特性测试系统数学模型方法的评测 答:用这种方法进行此次实验能够让我们更好地了解其过程,原理及方法。但本次实验的数据量很大,需要读取较多坐标,教学软件可以更智能一些,增加一些自动读取坐标的功能。 七.实验总结 通过本次实验,我加深了对线性定常系统的频率特性的认识,掌握了用频率特性法测试被控过程模型的原理和方法。使我把书本知识与实际操作联系起来,加深了对课程内容的理解。在处理数据时,需要进行一定量的计算,这要求我们要细心、耐心,作图时要注意不能用普通坐标系,而是半对数坐标系进行作图。

频率特性分析

实验三 频率特性分析 一·实验目的 1.掌握频率特性的基本概念,尤其是频率特性的几种表示方法。 2.能熟练绘制极坐标频率特性曲线(奈奎斯特曲线)和对数频率特性曲线,尤其要注意的是在非最小相位系统时曲线的绘制。 3.正确应用频率稳定判别方法,包括奈奎斯特稳定判据和对数稳定判据。 4.熟练正确计算相位裕量和幅值裕量。 5.掌握闭环频率特性的基本知识以及有关指标的近似估算方法。 二·实验内容 1增加开环传递函数零极点个数对奈奎斯特图的影响 1)改变有限极点个数n ,使n=0,1,2,3 Nyquist Diagram Real Axis I m a g i n a r y A x i s -2 -101234 -3.5-3-2.5-2-1.5-1-0.50 0.511.52n=0 n=1 n=2 n=3 2)改变原点处极点个数v ,当v=1,2,3,4, Nyquist Diagram Real Axis I m a g i n a r y A x i s -2 -1.5 -1 -0.5 00.5 1 1.5 2 -2-1.5 -1 -0.5 00.5 1 1.5 2 System: sys P hase Margin (deg): -32.9Delay Margin (sec): 4.41At frequency (rad/sec): 1.3 Closed Loop Stable? No System: sys P hase Margin (deg): -121Delay Margin (sec): 3.49At frequency (rad/sec): 1.2 Closed Loop Stable? No System: sys P hase Margin (deg): 150Delay Margin (sec): 2.28At frequency (rad/sec): 1.15Closed Loop Stable? No System: sys P hase Margin (deg): 51.8Delay Margin (sec): 0.575 At frequency (rad/sec): 1.57 Closed Loop Stable? Yes v=1 v=2 v=3 v=4

频率选择表面(学习笔记)

FSS--相关知识整理 一、基本概念 1、频率选择表面(Frequency Selective Surface ,FSS) 是一种二维周期阵列结构,就其本质而言是一个空间滤波器,与电磁波相互作用表现出明显的带通或带阻的滤波特性。FSS 具有特定的频率选择作用而被广泛地应用于微波、红外至可见光波段。 2、分类 频率选择表面有两种:贴片类型也叫介质类型,开槽类型也叫波导类型。 贴片类型是在介质表面周期性的标贴同样的金属单元,一般而言是作为带阻型滤波器的;低频透射,高频反射; 开槽类型是在金属板上周期性的开一些金属单元的槽孔,从频率特性相应上看是带通型频率选择表面;低频反射,高频透射。 3、频率选择表面的应用 雷达罩:通过安装频率选择表面减少雷达散射截面积。 卡塞哥伦天线副反射面:实现波束的复用与分离。 准光滤波器:实现波束的复用与分离。 吸波材料:基于高损耗的介质,可以实现大带宽的吸波材料。 极化扭转:折线形的频率选择表面是一个线极化变成圆极化的极化扭转器。 天线主面:降低带外的噪声。 4、滤波机理 图1 频率选择表面的滤波机理

频率选择表面和一般意义上的通过电容、电感组成的滤波器在目的上是一致。而滤波机理和有很大的区别(图1)。最大的区别是,一般的滤波器作用的对象是电路中的电流,而且一般滤波器我们主要关心通带的波形是不是有畸变,而对于阻带就就不必关心了。而频率选择表面是对于场的滤波器,不论是透射波还是反射波都是十分重要,不仅仅要关注其幅度、相位的变化,还要关心交叉极化和热损耗等。 A、贴片类型:在介质表面周期性的标贴同样的金属单元。 图2 贴片类型频率选择表面的等效电路 滤波机理: 假设电磁波入射从左向右入射到贴片型频率选择表面上。在平行于贴片方向的电场对电子产生作用力使其振荡,从而在金属表面上形成感应电流。这个时候,入射电磁波的一部分能量转化为维持电子振荡状态所需的动能,而另一部分的能力就透过金属丝,继续传播。换言之,根据能量守恒定律,维持电子运动的能量就被电子吸收了。在某一频率下,所有的入射电磁波能量都被转移到电子的振荡上,那么电子产生的附加散射场可以抵消金属导线右侧的电磁波的出射场,使得透射系数为零。此时,电子所产生的附加场同时也向金属导线左侧传播,形成发射场。这种现象就是谐振现象,该频率点成为谐振点。直观的看,这个时候贴片型频率选择表面就成反射特性。 再考虑另一种情况,入射波的频率不是谐振频率的时候,只有很少的能量用于维持电子做加速运动,大部分的能量都传播到了贴片的右侧。在这种情况下,贴片对于入射电磁波而言,是“透明”的,电磁波的能量可以全部传播。这个时候,贴片型频率选择表面就成透射特性。 一般而言,贴片类型是作为带阻型滤波器的。 等效电路:LC串联 B、贴片类型:在金属板上周期性的开一些金属单元的槽孔。

实验四 系统频率特性测量(模拟实验)

实验四 系统频率特性测量 一、实验目的 1.加深了解系统及元件频率特性的物理概念。 2.掌握系统及元件频率特性的测量方法。 二、实验仪器 1.EL-AT-II 型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟电路图 若输入信号U1(t )=U1sin ωt,则在稳态时,其输出信号为U2(t )=U2sin (ωt+ψ),改变输入信号角频率ω值,便可测得二组U2/U1和ψ随ω变化的数值,这个变化规律就是系统的幅频特性和相频特性。 图4-1为二阶系统的模拟电路图,它是由惯性环节、积分环节和比例环节组成。图4-2为图4-1的方框原理图,图中2321211 2 ,,C R T C R T R R K === 。 图4-1 二阶系统的模拟电路 图4-2 二阶系统原理图

由图4-1求得二阶系统的闭环传递函数为: 2 11 22 122 2112)()()(T T K T s s T T K K s T s T T K s U s U s ++=++== φ 典型二阶系统的闭环传递函数为: 2 2 22)(n n n s s s ωζωωφ++= 对比可得:21T T K n =ω,K T T 124=ζ 若令s T 2.01=,s T 5.01=,则K n 10=ω,K 625.0=ζ 由上式可知,调节开环增益K 的值,就能同时改变系统阻尼比ζ和无阻尼自然频率n ω的值,我们可以改变k 的值,令系统处于稳定状态下。 当625.0>K ,10<<ζ,系统处于欠阻尼状态,当625.0=K ,1=ζ,系统处于临界阻尼状态, 当625.0ζ,系统处于过阻尼状态。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 测频率图 4.选中 [实验课题→系统频率特性测量→手动方式] 菜单项,鼠标单击将弹出参数设置窗口。参数设置完成后点确认等待观察波形,如图4-4所示。 图4-4 手动方式测量波特图

系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

频率选择表面简介

频率选择表面综述 1 滤波原理 两种类型: 1 贴片型(介质型) 在介质表面周期性的标贴同样的金属单元。 滤波机理: 假设电磁波入射从左向右入射到贴片型频率选择表面上。在平行于贴片方向的电场对电子产生作用力使其振荡,从而在金属表面上形成感应电流。这个时候,入射电磁波的一部分能量转化为维持电子振荡状态所需的动能,而另一部分的能力就透过金属丝,继续传播。换言之,根据能量守恒定律,维持电子运动的能量就被电子吸收了。在某一频率下,所有的入射电磁波能量都被转移到电子的振荡上,那么电子产生的附加散射场可以抵消金属导线右侧的电磁波的出射场,使得透射系数为零。此时,电子所产生的附加场同时也向金属导线左侧传播,形成发射场。这种现象就是谐振现象,该频率点成为谐振点。直观的看,这个时候贴片型频率选择表面就成反射特性。 再考虑另一种情况,入射波的频率不是谐振频率的时候,只有很少的能量用于维持电子做加速运动,大部分的能量都传播到了贴片的右侧。在这种情况下,贴片对于入射电磁波而言,是“透明”的,电磁波的能量可以全部传播。这个时候,贴片型频率选择表面就成透射特性。 一般而言,贴片类型是作为带阻型滤波器的。 等效电路:LC串联

2 开槽型(波导型) 在金属板上周期性的开一些金属单元的槽孔。 滤波机理: 当低频电磁波照射开槽型频率选择表面时,将激发大范围的电子移动,使得电子吸收大部分能量,且沿缝隙的感应电流很小,导致透射系数比较小。随着入射波频率的不断升高,这种电子移动的范围将逐渐较小,沿缝隙流动的电流在不断增加,从而透射系数会得到改善。当入射电磁波的频率达到一定值时,槽两侧的电子刚好在入射波电场矢量的驱动下来回移动,在缝隙周围形成较大的感应电流。由于电子吸收大量入射波的能量,同时也在向外辐射能量。运动的电子透过偶极子槽的缝隙向透射方向辐射电场,此时的偶极子槽阵列反射系数低,透射系数高。当入射波频率继续升高时,将导致电子的运动范围减小,在缝隙周围的电流将分成若干段,电子透过槽缝隙辐射出去的电磁波减小,因此,透射系数降低。而对于在远离缝隙的金属板上所产生的感应电流则向反射方向辐射电磁场,并且由于高频电磁波的电场变化周期的限制了电子的运动,辐射能量有限。因此,当高频电磁波入射时,透射系数减小,反射系数增大。 从频率特性相应上看,开槽型频率选择表面是带通型频率选择表面。 等效电路:LC并联。

线性系统的频率特性实验报告(精)

实验四 线性系统的频率特性 一、实验目的: 1. 测量线性系统的幅频特性 2. 复习巩固周期信号的频谱测量 二、实验原理: 我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。 设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性 )(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则 时间域中输入与输出的关系 )()()(t h t v t v in out *= 频率域中输入与输出的关系 )()()(ωωωj H j V j V in out ?= 时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。 三、实验方法: 1. 输入信号的选取 这里输入信号选取周期矩形信号,并且要求 τ T 不为整数。这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是 Ω KT ,其中1=K 、2、3、… 。 图11.1 输入的周期矩形信号时域波形 t

实验二典型环节频率特性的测试

实验二 典型环节频率特性的测试 一、实验目的 1. 掌握典型环节频率特性曲线的测试方法。 2. 根据实验求得的频率特性曲线求取传递函数。 二、实验设备:TKKL-1实验箱一台,超低频示波器一台。 三、实验内容 1. 惯性环节的频率特性测试。 2. 由实验测得的频率特性曲线求传递函数。 四、实验原理 1. 系统的频率特性 一个稳定的线性系统,在正弦信号作用下,它的稳态输出是与输入信号同频率的正弦信号,振幅与相位一般与输入信号不同。测取不同频率下系统的输出、输入信号的幅值比和相位差,即可求得这个系统的幅频特性和相频特性。设输入信号t X t x m ωωsin )(=,则输出信号为)sin()()sin()(?ωω?ωω+=+=t j G Xm t Y t y m 。 幅频特性 Xm Ym j G =)(ω, 相频特性 )()(ω?ω=∠j G 2. 频率特性测试——李沙育图形法 将)(t x ω、)(t y ω分别输入示波器的X 、Y 轴,可得如下李沙育图形如图5-1。 ①幅频特性测试: 由 m m m m X Y X Y j G 22)(= = ω,有 m m X Y A L 22lg 20)(lg 20)(==ωω(d B ) 改变输入信号的频率,即可测出相应的幅值比,测试原理示意图如图5-2。 . 图5-1 李沙育图形 图5-2 幅频特性测试图 ②相频特性测试: ?? ?+==)sin()(sin )(?ωωωωt Y t y t X t x m m , 当0=t ω时,? ??==?sin )0(0 )0(m Y y x

有m m Y y Y y 2) 0(2sin )0(sin )(1 1 --==ω? 其中,)0(2y 为椭圆与Y 轴相交点间的长度, 上式适用于椭圆的长轴在一、三象限;当椭圆的 长轴在二、四象限时相位?的计算公式变为 图5-3相频特性测试图(李沙育法) 相频特性记录表 3. 惯性环节:电路如图5-4,传递函数为 1 02.01 1)()()(+= +== s Ts K s u s u s G i o 假设取C=0.1uF ,R 1=100K ,R 2=200K , 则系统的转折频率为T f T π2/1==7.96Hz 。 图5-4惯性环节测试电路 (C R T 2=) 五、实验步骤 1.在实验箱上搭建惯性环节电路如图5-4,并接入比例环节。输入信号源,电路和信号源输出接示波器。在不致输出饱和的情况下,输入信号尽量大一些,测试输入信号的幅度(用2Xm 表示)。测试时将示波器扫描和幅值衰减档置校准位置,读出格数再转化为电压,此后,应不再改变输入信号的幅度。为读数方便,在读2Xm 、2Ym 时,可将示波器X 轴增益调到0,使光点在荧光屏上只作垂直运动。 2.调节函数信号发生器使频率由低到高(1~15Hz )变化,测量对应的)0(2y 、2Xm 、2Ym ,数据填入表格,在转折频率附近可以多测量几点。 3.由]2/)0(2[sin ]/)0([sin )(11m m Y y Y y --==ω?绘制对数相频特性曲线。 4.根据)2/2lg(20)(m m X Y L =ω绘制对数幅频特性曲线。 5.将绘制后的波特图与准确的波特图进行对比,分析误差原因。 六、实验报告要求 1. 写出被测环节的传递函数,画出相应的模拟电路图。 2. 把实验数据和计算数据填入表格,记录李沙育图形形状和光点运动方向。 3.绘制被测环节的幅频、相频Bode 图,分析实测Bode 图产生的误差。 七、思考题: 1. 在实验中如何确定转折角频率? 2. 用示波器测试相频特性时,若把信号发生器的正弦信号送入Y 轴,系统输出信号送至X 轴,李沙育图形会怎样变化? m Y y 2) 0(2sin 180)(1 0--=ω?

使用Multisim进行电路频率特性分析

使用Multisim进行电路频率响应分析 作者:XChuda Multisim的AC Analysis功能用于对电路中一个或多个节点的电压/电流频响特性进行分析,画出伯德图。本文基于Multisim 11.0。 1、实验电路 本例使用如图的运放电路进行试验。该放大电路采用同相输入,具有(1+100/20=)6倍的放大倍数,带300欧负载。方框部分象征信号源,以理想电压源串联电阻构成。 请不要纠结于我把120Vrms的电压源输入双15V供电的运放这样的举动是否犯二,电压源在AC Analyses中仅仅是作为一个信号入口的标识,其信号类型、幅值和频率对分析是没有贡献的,但是它的存在必不可少,否则无法得到仿真结果! 2、操作步骤 搭好上述电路后,就可以进行交流分析了。

一般设置Frequency parameters和Output两页即可,没有特殊要求的话其他选项保持默认,然后点Simulate开始仿真。切记是点Simulate,点OK的话啥都不会发生。

按照上述步骤仿真结果如下: 分析结果是一份伯德图。在上下两个图表各自区域上按右键弹出列表有若干选项,各位可自己动手试试。右键菜单中的Properties可打开属性对话框,对图表进行更为详细的设置。 3、加个电容试试 从上面伯德图分析结果看出,该电路具有高通特性,是由输入耦合电容C3造成的。现在在输入端加入一个退耦电容试试。电路如下:

在输入端加入220pF退耦电容后C1与后面的放大电路输入电阻构成低通滤波器,可滤除高频干扰。加入C1后,放大电路的输出应该具有带通特性。用AC Analysis分析加入C1后的电路频响特性: 奇怪,为什么高通不见了?一阵疑惑,我甚至动笔算了同相输入端的阻容网络复频域的特性,无论C1是否加入,从同相输入端向左看出去的阻容电路都有一个横轴为0的零点,所以幅度特性应该是从0Hz处开始上升的!对,从0Hz开始!回头看看电路加入C1前仿真的伯德图,发现竖轴范围是13dB~13.3dB! 我们尝试放大来看看。现在重新进行AC分析,将频率范围设置为0.1~10Hz,结果如下图。OK,没问题,果然是高通的,只是截止频率非常低(0.3Hz左右),刚才的仿真频率范围从1Hz开始,自然是看不到的。从中也看出,图表中数字后加小写m,是毫赫兹(mHz)的意思,而不是兆赫兹(MHz)。

Ansoft分析频率选择表面FSS

Ansoft分析频率选择表面FSS Ansoft高级培训班教材 Ansoft分析频率选择表面FSS 苏涛谢拥军编著 西安电子科技大学Ansoft培训中心 Ansoft分析频率选择表面FSS 第一章序言 第二章创建项目 第三章建立几何模型 第四章设定无穷阵列和边界第五章设定入射波 第六章设定解 第七章解的后处理 第一章序言 本文讲解使用Ansoft产品分析频率选择表面。由于频率选择表面是场的问题,所以主要采用平面电磁分析(Ansoft Designer中的Ensemble)和高频结构仿真(HFSS)。 现在,Ansoft在Designer里集成了PMM(Periodic Moment Method),就像过去在HFSS中集成Master/Slave边界一样,给工程师带来了2D和3D阵列的分析工具,而无需自己编程。再一次,增加了收益。 下面就是使用Ansoft Designer分析FSS的实例。 第二章创建项目

图1 Ansoft Designer界面 1、在Project Manager窗口中Project1默认工程上右击鼠标,选择Insert 项目,插入Planar EM Design 图2 插入一个Planar EM Design 也可以在菜单条目中直接点击Planar EM Design的图标 图2 菜单条中直接点击图标加入Planar EM Design 2、在弹出的Layout窗口中点击None按钮,表示自己定义基板。

图3 选择基板窗口 3、存储工程。点击存盘图标(或选择菜单File/Save),输入工程名字hexagon,并存盘。最终工作界面如图4所示。 图4 最终工作界面 第三章建立几何模型 1、建立基板结构。 (1)点击工具栏图标

系统频率特性的测试实验报告

东南大学自动化学院课程名称:自动控制原理实验 实验名称:系统频率特性的测试 姓名:学号: 专业:实验室: 实验时间:2013年11月22日同组人员: 评定成绩:审阅教师:

一、实验目的: (1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数; 二、实验原理: 在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。此次实验采用开环频率特性测试方法,确定系统传递函数。准确的系统建模是很困难的,要用反复多次,模型还不一定建准。另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。 幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi o U U A =。测幅频特性时, 改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。 测相频有两种方法: (1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360??=ΦT t 。这种方法直观,容易理解。就模拟示波 器而言,这种方法用于高频信号测量比较合适。 (2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。就模拟示波器而言,这种方法用于低频信号测量比较合适。若用数字示波器或虚拟示波器,建议用双踪信号比较法。 利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。 三、预习与回答: (1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什 么问题? 答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。

控制系统的频率特性分析

实验六 控制系统的频率特性分析 1.已知系统传递函数为:1 2.01)(+=s s G ,要求: (1) 使用simulink 进行仿真,改变正弦输入信号的频率,用示波器观察输 出信号,记录不同频率下输出信号与输入信号的幅值比和相位差,即 可得到系统的幅相频率特性。 F=10时 输入: 输出:

F=50时 输入:输出: (2)使用Matlab函数bode()绘制系统的对数频率特性曲线(即bode图)。 提示:a)函数bode()用来绘制系统的bode图,调用格式为: bode(sys) 其中sys为系统开环传递函数模型。 参考程序: s=tf(‘s’); %用符号表示法表示s G=1/(0.2*s+1); %定义系统开环传递函数 bode(G) %绘制系统开环对数频率特性曲线(bode图)

实验七连续系统串联校正 一.实验目的 1.加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过matlab实验检验设计的正确性。二.实验内容 1.串联超前校正 系统设计要求见课本例题6-3,要求设计合理的超前校正环节,并完成以下内容用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间 num=10; 1)figure(1) 2)hold on

3)figure(1) 4)den1=[1 1 0]; 5)Gs1=tf(num,den1); 6)G1=feedback(Gs1,1,-1); 7)Step(G1) 8) 9)k=10; 10)figure(2) 11)GO=tf([10],[1,1,0]); 12)Gc=tf([0.456,1],[1,00114]); 13)G=series(G0,Gc); 14)G1=feedback(G,1); 15)step(G1);grid

有源频率选择表面反射特性的分析

- 1 - 有源频率选择表面反射特性的分析 寇松江 东南大学毫米波国家重点实验室,南京 (210096) E-mail :kousongjiang@https://www.360docs.net/doc/6b18085514.html, 摘 要:本文使用CST 仿真分析软件,采用电抗加载的方法研究了有源频率选择表面的反射特性,分析了工作于X 频段的方环缝隙型、四腿环缝型、Y 形环缝型三种透波型FSS 结构,给出了其谐振特性与所加载电抗的变化关系。有源FSS 中的有源器件可等效为某种形式的电抗,通过电抗加载的分析,可为有源FSS 的分析与设计提供理论依据。 关键词:有源频率选择表面,电抗加载,反射系数 中图分类号:TN011 1.引言 频率选择表面(FSS )是军事隐身技术的重要组成部分,在军事领域有着非常重要的作用。使用无源FSS 构成的装备,一旦成型,其谐振频率、工作带宽等电磁特性均无法改变,不能灵活地适应外部电磁环境的变化。使用有源FSS ,就可以克服这些缺陷。有源FSS 是指在FSS 中加入PIN 管或变容二极管等有源器件构成的FSS 结构,通过调节有源器件偏置电压或偏置电流,可改变FSS 的谐振特性[1]。从等效电路角度看,有源器件可等效为电抗,而电抗加载可以改变FSS 的谐振特性[2] [3],因此,通过对FSS 进行电抗加载的分析,可以为有源FSS 的分析提供依据 [4]。 本文使用CST 仿真分析软件,利用电抗加载的方法研究有源FSS 。首先对文献中记载的算例进行了仿真分析,并与文献结果进行比对,证明了此种分析方法的可行性;然后分析了工作于X 频段的方环缝隙型、四腿环缝型、Y 形环缝型三种有源FSS 的谐振特性,给出了反射系数与所加载电抗的变化关系,为有源FSS 的分析提供依据。 2.仿真结果与文献的对比(圆环缝隙型有源FSS 的分析) 图1 圆环缝隙型FSS 单元结构 图2 仿真结果与文献的对比 A.E.Martynyuk 等学者对圆环缝隙单元组成的FSS 进行了电抗加载的分析[5],圆环缝隙型FSS 单元结构如图1,该单元被印刷在厚0.102mm 的介质板上,介质板的介电常数为r ε=2.4,圆环外径r 1=4.03mm,内径r 2=3.5mm,阵列周期D x =11.43mm,D y =10.13mm, 电抗加载

自动控制原理学生实验:二阶开环系统的频率特性曲线

实验三 二阶开环系统的频率特性曲线 一.实验要求 1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。 二.实验内容及步骤 本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 自然频率:T iT K = n ω 阻尼比:KT Ti 2 1= ξ (3-2-1) 谐振频率: 2 21ξωω-=n r 谐振峰值:2 121lg 20)(ξ ξω-=r L (3-2-2) 计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+? =n c (3-2-3) 相位裕度: 4 24122arctan )(180ξξξω?γ++-=+=c (3-2-4) γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使 二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望: 30°≤γ≤70° (3-2-5) 本实验所构成的二阶系统符合式(3-2-5)要求。 被测系统模拟电路图的构成如图1所示。 图1 实验电路 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。 (3)运行、观察、记录: ① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面 的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 ② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭

频率特性测试仪(精)

频率特性测试仪 摘要:本频率特性测量仪以 MSP430单片机为控制核心,由信号源、被测双 T 网络、检波电路、检相电路及显示等功能模块组成。其中,检波电路、检相电路由过零比较器、鉴相器、有效值检波器、 A/D、 D/A转换器等组成;被测网络采用带自举功能的有源双 T 网络;同时本设计还把 FPGA 作为 MCU 的一个高性能外设结合起来, 充分发挥了 FPGA 的高速信号处理能力和 MCU 的复杂数据分析能力;通过DDS 可手动预置扫频信号并能在全频范围和特定频率范围内为自动步进测量, 在数码管上实现频率和相位差的显示, 以及实现了用示波器观察幅频特性和相频特性。 关键词:单片机; DDS ;幅频特性;相频特性 一、方案比较与论证 1. 方案论证与选择 (1系统总体方案描述 该系统以单片机和 FPGA 为控制核心,用 DDS 技术产生频率扫描信号,采用真有效值检测器件 AD637测量信号幅度。在 FPGA 中,采用高频脉冲计数的方法测量相位差,经过单片机运算,可得到 100 Hz ~100 kHz 中任意频率的幅频特性和相频特性数据, 实现在该频段的自动扫描, 并在示波器上同时显示幅频和相频特性曲线。用键盘控制系统实现各种功能, 并且在 LCD 同步显示相应的功能和数据。系统总体设计框图如图 1所示。

图 1 系统总体框图 (2扫描信号源发生器 方案一:采用单片函数发生器。其频率可由外围电路控制。产生的信号频率 稳定度低,抗干扰能力差,灵活性差。 方案二:采用数字锁相环频率合成技术。但锁相环本身是一个惰性环节, 频率转换时间长, 整个测试仪的反应速度就会很慢 , 而且带宽不高。其原理图如图 2所示: 图 2 PPl原理图 方案三:采用数字直接频率合成技术 (DDFS。以单片机和 FPGA 为控制核心 , 通过相位累加器输出寻址波形存储器中的数据 , 以产生固定频率的正弦信号。该方案实现简单,频率稳定,抗干扰能力强。其原理图如图 3所示:

实验七典型系统的频率特性测试

实验七典型系统的频率特性测试 一. 实验目的 1 ?掌握测量典型一阶系统和二阶系统频率特性曲线的方法; 2. 掌握软件仿真求取一阶和二阶系统开环频率特性的方法。 二. 实验内容 1?搭建一阶惯性环节,绘制其频率特性曲线; 2?搭建典型二阶环节,绘制其频率特性曲线; 3. 用软件仿真求取一阶和二阶系统频率特性曲线,跟实验结果加以比较。 三. 实验步骤 在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。 如果选用虚拟示波器, 只要运行ACES 程序,选择菜单列表中的相应实验项目, 再选择 开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器 CH1、 CH2两通道观察被测波形。具体用法参见用户手册中的示波器部分。 1. 一阶惯性环节的频率特性 实验中所用到的功能区域: 信号源、虚拟示波器、实验电路 图1-7-1 一阶惯性环节模拟电路 (1) 设置信号源: 将信号源区的正弦波端子与实验电路 A1的“ IN13”端子相连接,可根据需 求拨动频率选择开关,选择不同频率段“ 8Hz ?0.16Hz ”或“ 400Hz ?6Hz ”。 (2) 搭建一阶惯性环节模拟电路: A .将实验电路 A1的“O UT1 ”端子与实验电路 A2的“ IN23 ”端子相连接; B ?按照图1-7-1选择拨动开关: 图中:R 仁50K 、R2=50K 、R3=100K 、R4=100K 、C1=0.1uF A1、实验电路A2。 一阶惯性环节模拟电路如图 1-7-1所示,惯性环节的传递函数为: U ° (s) K TS 1

将A1的S7、S8、S15, A2的S7、S11拨至开的位置。 (3) 连接虚拟示波器: 将正弦波端子与示波器通道CH1相连接,实验电路A2的“0UT2”与示波器通道CH2相 连接。 (4) 输入正弦波信号,通过虚拟示波器观测输入输出正弦波曲线并调节正弦波频率和幅值,绘 制该一阶惯性环节的幅频曲线和相频曲线。 (5) 运行软件仿真一阶惯性环节频率特性曲线,记录理想幅频曲线和相频曲线,并与 实验结果相比较。 2. 二阶环节的频率特性曲线 实验中所用到的功能区域: 信号源、虚拟示波器、实验电路A1、实验电路A2、实验电路A3。 二阶振荡环节模拟电路如图1-7-2所示,二阶环节的传递函数为: 2 U°(s) n U i(s) 2 n

频率选择表面-HFSS报告

频率选择表面 5.3.1 设计背景 频率选择表面(Frequency Selective Surface,FSS)是一种二维周期性结构,可以有效地控制电磁波的反射与传输。目前FSS的应用十分广泛,可用于反射面天线的负反射器以实现频率复用,提高天线的利用率;也可以用于波极化器、分波数仪和激光器的“腔体镜”,以提高激光器的泵浦功率;还可以用于隐身技术,应用设计的雷达天线罩能够有效地降低雷达系统的雷达散射界面。 5.3.2 设计原理 FSS是一种而为周期排列的阵列结构,本身不能吸收能量,但是却能起到滤波的作用。通常有两种形式,以后总是贴片型,是在介质衬底层上周期性地印上规则的导体贴片单元组成金属阵列;另一种是孔径型,是在很大的金属屏上周期性开孔的周期孔径结构。这两种结构都可以实现对电磁场的频率选择作用和极化选择作用,对于谐振情况下的入射电磁波,这两种阵列分别表现出全反射(单元为导体贴片)、全透射(单元为缝隙、孔径),它们也被分别称为带阻型FSS和带通型FSS。频率选择表面的频率选择特性主要取决于写真单元的形式、单元的排布方式以及周围戒指的电性能。 FSS的基本结构如图5-3-1所示,上下层为介质层,中间层为金属层,金属层也可以位于介质层的上下面上。 1.基本的偶极子或缝隙形式的频率选择表面 FSS的两类基本形式是导线阵列和缝隙阵列,如图5-3-2所示。介质基板 PEC ε1 μ1 ε2 μ 2 图5-3-1 FSS的基本结构

如图5-3-2(a )所示的谐振偶极子的阵列作为带阻滤波器,不能通行偶极子谐振频率的 波,但可以通行高于和低于谐振频率的波。与之互补的在理想导电片上的缝隙阵列,如图5-3-2(b )所示,用作带通滤波器,可通行等于缝隙谐振频率的波,但拒绝较高和较低频率的波。两种情况的传输系数图如图5-3-3所示。 2. 其他形式的频率选择表面单元形状 各种各样的FSS 单元形状都是从最基本的直偶极子单元开始的。现在讲偶极子单元分成四类,分别为: (1) “中心连接”或“N-极子”单元。如偶极子、三极子和耶路撒冷十字等。 (2) 环形单元。如圆环,矩形环和六角环形等。 环单元是制造高质量的斜入射FSS 的首选形式。 (3) 不同形状的贴片。 (4) 上述图形的组合。 偶极子阵 入射波 E S ? E H i H t 缝隙阵 (a ) (b ) 图5-3-2 基本的频率选择表面 频率偶极子阵 谐振频率 带通 带阻 缝隙阵 图5-3-3 两种形式的传输系数

相关文档
最新文档