爆破试验专项方法

爆破试验专项方法
爆破试验专项方法

某水电站

导流隧洞Ⅰ标工程施工

爆破试验专项方案

批准:

审核:

编制:

中国水利水电第八工程局有限公司

2015年04月

目录

爆破试验方案 ................................... 错误!未指定书签。

一、概述..................................... 错误!未指定书签。

1.1洞室开挖爆破情况概述.................... 错误!未指定书签。

1.2明挖爆破情况概述........................ 错误!未指定书签。

二、爆破试验内容............................. 错误!未指定书签。

2.1洞挖爆破实验内容........................ 错误!未指定书签。

2.2明挖爆破实验内容........................ 错误!未指定书签。

三、人员配备................................. 错误!未指定书签。

四、爆破试验................................. 错误!未指定书签。

4.1洞挖爆破试验............................ 错误!未指定书签。

4.1.1爆破试验设备选择...................... 错误!未指定书签。

4.1.2爆破试验材料选择...................... 错误!未指定书签。

4.1.3爆破试验步骤及位置选定................ 错误!未指定书签。

4.1.4爆破设计.............................. 错误!未指定书签。

4.2明挖爆破试验............................ 错误!未指定书签。

4.2.1爆破试验项目.......................... 错误!未指定书签。

4.2.2试验部位及总体规划.................... 错误!未指定书签。

4.3爆破试验设计............................ 错误!未指定书签。

4.3.1爆破参数试验.......................... 错误!未指定书签。

预裂光面爆破参数: ......................... 错误!未指定书签。

大孔径预裂爆破参数: ....................... 错误!未指定书签。

4.3.2爆破试验钻孔机械选择.................. 错误!未指定书签。

4.5、爆破试验成果提交 ...................... 错误!未指定书签。

4.6、质量及安全保证措施 .................... 错误!未指定书签。

爆破试验方案

一、概述

1.1洞室开挖爆破情况概述

根据洞室开挖方案,本标段洞室开挖采用分层开挖,上半洞采用中导洞全断面爆破,周边光面爆破跟进的爆破方式,下半洞采用中部拉槽,两侧预留保护层光面爆破的爆破方式进行开挖。洞室开挖主要控制项目为光面爆破。根据工程地质情况以及类似工程施工经验,拟定三种爆破参数,进行3-5个循环爆破生产性试验,通过爆破试验确定适应本工程施工光面爆破的各项参数。

1.2明挖爆破情况概述

本标段明挖主要是指导流洞进口边坡开挖及进口导流围堰拆除爆破等根据审批的进口开挖方案施工采用自上而下分层梯段爆破进行开挖,分层结合设计马道进行,最大分层高度不大于10m,其中边坡顶部两层按浅孔梯段爆破开挖(梯段高不大于3m)。为保证边坡开挖后岩石的完整性和开挖面的平整度,设计边坡规格优先采用预裂爆破,不能预裂的部位采用光面爆破;边坡马道预留1.5m厚保护层及基础底面预留2m和3m的保护层(实际施工时根据现场爆破试验确定),采用水平光爆或小炮分层爆破的方法开挖.

二、爆破试验内容

2.1洞挖爆破实验内容

(1)确定光面爆破孔参数,以利提高爆破效果及爆破效率;

(2)炮孔布设及炮孔的深度和角度;

2.2明挖爆破实验内容

(1)光面爆破参数选择;

(2)预裂爆破参数选择;

(3)梯段爆破参数选择,爆破粒径控制;

(4)钻孔工效、钻具与岩石匹配的选择;

(5)试验成果整理

三、人员配备

根据试验规模及时间要求,将成立爆破试验小组,由有丰富爆破试验与爆破测试经验的人员组成。

试验小组的人员配备初拟如下:

项目负责人:1人;

爆破专业技术人员1人

爆破测试人员:2人;

安全人员:2人;

测量技术人员:3人;

钻工:8人;

炮工:4人;

其他辅助人员:2人。

四、爆破试验

4.1洞挖爆破试验

本次爆破试验设备采用YT-28手风钻进行施工,钻孔孔径为Φ42mm。

爆破试验所需材料主要为火工材料,参考材料量详见下表。

爆破试验材料表1

①爆破试验施工流程为:

参数设计→测量放样→技术交底→钻机就位→钻孔→验孔检查→装药联网→爆破→爆破效果检查及分析→参数调整→爆破效果满足要求

②试验位置选定

本次试验为生产性试验,一般选取较有代表性的围岩段进行试验。根据设计提供的地质情况,隧洞开挖时III类围岩较多,因此在试验中拟在III类围岩段进行试验。

(4)爆破试验主要施工方法

①测量放样

根据设计好的炮孔布置图由测量人员将各孔洞位置放样在开挖掌子面上,并做好明显标记,现场施工技术人员向当班作业人员进行交底并提出具体要求。

②钻孔

钻孔主要采用TY-28手风钻进行施工,钻机在测量放样点位置就位开始,钻进过程中应随时对钻孔深度和偏斜进行检测,在钻孔过程中严格控制炮孔的深度和角度,以便及时纠偏。

③装药起爆

派专人用测孔绳进行各孔位置及孔深量测,各钻孔验收合格后,进行装药,严格按爆破设计进行装药并做好记录,装药完后进行堵孔,连网并经检查无误后,按规定做好爆破安全警戒,在规定的时间内起爆。

④效果检查

爆破完成后,要对爆破现场进行勘察,根据爆破后单块石渣的体积的大小来调整崩落孔的间距和装药

量;出渣完成后,根据开挖轮廓线规则程度、岩面平整度及超欠挖情况、围岩壁上的半空率来调整周边光爆孔的间距和装药量。爆破试验拟分3~5个循环,每循环完成后都要进行总结分析,以做出相应的调整,再进行下一循环的爆破,直到使爆破效果达到理想的状态。

①设计原则

光面爆破,必须根据地质条件、开挖断面、开挖进尺、爆破器材等条件编制爆破设计。根据围岩特点合理选择周边眼间距及周边眼的最小抵抗线,辅助炮眼交错均匀布置,周边炮眼与辅助炮眼眼底在同一垂直面上,掏槽炮眼在本设计中要求加深30cm。

严格控制周边眼装药量,采用间隔装药,使药量沿炮眼全长均匀分布。

根据岩石特性选择炸药,本工程采用乳化炸药,电毫秒雷管起爆,采用毫秒微差有序起爆,效果不佳时,周边眼采用导爆索起爆,以减小起爆时差。

②爆破参数

根据地质情况,并结合我方以往的爆破施工经验拟定爆破试验参数。

隧洞光面爆破试验参考值

本次爆破试验选取中硬岩石爆破实验参考值,光面爆破拟选取如下三类爆破参数进行生产性试验:

③装药结构及堵塞方式

a.装药结构

周边眼:采用间隔装药结构。

连续装药示意图

其它眼:均采用连续装药结构

b.堵塞方式

所有装药炮眼用水泥纸或炮泥堵塞,周边眼堵塞长度不小于30cm。

⑤光面爆破设计计算

a.炮孔深度(循环进尺)

综合考虑钻孔、爆破、出渣作业循环及施工实际,确定一次循环进尺2.8m。

c.单位炸药消耗量

炸药选用二号岩石乳化炸药,爆力≥280ml。

根据修正的普氏公式计算

s f

k q o

1.1=(式4.1)

式中f —岩石坚固性系数,本次计算取20; S —洞室断面大小,132m 2

Ke —考虑不同炸药的修正系数,Ke=525/P ; P —炸药做功的能力(爆力),280mL 。 计算结果:q=0.72kg/m 3 c.每循环使用的总药量

ηqSL Q =(式4.2)

式中Q —循环的总装药量,kg ; L —炮眼平均深度,3m ;

?—炮眼的利用率。一般为0.8-0.9,本工程拟取0.85 计算结果:Q=242.35kg d.导爆材料

导爆材料采用电毫秒雷管起爆,采用毫秒微差有序起爆。 ⑤爆破效果监测及爆破设计优化; a.爆破效果检查 全站仪检查断面超欠挖; 开挖轮廓圆顺,开挖面平整检查; 爆破进尺是否达到爆破设计要求; 爆出石碴块是否适合装碴要求;

炮眼痕迹保存率,完整岩石不少于80%,较完整和完整性差的岩石不少于60%,较破碎和破碎岩石不小于20%。

b.爆破设计优化

每次爆破后检查爆破效果,分析原因及时修正爆破参数,提高爆破效果,改善技术经济指标。 根据岩层节理裂隙发育、岩性软硬情况,修正眼距、装药量,特别是周边眼。

根据爆破后石碴的块度修正参数。石碴块度小,说明辅助眼布置偏密;块度大说明炮眼偏疏,用药量过大。

4.2明挖爆破试验

(1)手风钻预裂爆破试验;

(2)手风钻光面爆破试验;

(3)大孔径预裂爆破试验;

(4)大孔径爆破试验。

导流洞石方开挖爆破试验分为手风钻预裂、手风钻光面、大孔径预裂、大孔径施工预裂、深孔梯段爆破试验,即本试验大纲的内容。

(1)首先进行手风钻预裂、手风钻光面爆破试验;

(2)然后进行大孔径预裂爆破

(3)最后进行大孔径泄槽深孔梯段爆破试验。

试验部位选择在1#导流洞进口EL3417-EL3404。

手风钻预裂、光面爆破试验安排在一个试验区同时进行。试验区长度10m,宽9~12m。

通过试验(两种爆破参数)对爆破方案试验与预裂(光爆)面平整度、半孔率等关系进行现场调查、统计。

通过试验可得到以下一些成果,用于指导洞室下半洞,边坡、基础预裂、光面爆破,确保预裂、光面爆破质量。

(1)手风钻预裂、光面爆破的优化方案。

4.2.4大孔径预裂爆破试验

大孔径预裂爆破试验安排在一个试验区。通过两种参数试验,可得到以下一些成果,用于指导高边坡预裂,确保预裂面质量,改善爆破效果。

4.3爆破试验设计

根据招标文件要求以及本标工程地质情况,并结合我集团公司以往的工程爆破施工经验,按不同的岩石类别分别拟定爆破试验参数。

(1)孔径d:采用手风钻钻孔,钻孔直径d=40mm。

(2)孔距a:常规光面爆破的孔距按孔径的10-12倍,预裂爆破孔距按8~10倍进行设计,考虑到试验模拟的是边坡和基础成型爆破,故光面爆破孔距按a=40cm、a=50cm两种参数进行试验;预裂爆破孔距按a=30cm、40cm两种参数进行试验。

(3)孔深L:由预留保护层厚度确定,手风钻钻孔孔深按L=4.5m进行试验。

(4)装药量Q:

预裂爆破孔的线装药密度Δ线按长江科学院的经验公式进行计算:

Δ线=0.042[R]0.5a0.6

Δ线------线装药密度,kg/m;

[R]----岩体极限抗压强度,MPa;

a-----钻孔间距,m。

Δ线=0.042[R]0.5a0.6=0.042×1300.5×0.30.6=0.233kg/m(R=130Mpa,a=0.3m)

Δ线=0.042[R]0.5a0.6=0.042×1300.5×0.40.6=0.276kg/m(R=130Mpa,a=0.4m)

试验时,两种孔距均采用Δ线=0.2kg/m,装药结构一致。

根据预裂爆破经验公式计算的光面爆破线装药量:

Q=0.4Δ线=0.093kg/m(a=0.3m)线

Q=0.4Δ线=0.110kg/m(a=0.4m)线

试验时,两种孔距均采用Δ线=0.1kg/m,装药结构一致。

(5)预裂、光面爆破装药结构

把设计药量均匀绑在导爆索上并用竹片固定,炸药应选用小直径药卷,如φ15mm的药卷,或现场进行加工。

(1)孔径d:预裂孔采用大孔径,钻孔直径d=90mm。

(2)孔距a:预裂孔距a取10-12倍进行试验,即按孔距a=100cm、a=120cm两种方案进行试验。

(3)孔深L:由坡面斜长确定,按L=10m进行试验。

(4)装药量Q:

预裂爆破孔的线装药密度Δ线按长江科学院的经验公式进行计算:

Δ线=0.042R0.5a0.6=0.042×1300.5×10.6=0.479kg/m(R=130Mpa,a=1m)

Δ线=0.042R0.5a0.6=0.042×1300.5×1.20.6=0.534kg/m(R=130Mpa,a=1.2m)

试验时,两种孔距均采用,Δ线=0.55kg/m.

(5)预裂爆破装药结构

把设计药量均匀绑在导爆索上并用竹片固定,炸药应选用小直径药卷,如φ32mm的药卷。

大孔径施工爆破参数:

孔径:钻孔直径d=100mm,倾斜75O钻孔。

抵抗线:根据经验数据选取,一般选择抵抗线与孔径的比值来确定,水电工程W/d=25~35。本工程选取W/d=30则W=30d=30×0.1=3m。

孔距:常规梯段爆破孔距就是抵抗线的1~2.0倍,试验时选取1.0倍则a=1.0W=3m

排距:b=ma=0.8×3=2.4m

分层高度H:由分层高度决定,本层试验梯段高度H=10m

钻孔超挖:超钻值国内一般采用△h=(0.15~0.35)W

试验时选取△h=0.2W=0.2×3m=0.6m

孔深L:孔深L由梯段和超深确定:L=H+△h=10+0.6=10.6m

单耗:单耗值在0.5~0.7kg/m3,试验时选取q=0.6kg/m3

×3×2.4×10=43.2kg试验时选取Q=45kg。

堵塞长度:一般取(0.8~1.0)W试验时取L堵=0.8W=2.4m采用φ=85mm的乳化药卷连续装药,由于孔径为100mm,孔内炸药线装药密度可达到5.5kg/m。设计药量与孔内可装药量一致,故所选参数是合理的。

起爆网路:主爆破孔内采用MS13非电雷管起爆,孔外孔间采用MS3、MS2,排间采用MS5。

石方钻爆参数设计表

造孔采用100B型潜孔钻造孔,利用样架导向控制孔向。机械选型必须确保造孔工作在技术上可行,经济上合理。初定钻孔机械详见下表9-2。

爆破试验钻孔机械选型表

爆破试验材料

4.4爆破试验主要施工方法

爆破试验施工流程为:

参数设计→测量放样→技术交底→钻机就位→钻孔→验孔检查→装药联网→爆破→爆效检查→场地清理→下一次试验。

a.测量放样

由专业测量人员,进行测量放样。凡周边孔(无论光面孔还是预裂孔)均需测量放线,保证各孔开孔偏差小于20mm(不允许欠挖),钻孔深度应根据实测孔口高程和应开挖孔底高程确定,误差应控制在±5cm以内。钻孔偏斜度控制在10mm/m以内,且不允许欠挖。非周边孔应根据钻爆设计爆破参数布孔,开孔偏差±5cm,孔深偏差±10cm以内,且不允许欠挖。

b.钻孔

按作业指导书要求,安排钻机在测量放样点位置就位开始,钻进过程中应随时对钻孔深度和偏斜进行检测,以便及时纠偏。钻孔后应进行保护。

c.装药起爆

各钻孔验收合格后,进行装药,其中周边孔采用不耦合装药,光爆孔选用φ32mm乳化炸药,预裂孔选用φ32mm乳化炸药,导爆索串接;起爆网络均采用非电导爆系统。

爆前必须认真检查,确定施工无误且安全措施就位后,方可起爆。主要检查光面爆破的残留炮孔保存率,壁面平整度,炮孔壁裂隙情况;预裂爆破的预裂缝宽度,残留炮孔保存率,预裂面平整度,炮孔壁裂隙情况;松动爆破的爆堆岩石块度及挖装效率;飞石大小及距离;爆破振动速度。可采取钻屑或黄泥堵塞,堵塞时应适当捣实,尤其是中槽爆破应确保堵塞长度,防止产生过量飞石。由爆破专业技术人员按设计网络进行联网。

4.5爆破安全控制

爆破飞石距离计算

爆破时,个别飞石的飞散距离一般按下列公式计算

Rf=20n2Wkf

式中Rf―――个别飞石对人员的安全距离,m;

n―――爆破作用指数;

W―――最小抵抗线,m;

kf―――安全系数,一般选用

kf=1~1.5。爆破时,人员撤出,但高线省道爆破点较近,故取kf=1.5

可按松动爆破控制,取n=0.75,进行飞石安全距离验算。

各种爆破飞石安全距离见下表。

4.5、爆破试验成果提交

爆破试验完成后,提交爆破试验成果报告。

其内容主要包括:

(1)试验内容及试验情况;

(2)试验后选定的爆破参数(附爆破成果及照片);

4.6、质量及安全保证措施

(1)钻孔孔位应根据测量定出的中线、腰线及开挖轮廓来确定;

(2)炮孔经检查合格后,方可装药爆破。

(3)周边孔应在断面轮廓线处开孔,沿轮廓线调整的范围和掏槽孔的孔位偏差不应大于5cm,其它炮孔的孔位偏差不应大于10cm,眼深误差不得大于10cm,炮孔的外偏斜率均不宜大于5cm/m;

(4)爆破器材的运输、存储、加工现场、装药、联线、起爆及瞎炮处理必须遵守《爆破安全规程》的有关规定;

(5)进行爆破时,人员应撤离至受飞石、有害气体和爆破冲击波影响范围之外、且无落石威胁的安全地点;

(6)爆破前应将施工机具和试验仪器撤离至安全地点,对难以撤离的施工机具和设备加以妥善保护。

爆破拆除基本方法示范文本

爆破拆除基本方法示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

爆破拆除基本方法示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 爆破拆除用于较坚固的建筑物和构筑物以及高层建筑 物或构筑物的拆除。其基本方法有三种:控制爆破、静态 爆破、近人爆破。 (1)控制爆破:通过合理的设计和精心的施工,严格 控制爆破能量和规范,使爆破声响、飞石、振动、冲击 波、破坏区域以及破碎体的散坍范围和方向,控制在规定 的限度内。这种爆破方法不需要复杂的专用设备,也不受 环境限制,能在爆破禁区内爆破。用于拆除房屋、构筑 物、基础、桥梁,具有施工安全、迅速、不受破坏等优 点。

(2)静态爆破:将一种含有铝、镁、钙、铁、氧、硅、磷、钛等元素的无机盐粉末状破碎剂水化,产生巨大膨胀压力(可达30MPa~50MPa),将混凝土或岩石胀裂、破碎,这种爆破的特点是: ①破碎剂非易燃、易爆危险品,运输、保管、使用安全。 ②爆破无震动、声响、烟尘、巨石等公害。 ③操作简单、不需要堵炮机,不用雷管,不点炮等操作,不需要专业工种。 ④经过适当设计,可进行定向破碎,可用于某些不宜使用炸药爆破的特殊场合,对大体积脆性材料的破碎及切割效果良好。适用于混凝土、钢筋混凝土和砖石构筑物、结构物的破碎拆除及各种岩石的破碎或切割,或作二次破碎,但不适用于多孔体和高耸结构。本办法存在一些问题:能量不如炸药爆破大;钻孔较多;效果受气温影响

爆破方案

石方爆破专项施工方案 编制单位: 施工单位: 编制人: 审核人: 审批人: 编制日期:年月日

目录 第一章设计依据及原则 (1) 1.设计方案编制依据 (1) 2.编制原则 (1) 3.设计要求 (2) 第二章爆破设计方案 (2) 1.工程概况及周围环境....................................... 错误!未定义书签。 1.1场地位置、地形地貌、气象及水文...... 错误!未定义书签。 1.2施工环境 (2) 2.爆破方案设计 (3) 2.1爆破方案选取 (3) 2.2爆破方法介绍 (3) 2.3孤石爆破 (5) 3.爆破安全控制 (6) 3.1爆破危害控制 (6) 3.1.1爆破地震效应 (7) 3.1.2爆破冲击波 (7) 3.1.3爆破飞石安全距离 (8) 3.1.4噪音 (9) 3.1.5允许最大单段起爆药量 (9) 3.2预防控制措施 (10) 4.进度安排及施工强度分析 (11)

第一章设计依据及原则 1.设计方案编制依据 (1)中华人民共和国国家标准《爆破安全规程》(GB6722-2003); (2)《中华人民共和国民用爆炸物品安全管理条例》(国务院第466号令); (3)《爆破安全规程实施手册》,汪旭光、于亚伦等编著,2004年版; (4)《爆破设计与施工》,汪旭光主编全国工程爆破技术人员统一培训教材,2011年版; (5)《岩石爆破理论与技术新进展》,熊代余、顾毅成主编,2001年版; (6)《爆破工程》,郭学彬、张继春主编著,2007年版 (7)《施工机械安全操作规程》; (8)《爆破作业单位资质条件和管理要求》(GA990) (9)《爆破作业项目管理要求》(GA991); (10《中华人民共和国安全生产法》。 2.编制原则 1、根据工程实际情况,合理设计施工方案,周密部署,合理安排组织施工; 2、制定切实可行的施工爆破方案、创优规划、质量保证措施,采

爆破振速监测

爆破振速监测 (1)监测目的 隧道施工对地面建筑的影响主要有两个方面:地表不均匀沉降和爆破振动,当这两者的作用超过建筑的承受能力,会造成楼房等地表建筑的开裂,后果非常严重。其中,爆破振动具有瞬时性,是居民对隧道施工最直接的感受,对居民的生活产生较大干扰同时也引发居民对建筑安全的担心和质疑。因此必须进行爆破振动监测,严格将爆破震动危害控制在允许的范围内,监测对象安全评价,为后续施工提供精确可靠的数据和指导后续施工爆破方案设计等是爆破振动监测的主要目的。 (2)工作内容 工作内容为对爆破影响范围内需保护的建(构)筑物进行实时振动监测,确保振速控制在规范规定和建、构筑物安全范围内,具体的工作内容有:现场熟悉、了解和掌握场址影响区范围内构筑物状况;配备先进监测设备、按有关规范对爆破影响区建(构)筑物进行爆破振动监测,对监测数据进行处理分析: A.对振动技术参数即频率、振幅、周期、振动时间、振动相位等的 监测。 B.对振动量即速度、加速度、位移等物理量的监测。 (3)爆破振动监测原理 爆破振动监测原理如流程图 由于炸药在岩石中的爆炸作用,使安装布置在监测质点上的传感器随质点振动而振动,使传感器内部的磁系统、空气隙、线圈之间作相对的运动,变成电动势信号,电动势信号通过导线输入可变增益放大器将信号放大,进入AD转换,再通过时钟、触发电路,同时也通过存储器信号保护,再通过CPU系统输入计算机,采用波形显示和数据处理软件进行波形分析和数据处理。

(4)监测方法 爆破振动监测是实时监测,所以在爆破前根据实地调查结果进行细致的准备工作,并严格按照工作流程进行工作。 为确保监测的准确可靠,首先对爆破点附近的监测对象进行详细准确的调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测和标定,同时根据监测对象与爆破点相对位置关系,确定测点位置及布置方法,提前进入现场进行安置,根据爆破时间进行监测。 A 测点布置 根据设计要求,将爆破振动测点布置在所需监测的地表、建筑物结构支撑柱、隧道侧壁上。安装传感器时必须安装稳固,否则质点的速度监测数据将产生失真现象,一般采用石膏固定传感器效果较好。还应注意对传感器的保护,使其避免受到爆破碎石或其它物体的物理性损伤。另外必须注意传感器的方向性。 a、测点布置遵循的原则 最大振动断面发生的位置和方向监测; 爆破地震效应跟踪监测; 爆破地震波衰减规律监测。 b、测点的布置方法 按照上述原则和爆破地震的传播规律和以往的经验,隧道爆破振动监测点布置在隧道一侧底部,每次监测选择离爆破点最近的2个测点,每个测点布置垂直方向、水平方向和水平切向的传感器;地面建构筑物的测点布置在距爆破中心最近的建构筑物及其地表面,即靠近开挖隧道一侧(迎爆面)。 对于建构筑物测点选取基础上表面,若基础埋于土层下,则选择最近基础且坚实的散水作为测点。 B 监测 a、爆破振动速度监测系统 爆破振动速度测量系统一般由拾振器(或测振仪配合传感器)和记录器(包括计时器)两个部分组成。

爆破拆除基本方法(标准版)

爆破拆除基本方法(标准版) Safety management refers to ensuring the smooth and effective progress of social and economic activities and production on the premise of ensuring social and personal safety. ( 安全管理) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

爆破拆除基本方法(标准版) 爆破拆除用于较坚固的建筑物和构筑物以及高层建筑物或构筑物的拆除。其基本方法有三种:控制爆破、静态爆破、近人爆破。 (1)控制爆破:通过合理的设计和精心的施工,严格控制爆破能量和规范,使爆破声响、飞石、振动、冲击波、破坏区域以及破碎体的散坍范围和方向,控制在规定的限度内。这种爆破方法不需要复杂的专用设备,也不受环境限制,能在爆破禁区内爆破。用于拆除房屋、构筑物、基础、桥梁,具有施工安全、迅速、不受破坏等优点。 (2)静态爆破:将一种含有铝、镁、钙、铁、氧、硅、磷、

钛等元素的无机盐粉末状破碎剂水化,产生巨大膨胀压力(可达30MPa~50MPa),将混凝土或岩石胀裂、破碎,这种爆破的特点是: ①破碎剂非易燃、易爆危险品,运输、保管、使用安全。 ②爆破无震动、声响、烟尘、巨石等公害。 ③操作简单、不需要堵炮机,不用雷管,不点炮等操作,不需要专业工种。 ④经过适当设计,可进行定向破碎,可用于某些不宜使用炸药爆破的特殊场合,对大体积脆性材料的破碎及切割效果良好。适用于混凝土、钢筋混凝土和砖石构筑物、结构物的破碎拆除及各种岩石的破碎或切割,或作二次破碎,但不适用于多孔体和高耸结构。本办法存在一些问题:能量不如炸药爆破大;钻孔较多;效果受气温影响大;开裂时间不易控制及成本稍高等。 (3)近火爆破:又称高能燃烧剂爆破。采用金属氧化物(CuO、MnO2 )和金属还原剂(铝粉)按一定比例组成混合物,将其装入

工程爆破的方法及分类

一、工程爆破的方法及分类 1、按药包形式分类:集中药包法、延长药包法、平面药包法、形状药包法。 2、按装药方式与药室空间形状:药室法、药壶法、炮眼法、裸露药包法。 3、定向爆破:简单地说就是使爆破后土石方碎块按预定的方向飞散、抛掷和堆积,或者使被爆破的建筑物按设计方向倒塌和堆积。 4、光面爆破:是沿开挖边界布置密集炮孔,采取不耦合装药或装填低威力炸药,在主爆区之后起爆,可以形成平整轮廓面的爆破作业。 5、预裂爆破:是沿开挖边界布置密集炮孔,采取不耦合装药或装填低威力炸药,在主爆区之前起爆,从而在爆区与保留区之间形成预裂缝,以减弱主爆破对保留岩体的破坏,并形成平整轮廓的爆破作业。 6、微差爆破:是一种巧妙地安排各炮孔起爆次序与合理起爆时差的爆破技术,由于通常爆破的时间间隔为毫秒级,所以微差爆破又可以称为毫秒爆破。 7、控制爆破:对爆破效果和爆破危害进行双重控制的爆破 二、爆炸的理论基础 1、炸药爆炸的基本特征(爆炸三要素):过程的放热性;过程的高速度并能自动传播;过程中生成大量气体产物。 2、炸药化学变化的基本形式:热分解、燃烧和爆轰。三者在一定条件下可以互相转化。 3、燃烧的特征:①传播速度:每秒几毫米至几十米(低于炸药中声速),受外界压力影响大。 ②传播性质:热传导、扩散、辐射。③对外界的作用:燃烧点压力升高不大,在一定条件下才对 周围介质产生爆破作用。④产物 运动方向:与波阵面的传播方向 相反 4、爆轰的特征:①每秒几百米 之几千米(高于炸药中声速), 受外界压力影响小。②传播性 质:冲击波。③对外界的作用: 爆炸点有剧烈的压力突跃,无需 封闭系统便能对周围介质产生 剧烈的爆破作用。④产物运动方 向:与波阵面的传播方向一致。 5、氧平衡:是研究氧与可燃元 素的平衡问题,也就是研究炸药 内含氧量是可燃元素完全氧化 所需氧量之间的关系。 6、炸药根据氧平衡的关系可分 为:正氧平衡炸药、零氧平衡炸 药、负氧平衡炸药。 7、炸药的热化学参数: 爆容(V o):1kg炸药爆炸后所 生成气体产物在标准状况下的 体积称为炸药的爆容; 爆热(Qv):定量炸药在定容条 件下爆炸时所放出的热量 爆温(t):炸药爆轰结束后,爆 炸产物在炸药初始体积内达到 热平衡后的温度称为爆温; 爆速(D):爆轰过程传播的速 度称为爆速; 爆压(p):爆炸产物在炸药初始 体积内达到热平衡后流体静压 值称为爆压。 8、影响炸药爆热的主要因素: 炸药的氧平衡、装药密度、附加 物、装药外壳等。 9、波阵面:扰动与未扰动区的 分界面。 10、平面波:波阵面为平面。 11、柱面波:波阵面为柱面。 12、球面波:波阵面为球面。 13、压缩波:扰动传播过后,介 质的压力、密度、温度等状态参 数都增加的波称为压缩波。 14、稀疏波:扰动传播过后,介 质的压力、密度、温度等状态参 数都下降的波称为稀疏波。 15、压缩波传播过后介质质点 运动方向与波的传播方向一致, 稀疏波传播过后介质质点的运 动方向与波的传播方向相反。 16、冲击波与扰动波(声波)相 比,具有如下性质: ①冲击波波阵面通过前后介质 的状态参数是突跃式变化的,即 冲击波波阵面两侧介质参数的 差值不是一个微量,而是一个限 量; ②由于冲击波的以上特性,冲击 波的传播过程是绝热的,但熵值 是增加的; ③冲击波的传播速度相对于未 扰动介质而言是超声速的; ④冲击波传播速度相对于波阵 面前后已扰动介质而言是亚声 速的; ⑤冲击波传过后,介质货得一个 与波传播方向相同的移动速度。 三、爆轰波的流体力学理论 1、冲击波的物理意义:通过O 点的某一波速线是一定波速的 冲击波传过具有同一状态点O 的不用介质所达到的终点状态 的连线。 2、冲击波绝热曲线的物理意 义:冲击绝热线不是过程线,而 是不同波速的冲击波传过同一 初始状态点O的介质后所突跃 达到的终点状态的连线。 3、炸药的威力:岩石在爆轰产 物准静态压力和膨胀功作用下 造成的破坏作用称为炸药的静 作用,静作用的大小用威力来衡 量。 4、炸药猛度与威力的关系:笼 统来讲都是表示炸药爆破威力 大小的性能参数,具体来讲,威 力表示的是炸药总的破坏能力, 猛度表示炸药的局部破坏能力, 在工程上,威力表现的是炸药的 抛射能力,猛度表示的是炸药的 破碎能力,从爆破的过程来讲, 炸药从爆轰到产物膨胀的各个 作用阶段都能不同程度地对炸 药的做功能力做出贡献,因而作 用时间较长,而猛度仅仅是爆轰 刚刚结束瞬间包洪波的作用,因 而作用时间较短,炸药的猛度主 要取决于爆速,而炸药的威力主 要取决于爆容。 5、殉爆安全距离:冲击波通过 惰性介质而传递的能力称为殉 爆能力,用能引起殉爆时两装药 间的最大距离R。 6、殉爆原因:①主发装药爆轰 产物的冲击作用②主发装药爆 轰时所抛出的物体的冲击作用 ③主发装药爆轰时产生冲击波 的作用。 7、殉爆的影响因素:①主发装 药的药量及性质②被发装药的 性质③主发装药的外壳④主发 装药与被发装药之间的连接方 式⑤惰性介质的性质。 8、炸药感度:炸药在外界作用 下发生爆炸的难易程度、 热感度:炸药在热能作用下 发生爆炸的难易程度称为炸药 的热感度。 机械感度:炸药在机械摩擦 作用下发生爆炸的难易程度称 为炸药的机械感度 摩擦感度:炸药在机械摩擦 作用下发生爆炸的难易程度称 为炸药的摩擦感度 撞击感度:炸药在机械撞击 作用下发生爆炸的难易程度称 为炸药的撞击感度 针刺感度:炸药在针刺作用 下发生爆炸的难易程度称为炸 药的针刺感度 爆轰感度:炸药在爆轰波作

爆破监测方案

爆破监测方案

目录 1、工程概况 ............................................................... 错误!未定义书签。 2、爆破监测目的与内容............................................. 错误!未定义书签。 3、爆破振动监测原理 ................................................ 错误!未定义书签。 4、监测方法 ............................................................... 错误!未定义书签。 5、仪器操作注意事项 ................................................ 错误!未定义书签。 6、现场协调与配合 .................................................... 错误!未定义书签。

1、工程概况 2、爆破监测目的与内容 2.1监测目的 (1)经过爆破振动监测与试验,获取爆破振动沿不利断面或不安全方向的振动衰减传播规律,回归计算爆破振动传播公式,估算开挖爆破最大允许药量与安全距离,为确定爆破施工方案与爆破参数提供依据; (2)经过爆破振动监测与试验,评价爆破施工方案和爆破参数的合理性,为控制与优化爆破施工参数提供依据; (3)经过爆破振动监测,测定开挖爆破作业对震动敏感建(构)筑物、岩土体的振动影响程度,并根据相关规范及设计标准,对其安全性作出评估,并为控制或调整爆破参数提供依据。 2.2监测工作内容 根据开挖爆破施工情况,结合需要重点保护的对象分析,爆破振动试验与监测工作内容包括:

最新压力容器爆破实验

压力容器爆破实验

实验五压力容器爆破实验 一、实验目的 1、初步掌握压力容器整体爆破的实验方法及装置;观察并分析实验过程中所出现的各种现象; 2、测定容器的整体屈服压力并与理论计算值进行比较; 3、对容器的爆破口及断口做出初步的宏观分析; 4、对爆破容器的性能进行评价的初步训练。 二、实验意义 整体构件爆破实验是压力容器研究、设计、制造中的一个综合性实验方法,是考核构件材料的各项机械性能,结构设计的合理性,安全储备以及其它方面性能的直观性很强的实验方法。 有以下几个方面的应用: 1、定型:新设计压力容器的选材、结构及制造工艺合理性验证。 这也包括新产品的试制,材料更新,结构型式改变以及制造工艺更动时为确保产品质量而进行的实验。 2、质量监控:对已定型的压力容器,为了监控在生产中由于生产工艺的波动等因素而引起的质量波动所进行的实验,模具的变形,热处理炉温的波动,原材料质量波动以及焊接工艺条件的波动等都能引起压力容器产品质量的波动。 3、科研及其它用途的评定性实验。 压力容器爆破实验属于破坏性实验,耗费较高。因此确定是否需要进行这类实验时要慎重考虑。 三、实验方法及原理 压力容器的爆破实验分模拟构件爆破实验和产品抽样实验两种: 1、模拟构件的爆破实验;按照一定的模拟条件制造模拟构件,进行爆破实验,以推断实际容器的爆破性能,此法多用于研究、制造费用高的单件重要容器。此法的关键是建立准确的模拟条件。 2、产品抽样实验:从一定数量的产品中随机抽取若干只进行爆破实验。此法适用于成本相对比较低的大批量生产容器。 整个实验过程是由压力源向容器内注入压力介质直至容器爆破。压力介质可为气体或液体两种。由于气压爆破所释放的能量比液压爆破所释放的能量大得多,相对而言气压爆破比较危险,因此一般都采用液压爆破,但即使用液压爆破,仍有一定的危险性,需要安全防护措施,以保证人员及设备的安全。 在爆破实验过程中,随着容器内压力的增高,容器经历弹性变形阶段,进而出现局部屈服、整体屈服、材料硬化、容器过度变形直至爆破失效。为了表征容器爆破实验过程中各阶段的变化规律,可用压力~进水量、压力~升压时间、压力~筒体直径变化量等曲线进行描述,这些参数可借助于压力表,水位计等在实

爆破振动监测方案

疏港道路跨平南铁路切分段工程爆破振动监测方案 地质建设工程公司 2010年4月12日

疏港道路跨平南铁路切分段工程 爆破振动监测方案 一、前言 受广铁土木工程的委托,我公司拟对其正在施工的疏港道路桥梁桩人工挖孔桩工程爆破工作进行振动监测。其目的是为控制该工程爆破施工引起的振动对旁边建筑物的影响,以确保其安全。 二、工程概况 该爆破工程位于小南山隧道口处,其施工引起的振动对旁边建筑物、管道影响颇为敏感。为确保工程顺利进行,必须根据其工程特性有针对性对爆破进行监测,并及时将监测结果反馈给施工方,用实测数据指导施工。 三、测试依据 1. 中华人民国国家标准《爆破安全规程》(GB6722-2003) 2. 中华人民国国家标准《建筑抗震设计规》(GB50011-2001) 3. 中华人民国国家标准《中国地震裂度表》(GB/T17742-1999) 4. 我公司在地铁2、3、4、5号线工程、平峦山公园、铁仔山 公园边坡爆破工程、西乡三所场坪工程、坪洲小区、沙井将军 山采石场爆破工程等类似工程经验。

四、仪器设备 本次监测采用中国科学院测控研究所生产的TC-4850高精度爆破测振仪,该仪器的优点在于质量轻、可防水、防尘、耐压抗击、精度高、应用面广等特点。除此以外,还具有现场设置各项参数的功能。增强的4850型仪器可以在现场通过按键和液晶屏快速设置参数,从而达到信号快速、准确采集的目的。同时,仪器可以在现场通过仪器本身的功能读出特征值,还能大致预览到已经采集到的信号波形。仪器采用自适应量程,采集时无须做量程调整。时间可单独设置,可根据实际需要设置采集时间。根据实际的情况也可以现场对采集做调整。 本仪器使用分离式振动传感器,可对微小振动及超强振动进行测量。该产品面向爆破振动监测、工程环境监测、建筑、机电设备、交通运输、机械振动……等领域针对振动、压力、应力、位移、温度、湿度等动态过程的监测、记录、报警和分析。 置记录功能。数据记录功能为连续模式,振动分析仪能同时显示物理量、主频及记录发生时刻。 作为增强型的仪器的4850,具有以下主要技术指标:

氮气瓶爆破试验机50MPa

氮气瓶爆破试验机 一、主要技术参数 (1)介质:水 (2)设备动力源流量:0.3-1立方/分钟,压力范围:0.3MPa≤P≤0.8MPa (3)输出压力范围:0.5-50Mpa (4)精度范围:0.01Mpa (5)试验工位数量:1 (6)试验时间范围:1S-100H (7)控温范围:常温 (8)爆破试压机控制方式:手动按钮控制,全自动控制 (9)曲线显示:计算机控制,由数据采集软件实时显示 (10)测试报告:试验机具有爆破试验的报告自动打印功能. (11)试验数据保存方式:自动保存excel表格数据,输出试验报告 二、产品介绍

氮气瓶爆破试验机试验压力0.5-50.0Mpa,主要用于对氮气瓶、氧气瓶、复合气瓶、消防气瓶、缠绕瓶等气瓶的耐压强度试验,爆破试验,膨胀量试验。计算机控制试验过程和整个试验结果,计算机自动采集和显示称重、温度、压力、膨胀量等数据的实时性和高精度的优点,试验完毕后保存,查询等功能。手动控制时,可以扩充数据采集于显示部分(包括:压力传感器与数显表、无纸记录仪、机械式圆盘记录仪等)。 三、氮气瓶爆破试验机特点 ?配备专用的密封夹具,适用于多种不同型号气瓶检测。 ?本爆破试验机所有承压部分和与试验介质流体接触的部分,全部采用不锈钢 来制作,从而完成对试验介质的二次污染。 ?功能丰富:可对各种气瓶进行水压试验,耐压试验,爆破试验,膨胀量试验。 ?配备我公司成熟产品气动增压装置,可轻松实现输出压力任意可调、可控。 ?可完成对整个试验过程的监控可控制,完全符合国检标准等检测项目,直接 打印实验报告 四、典型应用 氮气瓶水压爆破试验 氧气瓶爆破强度试验 复合气瓶膨胀量试验 消防气瓶耐压时间检测 气瓶出厂检测

爆破拆除基本方法标准范本

操作规程编号:LX-FS-A51120 爆破拆除基本方法标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

爆破拆除基本方法标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 爆破拆除用于较坚固的建筑物和构筑物以及高层建筑物或构筑物的拆除。其基本方法有三种:控制爆破、静态爆破、近人爆破。 (1)控制爆破:通过合理的设计和精心的施工,严格控制爆破能量和规范,使爆破声响、飞石、振动、冲击波、破坏区域以及破碎体的散坍范围和方向,控制在规定的限度内。这种爆破方法不需要复杂的专用设备,也不受环境限制,能在爆破禁区内爆破。用于拆除房屋、构筑物、基础、桥梁,具有施工安全、迅速、不受破坏等优点。

爆破拆除法类型以及方法通用版

操作规程编号:YTO-FS-PD999 爆破拆除法类型以及方法通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

爆破拆除法类型以及方法通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 爆破拆除用于较坚固的建筑物和构筑物以及高层建筑物或构筑物的拆除。其基本方法有三种:控制爆破、静态爆破、近人爆破。 (1)控制爆破:通过合理的设计和精心的施工,严格控制爆破能量和规范,使爆破声响、飞石、振动、冲击波、破坏区域以及破碎体的散坍范围和方向,控制在规定的限度内。这种爆破方法不需要复杂的专用设备,也不受环境限制,能在爆破禁区内爆破。用于拆除房屋、构筑物、基础、桥梁,具有施工安全、迅速、不受破坏等优点。 (2)静态爆破:将一种含有铝、镁、钙、铁、氧、硅、磷、钛等元素的无机盐粉末状破碎剂水化,产生巨大膨胀压力(可达30MPa~50MPa),将混凝土或岩石胀裂、破碎。 这种爆破的特点是: (1)破碎剂非易燃、易爆危险品,运输、保管、使用安全。

房屋爆破振动监测解决方案 JB-04-001

房屋爆破振动监测解决方案 交博科技 一、保护物 工程爆破在国民经济发展进程中扮演了十分重要的角色,发挥了不可替代的作用。实践证明,爆破作业安全是工程爆破行业的生命线,事关社会稳定和人民生命财产安全。房屋作为爆破周边最常见的建筑物,应重点监测爆破振动对房屋的影响,采用仪器设备在爆破时对附近房屋进行监测,为后期可能涉及到的纠纷提供合理的科学依据。 二、监测依据 《爆破安全规程》(GB6722-2014) 《爆破振动监测技术规范》(TCSEB0008-2019) 《水电水利工程爆破安全监测规程》(DLT5333-2005) 《铁路工程爆破振动安全技术规程》(TB10313-2019) 《建筑工程容许振动标准》(GB50868-2013) 三、测点布设 (1)监测项目:质点振动速度、主振频率. (2)测点布设:房屋爆破监测一般布置在靠近爆源一侧的外部地基表面,高层建 筑应在中间层或顶层布置爆破振动监测点。每个测点应同时测定质点振动相互垂直的三个分量。 (3)仪器安装:安装前,应对监测点及传感器进行统一编号,在房屋地基安装时, 选用太阳能供电方式进行安装,将测点放置处清理干净,用石膏粉将传感器安装在测点处,传感器与地基表面紧密接触,传感器X(水平径向)指向爆心并水平放置,仪器放进防护箱内;当需要在中间楼层房间内安装设备时,应选择合适的地点,减少外界干扰带来的影响,安装要简洁,避免爆破监测对户主生活带来的不便,防护按照《混凝土结构后锚固技术规程》要求进行安装,抗拔力满足100kg要求;仪器安装好后,设置参数进入工作模式,最后将现场清理干净,多余的耗材应带离现场。 (4)测点数量:一般建(构)筑物,在靠近爆源一侧的外部地基表面布置1~2个 监测点;超过10层的高层建(构)筑物,宜在顶层(或中间层)布置1~2个监测点。

压力容器爆破实验

实验五压力容器爆破实验 一、实验目的 1、初步掌握压力容器整体爆破的实验方法及装置;观察并分析实验过程中所出现的各种现象; 2、测定容器的整体屈服压力并与理论计算值进行比较; 3、对容器的爆破口及断口做出初步的宏观分析; 4、对爆破容器的性能进行评价的初步训练。 二、实验意义 整体构件爆破实验是压力容器研究、设计、制造中的一个综合性实验方法,是考核构件材料的各项机械性能,结构设计的合理性,安全储备以及其它方面性能的直观性很强的实验方法。 有以下几个方面的应用: 1、定型:新设计压力容器的选材、结构及制造工艺合理性验证。 这也包括新产品的试制,材料更新,结构型式改变以及制造工艺更动时为确保产品质量而进行的实验。 2、质量监控:对已定型的压力容器,为了监控在生产中由于生产工艺的波动等因素而引起的质量波动所进行的实验,模具的变形,热处理炉温的波动,原材料质量波动以及焊接工艺条件的波动等都能引起压力容器产品质量的波动。 3、科研及其它用途的评定性实验。 压力容器爆破实验属于破坏性实验,耗费较高。因此确定是否需要进行这类实验时要慎 重考虑。 三、实验方法及原理 压力容器的爆破实验分模拟构件爆破实验和产品抽样实验两种: 1、模拟构件的爆破实验;按照一定的模拟条件制造模拟构件,进行爆破实验,以推断实际容器的爆破性能,此法多用于研究、制造费用高的单件重要容器。此法的关键是建立准确的模拟条件。 2、产品抽样实验:从一定数量的产品中随机抽取若干只进行爆破实验。此法适用于成本相对比较低的大批量生产容器。 整个实验过程是由压力源向容器内注入压力介质直至容器爆破。压力介质可为气体或液体两种。由于气压爆破所释放的能量比液压爆破所释放的能量大得多,相对而言气压爆破比较危险,因此一般都采用液压爆破,但即使用液压爆破,仍有一定的危险性,需要安全防护措施,以保证人员及设备的安全。 在爆破实验过程中,随着容器内压力的增高,容器经历弹性变形阶段,进而出现局部屈服、整体屈服、材料硬化、容器过度变形直至爆破失效。为了表征容器爆破实验过程中各阶段的变化规律,可用压力~进水量、压力~升压时间、压力~筒体直径变化量等曲线进行描述,这些参数可借助于压力表,水位计等在实验中测得。图5-1即为钢质无缝气瓶爆破实验中

爆破拆除基本方法标准版本

文件编号:RHD-QB-K1653 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 爆破拆除基本方法标准 版本

爆破拆除基本方法标准版本 操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 爆破拆除用于较坚固的建筑物和构筑物以及高层建筑物或构筑物的拆除。其基本方法有三种:控制爆破、静态爆破、近人爆破。 (1)控制爆破:通过合理的设计和精心的施工,严格控制爆破能量和规范,使爆破声响、飞石、振动、冲击波、破坏区域以及破碎体的散坍范围和方向,控制在规定的限度内。这种爆破方法不需要复杂的专用设备,也不受环境限制,能在爆破禁区内爆破。用于拆除房屋、构筑物、基础、桥梁,具有施工安全、迅速、不受破坏等优点。

(2)静态爆破:将一种含有铝、镁、钙、铁、氧、硅、磷、钛等元素的无机盐粉末状破碎剂水化,产生巨大膨胀压力(可达30MPa~50MPa),将混凝土或岩石胀裂、破碎,这种爆破的特点是: ①破碎剂非易燃、易爆危险品,运输、保管、使用安全。 ②爆破无震动、声响、烟尘、巨石等公害。 ③操作简单、不需要堵炮机,不用雷管,不点炮等操作,不需要专业工种。 ④经过适当设计,可进行定向破碎,可用于某些不宜使用炸药爆破的特殊场合,对大体积脆性材料的破碎及切割效果良好。适用于混凝土、钢筋混凝土和砖石构筑物、结构物的破碎拆除及各种岩石的破碎或切割,或作二次破碎,但不适用于多孔体和高耸结

构。本办法存在一些问题:能量不如炸药爆破大;钻孔较多;效果受气温影响大;开裂时间不易控制及成本稍高等。 (3)近火爆破:又称高能燃烧剂爆破。采用金属氧化物(CuO、MnO?)和金属还原剂(铝粉)按一定比例组成混合物,将其装入炮孔内,用电阻丝引燃,发生氧化还原反应,能产生2192士280℃的高温膨胀气体,而将混凝土破坏。但当出现胀裂、遇空气后压力急骤下降,可使混凝土不致飞散,达到切割破坏的目的。这种爆破具有以下持点: ①爆破音响较小,震动轻微,飞石、烟尘少,安全范围可至3m内不伤人。 ②成分稳定,不易燃烧,能短时间防潮防水,能用于760℃以下高温,加工制作简单,不用雷管起

爆破计算方法 (1)

路基石方开挖爆破方法 本工程石方开挖涉及两种:半挖半填断面的开挖和全挖断面的开挖,采用深孔(浅孔)松动爆破为主,在设计边坡外预留光爆层采用光面爆破,确保边坡平顺,避免扰动和破坏边岩体。 1、深孔松动爆破法 ⑴最小抵抗线长度计算: H m q e l D W ???????? =τ785.0 式中:D 为炮孔直径 △为装药密度(kg/m3),一般取900; H 为阶梯高度(m); l 为预计炮孔深度(m),l =H+h (h 为钻根长度[m]); τ为装药长度系数(当H<10m 时,τ15m 时,τ=;当H>15m 时,τ=) e q 为炸药单位消耗量(kg/m3),按下表取值: 。 该段95%属于Ⅳ类石方爆破。采用9m3潜孔钻机钻孔,75°孔径90mm ,台阶高度H=。岩层为次坚石,用2#岩石硝铵炸药,各参数计算如下: ⑴最小抵抗线长度确定: 假定钻根长h=.取△=900kg/m3, τ/m3,则抵抗线为 ⑵ ⑶ ⑷ ⑸每孔需用药: 根据爆破震速控制测算确定最大一段安全用药量。测算公式如下: 式中:v ——质点垂直震动安全速度,此处取2cm/s ; R ——爆破中心距被保护目标距离(m );

K、α——爆破区地形、地质、爆破方法等条件有关的系数和震波传播衰减系数。此处K取200, α 2、浅孔松动爆破法 ⑴ ⑵ ⑶ ⑷ (每个炮孔的装药量大致为炮孔深度1/3~1/2左右) 3、光面爆破法 ≤; ; 90mm,如果采用其它潜孔钻机钻孔,炮孔直径d随潜孔钻直径变化,即范围为(50~200mm)。 K-每米深炮孔装药量,kg/m 4、爆破作业顺序 断面爆破顺序 半挖半填断面爆破顺序示意图 按编号顺序从上至下爆破,其中(2)、(5)、(8)、(11)、(15)、(19)部分需要进行光面爆破。 深挖路堑爆破顺序示意图 先进行第(1)、(2)部分的开挖,为石料运输开出一施工平台,再从上至下按(3)、(4)、(5)、(6)的顺序开挖,然后开挖(7)、(8)部分,为石料运输开出第二级施工平台,再从上至下开挖(9)、(10)、(11)、(12)部分,其中(4)、(6)、(10)、(12)部分需要进行光面爆破。

爆破振动监测方案

爆破振动监测方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

疏港道路跨平南铁路切分段工程爆破振动监测方案 深圳地质建设工程公司 2010年4月12日

疏港道路跨平南铁路切分段工程 爆破振动监测方案 一、前言 受深圳广铁土木工程有限公司的委托,我公司拟对其正在施工的疏港道路桥梁桩人工挖孔桩工程爆破工作进行振动监测。其目的是为控制该工程爆破施工引起的振动对旁边建筑物的影响,以确保其安全。 二、工程概况 该爆破工程位于小南山隧道口处,其施工引起的振动对旁边建筑物、管道影响颇为敏感。为确保工程顺利进行,必须根据其工程特性有针对性对爆破进行监测,并及时将监测结果反馈给施工方,用实测数据指导施工。 三、测试依据 1. 中华人民共和国国家标准《爆破安全规程》(GB6722- 2003) 2. 中华人民共和国国家标准《建筑抗震设计规范》(GB50011- 2001) 3. 中华人民共和国国家标准《中国地震裂度表》(GB/T17742- 1999)

4. 我公司在深圳地铁2、3、4、5号线工程、平峦山公园、铁 仔山公园边坡爆破工程、西乡三所场坪工程、坪洲小区、沙井将军山采石场爆破工程等类似工程经验。 四、仪器设备 本次监测采用中国科学院成都测控研究所生产的TC-4850高精度爆破测振仪,该仪器的优点在于质量轻、可防水、防尘、耐压抗击、精度高、应用面广等特点。除此以外,还具有现场设置各项参数的功能。增强的4850型仪器可以在现场通过按键和液晶屏快速设置参数,从而达到信号快速、准确采集的目的。同时,仪器可以在现场通过仪器本身的功能读出特征值,还能大致预览到已经采集到的信号波形。仪器采用自适应量程,采集时无须做量程调整。时间可单独设置,可根据实际需要设置采集时间。根据实际的情况也可以现场对采集做调整。 本仪器使用分离式振动传感器,可对微小振动及超强振动进行测量。该产品面向爆破振动监测、工程环境监测、建筑、机电设备、交通运输、机械振动……等领域针对振动、压力、应力、位移、温度、湿度等动态过程的监测、记录、报警和分析。 内置记录功能。数据记录功能为连续模式,振动分析仪能同时显示物理量、主频及记录发生时刻。 作为增强型的仪器的4850,具有以下主要技术指标:

石方爆破中常见的爆破方法

石方爆破中常见得爆破方法 爆破法施工就是石质路基施工最有效得方法之一,根据地形与地质等客观条件不同,其施工方法也不尽相同。在完成施工准备与保证爆破工程安全得前提下,我们简述一些常见得爆破方法。 施工准备包括: ⑴应认真阅读设计文件,进行现场核对与施工调查,根据核实得工程数量、工程特点、工期要求,制定实施性施工组织设计,编制施工计划,落实材料、设备工具、劳动力、临时工程、生活供应等。 ⑵应恢复与固定路线中桩,主要内容有:中线及其高程复测,水准点复查与增设横断面检查与补测。 ⑶根据路线中桩及设计图表定出路堑堑顶、边坡坡度线、天沟或其她排水沟位置及断面。 ⑷开挖范围内得地表杂草、树木、树根与其她地面障碍物应在施工前用人工或推土机予以清除运走。 爆破方法 一:深孔台阶微差松动爆破 待爆破山体工程量大,爆破后得石料要运至周边填料区,采用深孔台阶微差松动爆破,可改善爆破后石料得粒径级配提高装运效率与满足填方要求;爆破振动较小,对附近民宅与其她建造物造成得危害较小;机械化程度高,施工效率高,工程施工进度易控制。但这套爆破方案相对硐室爆破次数多,起爆频繁,对机械设备要求较高。 二:硐室爆破

爆破山体规模较大,采用硐室爆破能在较短时间内爆破较大得土石方量,爆破次数少,需要得机械设备较少,成本较低。但采用硐室爆破,爆破危害效应大,对附近得建构筑物将造成很大影响甚至就是毁坏。同时,硐室爆破后石料粒径级配不合理,大块率高,影响铲装效率与不能满足填方要求。 三:浅孔爆破 浅孔爆破所需要得钻孔设备比较简单,适应性强,爆破后石料得粒径级配合理,大块率较低。但浅孔爆破生产效率低,工人劳动强度大,机械化程度较低,较难满足大方量土石方平场得工期要求。结合该工程得工期、质量、安全等各方面得要求,对该待爆山体主要采取深孔台阶微差爆破;对爆破开挖高度不足5米得及爆破后得大块与根底采用浅眼爆破进行爆破。 由于浅孔爆破就是工程爆破中得主要方法之一,应用范围广泛,以下着重介绍前空爆破施工方法。 1、按作业环境得复杂程度分: ⑴、一般性浅眼爆破:环境不复杂,在炸药用量适当得情况下,不需要加盖防护措施得简单浅孔爆破。 ⑵、城镇浅眼爆破:采取控制有害效应得措施,在人口稠密区用浅孔爆破方法开挖与二次破碎大块得作业。(GB6722–2003爆破安全规程) ⑶、非城镇保护性浅眼爆破:并非在人口稠密与城镇地区,但就是离爆破体旁边距离很近得地方有需要被保护得建(构)筑物与设施,需

爆破监测方案

目录 1、工程概况 (2) 2、爆破监测目的与内容 (2) 3、爆破振动监测原理 (2) 4、监测方法 (3) 5、仪器操作注意事项 (7) 6、现场协调与配合 (7)

1、工程概况 2、爆破监测目的与内容 2.1监测目的 (1)通过爆破振动监测与试验,获取爆破振动沿不利断面或不安全方向的振动衰减传播规律,回归计算爆破振动传播公式,估算开挖爆破最大允许药量与安全距离,为确定爆破施工方案与爆破参数提供依据; (2)通过爆破振动监测与试验,评价爆破施工方案和爆破参数的合理性,为控制与优化爆破施工参数提供依据; (3)通过爆破振动监测,测定开挖爆破作业对震动敏感建(构)筑物、岩土体的振动影响程度,并根据相关规范及设计标准,对其安全性作出评估,并为控制或调整爆破参数提供依据。 2.2监测工作内容 根据开挖爆破施工情况,结合需要重点保护的对象分析,爆破振动试验与监测工作内容包括: (1)测定基坑四周爆破振动参数,监测基坑开挖爆破对周边建筑、铁路、公路的振动影响。 (2)测定基坑围护结构的爆破振动参数,监测基坑开挖爆破对基坑围护结构的振动影响。 3、爆破振动监测原理 爆破振动监测原理如流程图

图形数据输出 计算机RS232接口CPU 外触发输入时钟、触发电路 掉电保护 存储器 AD 转换可变增益 放大器传感器 由于炸药在岩石中的爆炸作用,使安装布臵在监测质点上的传感器随质点振动而振动,使传感器内部的磁系统、空气隙、线圈之间作相对的运动,变成电动势信号,电动势信号通过导线输入可变增益放大器将信号放大,进入AD 转换,再通过时钟、触发电路,同时也通过存储器信号保护,再通过CPU 系统输入计算机,采用波形显示和数据处理软件进行波形分析和数据处理。 4、监测方法 爆破振动监测是实时监测,所以在爆破前根据实地调查结果进行细致的准备工作,并严格按照工作流程进行工作。 为确保监测的准确可靠,首先对爆破点附近的监测对象进行详细准确的调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测和标定,同时根据监测对象与爆破点相对位臵关系,确定测点位臵及布臵方法,提前进入现场进行安臵,根据爆破时间进行监测。 4.1 测点布臵 根据设计要求,将爆破振动测点布臵在所需监测的地表、建筑物结构支撑柱、铁路桥梁下、基坑侧壁上。安装传感器时必须安装稳固,否则质点的速度监测数据将产生失真现象,一般采用石膏固定传感器效果较好。还应注意对传

气瓶定期检验规定

气瓶定期检验规定 各类气瓶的检验周期 各类气瓶定期检验周期,不得超过以下规定: 1、盛装腐蚀性气体的气瓶,每2年检验一次; 2、盛装一般气体的气瓶,每3年检验一次; 3、液化石油气瓶使用未超过20年的,每5年检验一次;超过20年的,第2年检验一次; 4、盛装惰性气体的气瓶,每5年检验一次; 5、溶解乙炔气瓶,每3年检验一次。 气瓶在使用过程中,发现有严重腐蚀、损伤或对其安全可靠性有怀疑时,应提前进行检验。库存和停用时间超过一个检验周期的气瓶,启用前应进行检验。对于不同性质气体的划分,应当按国家标准压缩气体分类进行。由于有些气体的腐蚀性与是否含水等条件有关,因此,应特别注意使用条件。检验周期是按正常条件确定的,如果使用条件或周围环境有特殊情况,则检验周期应适当缩短。因此,上述规定是不得超过。有的地方根据本地的实际情况,允许检验周期规定的短些。库存和停用的气瓶,如保管不当会对气瓶造成更大的损伤,因此,在超过一个检验周期时,启用前要先进行检验。 (二)气瓶检验前准备工作的规定 检验气瓶前,应对气瓶进行处理。达到下列要求方可检验:1、在确认气瓶内气体压力降为零后,方可卸下瓶阀(压力为零,

指的是表压为零); 2、毒性、易燃气体气瓶内的残留气体应回收,不得向大气排放; 3、易燃气体气瓶须经置换,液化石油气钢瓶须经蒸汽吹扫,达到规定的要求,否则,严禁用压缩空气进行气密性试验。 4、液化石油气钢瓶须经蒸汽吹扫,是因为国内液化石油气中含有重组份气体,有些类似沥青的粘性物质沾在气瓶壁上,由于这类物质的挥发很慢,往往气瓶经放置后,瓶内的可燃物与空气混合后仍可达到爆炸极限。用冷水浸泡是无法将这些粘性物质从瓶内除掉的,只能用蒸汽吹扫才能除去。 (三)气瓶定期检验的项目、要求和评定的规定 气瓶定期检验,必须逐只进行。各类气瓶定期检验的项目和要求,应符合相应的国家标准的规定。即:GB 8334液化石油气钢瓶定期检验与评定、GB 13004钢质无缝气瓶定期检验与评定、GB 13075钢质焊接气瓶定期检验与评定、GB 13076溶解乙炔气瓶定期检验与评定、GB 13077铝合金无缝气瓶定期检验与评定的规定。检验合格的气瓶,应按规定打铳检验钢印。检验不符合标准规定的气瓶应判废。少数判废的、尚有使用价值的气瓶,允许改装后降压使用。判废是相对于原设计条件而言的,不符合原设计条件,但尚能符合较低的条件,可以不报废,而允许改装后降压使用。如已报废的气瓶,就不再允许进入气瓶使用领域了。这是根据我国目前的条件而确定的原则。 (四)气瓶报废处理的规定

相关文档
最新文档