全向自动巡线搬运机器人

全向自动巡线搬运机器人
全向自动巡线搬运机器人

课程设计报告书

题目全向自动巡线搬运机器人学院湖南文理学院芙蓉学院专业

班级

学号

姓名

指导教师

2014 年 1 月 1日

一、课程设计目的

自动机器人在现代工业和生产中广泛运用,大大减少了人力物力。而机器人要完成指定动作,不光需要机械手臂,驱动模块,还需要准确的定位。这不光需要依靠指定的完成机械手臂的动作,同时还需要接受外部的检测信号。在这次课程设计中,我们自主设计组装了自动巡线机器人,完成在指定线路上的搬运物件工作。主要熟悉了机器人制作的整个流程(包括设计,仿真,安装,调试等),利用SolidWorks装配机器人,COSMOSMOTION仿真,机器人调试过程,A VR单片机编程,UP-Commander调试环境,A VR Studio的Gcc编程环境,电机及舵机控制等。

二、课程设计任务

(1)利用Solidworks装配机器人,并进行运动仿真;

(2)利用已给零件及传感器搭建设计机器人;

(3)运用UP-Commander在线调试机器人运动;

(4)运用A VR Studio编程环境编写C语言下载至A VR单片机中完成指定动作;

三、硬件介绍

1.控制模块:

图中为MultiFLEX?2-AVR Controller Datasheet控制卡,基于控制卡编程实现机器人的功能。

●功能概述

MultiFLEX?2-AVR控制器是一款小型机器人通用控制器,集成开关量传感器、模拟量传感器、R\C舵机、机器人总线舵机控制接口,具有RS422总线接口和RS232 接口,具有丰富的扩展能力。具体特点如下:

●控制接口丰富

可以控制R/C 舵机、机器人总线舵机,直流电机伺服驱动器等。

●数据接口丰富

12路双向IO接口,8 路10 位精度的AD 接口;RS-422总线、RS-232 接口。

●多种开发环境

配套NorthSTAR图形化集成开发环境,无需编写C语言即可完成机器人控制程序编写。此外,也支持AVRStudio,Eclipse 等IDE开发环境。

●接口开放彻底

MultiFLEX ?2-AVR开放所有底层源码,用户可以参照这些源码开发自己的程序,也可以调用已封装的函数接口。MultiFLEX?2-AVR控制器有丰富的自我保护机制,对于超负荷功率输出、电源反向输入、电池电压过低、电源输入电压过高等具有软硬件保护,可以及时有效

保护控制器,并提示用户错误信息。MultiFLEX?2-AVR 控制器可以配备ZigBee 无线网络电

台,实现机器人无线控制,机器人组网,可为群体机器人研究、多机器人协作等科研领域提供快速机器人原型。

MultiFLEX?2-AVR控制器的具体参数如下所示:

● 主处理器ATmega128@16MHz,协处理器ATmega8@16MHz;

● 6 个机器人舵机接口,兼容Robotis Dynamixel AX12+;

● 8 个R/C舵机接口;

● 12 个TTL 电平的双向I/O 口,GND/VCC/SIG 三线制;

● 8 个AD 转换器接口(0—5V);

● 2 个RS-422 总线接口(可挂接1-127 个422 设备);

● 1 个无源蜂鸣器;

● 通过RS-232 与上位机通讯,可选无线通讯模组;

● 使用USB接口的AVR-ISP下载调试器。

应用领域

● 小型机器人;

● 其它要求配置多种传感器、执行器,机电系统快速原型。

2.舵机的介绍:

图中为proMOTION CDS 系列机器人伺服电机:

功能概述

proMOTION CDS 系列机器人伺服电机(机器人舵机)属于一种集电机、伺服驱动、总线式通讯接口为一体的集成伺服单元,非常适合替代RC 舵机,作为微型机器人的关节、轮子、履带驱动,也可用于其他简单位置控制场合。主要特点如下:

●大扭矩:16Kgfcm

●高转速:最高0.16s/60°输出转速

●DC 6.8V~14V 供电

●0.32°位置分辨率

●双端输出轴,适合安装在机器人关节

●高精度全金属齿轮组,双滚珠轴承

●连接处O 型环密封,防尘防溅水

●位置伺服控制模式下转动范围0-300°

●在速度控制模式下可连续旋转,调速

●总线连接,理论可串联254 个单元

●高达1M 通讯波特率

●0.25KHz 的伺服更新率

●具备位置、温度、电压、速度反馈

●通讯协议兼容Robotis Dynamixel

CDS5516 机器人舵机采用先进的伺服控制技术和高速微处理器,响应速度快、到位准确无抖动。相比传统RC 舵机50Hz 的控制频率,CDS 系列机器人舵机通过高达250Hz 的控制频率,确保位置控制的准确和保持力矩的稳定性。 CDS5516 机器人舵机采用周转型高精度电位器测量位置,舵机输出轴可连续整周旋转,运动扭矩输出高达16kgf.cm。 CDS5516 具备总线接口,理论多至254 个机器人舵机可以通过总线组成链型,通过异步串行接口统一控制。每个舵机可以设定丌同的节点地址,多个舵机可以统一运动也可以单个独立控制。CDS5516 的通讯指令集完全开放,舵机通过异步串行接口不用户的上位机通讯,用户可对其参数设置、功能控制。通过异步串行接口収送指令, CDS5516 可以设置为电机模式或位置控制模式。在电机模式下,CDS5516 可以作为直流减速电机使用,速度可调;在位置控制模式下,CDS5516 拥有0-300°的转动范围,在此范围内具备精确位置控制性能,速度可调。CDS5516 机器人舵机的外形和安装方式兼容传统舵机。

应用领域

CDS5516 继承RC 舵机的优点,并针对机器人应用进行了优化。其理想应用领域是:小型仿人形机器人

小型关节式机器人

其他小型仿生机器人

机器人轮子、履带驱动

需要简单位置控制的工业自动化

3.红外线传感器

红外线传感器是利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。

4.灰度传感器

灰度传感器是模拟传感器,有一只发光二极管和一只光敏电阻,安装在同一面上。灰度传感器利用不同颜色的检测面对光的反射程度不同,光敏电阻对不同检测面返回的光其阻值也不同的原理进行颜色深浅检测。在有效的检测距离内,发光二极管发出白光,照射在检测面上,检测面反射部分光线,光敏电阻检测此光线的强度并将其转换为机器人可以识别的信号。

四、课程设计步骤

1、机构设计

整个全向运动搬运机器人由大致三个模块组成:

1.由4直流电机与4轮组成的驱动模块。

2.由7舵机组成的搬运卸载模块。

3.又1个红外线传感器和两个灰度传感器组成的传感模块。

2、其完成的任务为

1.沿着指定黑色轨迹带上进行运动,停止以及调整动作转弯,这个功能由驱动部分和红外线传感部分协作完成。

2.在指定地点进行货物的搬运与卸载,这一部分主要由机器人上部的机械手和灰度传感部分协作完成。

实际图

通过Solidworks装配零件如下图,并进行运动仿真,曲线见附页

3、机构装配

整个全向运动搬运机器人由1个控制板,4个电机组成转向机构,7个舵机组成手臂模块,1个红外线传感器和2个灰度传感器以及相应的连接件构成。

安装舵机前,先将舵机接入控制板上的CH端口,将舵机复中位,减少以后调试过程中由于中位不对而导致的重新搭建的冗余过程。先将4个直流电机与转向舵机组成驱动模块组装完成后,与底板固定完成底部的搭建工作,在机械臂中分配7个舵机,一个舵机负责夹子的转动,一个舵机负责夹子的夹紧与松开功能,其他舵机负责装夹物的定位。

4、连接电缆

1.将车轮4个电机串联在一起,再通过一端接入MultiFLEX控制卡上。

2.将车轮7个舵机串联在一起,再通过一端接入MultiFLEX控制卡上。

3.将红外线传感器接入MultiFLEX控制器io口上。

4.将两个灰度传感器接入MultiFLEX控制器ad口上。

5、微调初始姿态

为了更好的进行预期动作,可以将机器人的舵机位置调整合适,由于之前已将舵机调整中位,所以这部调整较为简单,只需旋转舵机的舵盘的位置即可,即当机器人通电后,舵机

自动调至中位,此时为机器人的初始姿态。之后的所有调试,都是基于这个初始姿态设计的。

6、机器人步态调试

我们在UP-commander下调试机器人的预期动作,通过调节舵机转角、转速,电机的转速、运动时间来完成预期机器人的动作,包括机器人的直行,转弯,机械臂的装夹物件等动作,过程中应注意USB-Serial接口的位置,金属片应指向芯片。在在线调试环境中,完成各个动作的细节数值,包括转角,转速及运动时间等。由于UP-commander环境下无法读取IO口的数值,所以要完成传感器部分的设计必须采用C语言的调试环境。

7、AVR Studio调试程序

在该编译环境下,可以更直观的观测到所有输出与输入端口,可以很好的完成对机器人的控制。

源代码见附页,程序流程如下:

当小车偏离黑色带时,灰度传感器检测到偏离,当左边灰度传感器检测到时,控制器控制左边车轮前进,右边车轮后退,就实现了小车向右转弯,当右边灰度传感器检测到时,控制器控制右边车轮前进,左边车轮后退,就实现了小车向左转弯,若没有检测到黑带,左右车轮都前进,

当前面有障碍物时,红外线传感器检测到障碍物,向MultiFLEX控制器io口上传输低电平,机器人停止前进,控制器向手臂发出指令,这时各舵机按照手臂预定动作程序运动。

五、功能描述

该自动巡线机器人能够准确的识别小弧度的弯道,并能迅速准确的校正前进的姿态保证机器人能够准确的沿指定的路线前进,并在指定的位置停止,装夹货物。

六、总结

通过这次课程设计,我们了解了机器人的制作过程,自己亲手安装调试开发机器人,不仅锻炼了我们的动手能力,而且还在过程中熟悉了嵌入式系统的编程设计,不知不觉中锻炼了我们的创新思维。平时在课上学到电机和运动副的问题,却很少有机会去动手实现这些,这次让不但让我们亲手接触这些,还学会了控制电机,运用他们调整机器人的运动及稳定性。不仅将平时课本中的知识移植到了实验中,还在实践中不断的完善知识体系,更好的达到了学以致用的目的。

整个课程设计下来,发觉那些看似高科技的机器人原来离我们并不那么遥远,只要好好发挥我们的创新能力,没有做不到的只有想不到的。其实我们想开发的功能还很多,但是由

于时间和器件的问题,我们只开发了机器人中的一小部分,当这一小部分就让我们感受到了其中的艰辛与快乐。当调试过程中屡次受挫时,我们没有放弃,不断的修改程序,不断的仿真曲线,当我们初见成效时,我们击掌相庆。

总之,经过了这个课程设计让我们受益匪浅,锻炼自己的动手能力,还体现了团队合作的精神,从头到尾我们都是一个团体,收获颇多。

附页:

一、Solidworks运动仿真曲线:

图1 前轮角速度曲线

图2 前轮角加速度曲线

图3 前轮平均速度曲线

图4 前轮动能曲线

图5 前轮舵机角速度曲线

图6 前轮舵机角加速度曲线

图7 舵机动能曲线二、机器人装配图:

三、机器人工程图

四、C语言源程序

#include "Apps/SystemTask.h"

uint8 SERVO_MAPPING[11] = {1,2,3,4,5,6,7,10,20,30,40}; int main()

{

int ad[2] = {0};

int io0 = 0;

MFInit();

MFInitServoMapping(&SERVO_MAPPING[0],11);

MFSetPortDirect(0x00000FFE);

MFSetServoMode(1,0);

MFSetServoMode(2,0);

MFSetServoMode(3,0);

MFSetServoMode(4,0);

MFSetServoMode(5,0);

MFSetServoMode(6,0);

MFSetServoMode(7,0);

MFSetServoMode(10,1);

MFSetServoMode(20,1);

MFSetServoMode(30,1);

MFSetServoMode(40,1);

while (1)

{

io0 = MFGetDigiInput(0);

ad[0] = MFGetAD(0);

ad[1] = MFGetAD(1);

if (io0==0)

{

MFSetServoPos(1,860,80);

MFSetServoPos(2,488,80);

MFSetServoPos(4,400,80); MFSetServoPos(5,540,80); MFSetServoPos(6,860,80); MFSetServoPos(7,290,80); MFSetServoRotaSpd(10,0); MFSetServoRotaSpd(20,0); MFSetServoRotaSpd(30,0); MFSetServoRotaSpd(40,0); MFServoAction();

DelayMS(8000);

MFSetServoPos(1,860,80); MFSetServoPos(2,488,80); MFSetServoPos(3,220,80); MFSetServoPos(4,400,80); MFSetServoPos(5,540,80); MFSetServoPos(6,860,80); MFSetServoPos(7,510,80); MFSetServoRotaSpd(10,0); MFSetServoRotaSpd(20,0); MFSetServoRotaSpd(30,0); MFSetServoRotaSpd(40,0); MFServoAction();

DelayMS(3000);

MFSetServoPos(1,550,80); MFSetServoPos(2,488,80); MFSetServoPos(3,300,80); MFSetServoPos(4,420,80); MFSetServoPos(5,550,80); MFSetServoPos(6,860,80); MFSetServoPos(7,510,80); MFSetServoRotaSpd(10,0); MFSetServoRotaSpd(20,0); MFSetServoRotaSpd(30,0); MFSetServoRotaSpd(40,0); MFServoAction();

DelayMS(4500);

MFSetServoPos(1,550,80); MFSetServoPos(2,488,80); MFSetServoPos(3,300,80); MFSetServoPos(4,420,80); MFSetServoPos(5,550,80); MFSetServoPos(6,860,80); MFSetServoPos(7,300,80);

MFSetServoRotaSpd(20,0);

MFSetServoRotaSpd(30,0);

MFSetServoRotaSpd(40,0);

MFServoAction();

DelayMS(4000);

MFSetServoPos(1,680,60);

MFSetServoPos(2,488,60);

MFSetServoPos(3,400,60);

MFSetServoPos(4,300,60);

MFSetServoPos(5,420,60);

MFSetServoPos(6,860,60);

MFSetServoPos(7,300,60);

MFSetServoRotaSpd(10,0);

MFSetServoRotaSpd(20,0);

MFSetServoRotaSpd(30,0);

MFSetServoRotaSpd(40,0);

MFServoAction();

DelayMS(5000);

MFSetServoPos(1,860,80);

MFSetServoPos(2,488,80);

MFSetServoPos(3,860,80);

MFSetServoPos(4,770,80);

MFSetServoPos(5,680,80);

MFSetServoPos(6,860,80);

MFSetServoPos(7,300,80);

MFSetServoRotaSpd(10,0);

MFSetServoRotaSpd(20,0);

MFSetServoRotaSpd(30,0);

MFSetServoRotaSpd(40,0);

MFServoAction();

DelayMS(4000);

}

else

{

if (ad[0]<300)

{

MFSetServoPos(1,860,80); MFSetServoPos(2,488,80); MFSetServoPos(3,860,80); MFSetServoPos(4,770,80); MFSetServoPos(5,680,80); MFSetServoPos(6,860,80); MFSetServoPos(7,300,80);

MFSetServoRotaSpd(10,180);

MFSetServoRotaSpd(20,180);

MFSetServoRotaSpd(30,180);

MFSetServoRotaSpd(40,180);

MFServoAction();

}

else

{

if (ad[1]<300)

{

MFSetServoPos(1,860,80);

MFSetServoPos(2,488,80);

MFSetServoPos(3,860,80);

MFSetServoPos(4,770,80);

MFSetServoPos(5,680,80);

MFSetServoPos(6,860,80);

MFSetServoPos(7,300,80);

MFSetServoRotaSpd(10,-180); MFSetServoRotaSpd(20,-180); MFSetServoRotaSpd(30,-180); MFSetServoRotaSpd(40,-180); MFServoAction();

}

else

{

MFSetServoPos(1,860,80);

MFSetServoPos(2,488,80);

MFSetServoPos(3,860,80);

MFSetServoPos(4,770,80);

MFSetServoPos(5,680,80);

MFSetServoPos(6,860,80);

MFSetServoPos(7,300,80);

MFSetServoRotaSpd(10,512); MFSetServoRotaSpd(20,-512); MFSetServoRotaSpd(30,512); MFSetServoRotaSpd(40,-512); MFServoAction();

DelayMS(500);

}

}

}

DelayMS(50);

} }

智能巡线机器人设计

××××学院 毕业设计说明书 题目智能巡线机器人设计 学生 系别机电工程系 专业班级机械设计制造及其自动化机电03.3班学号 指导教师

××××学院 毕业设计(论文)任务书 设计(论文)题目:智能巡线机器人设计 系:机电系专业:机械设计制造及其自动化(机电一体化) 班级:学号: 学生:指导教师: 接受任务时间 教研室主任(签名)系主任(签名) 1.毕业设计(论文)的主要内容及基本要求 1.总体方案设计; 2机械整体设计; 3.控制设计; 4编写设计说明书; 2.指定查阅的主要参考文献 1.《机器人控制电子学》 2.《机器人探索》 3.《机器人的创意设计与实践》 4.《MSP430系列——FLASH型超低功耗16位单片机》 (电子和机械方面的书)

近年来机器人的研究和应用已经不仅仅局限于军用领域。许多应用于军用机器人上的成功技术已经在民用机器人中得到了一定的应用。在工业机器人的基础上,运用了传感器技术和单片机智能控制技术,设计出了一种能自动运送货物的职能巡线机器人。 论文首先对智能巡线机器人总体设计方案进行叙述,阐述其各要素的工作原理,然后就整个智能巡线机器人系统划分为五个模块,分章节对各个模块设计制作进行阐述。 机器人机械结构部分,通过分析常用的车轮驱动配置方式,择优选择了前排安装两个万向轮、后排安装两个独立驱动轮的设计方案,充分考虑到了巡线的简易性和稳定性。 机器人传感器接口与驱动电路部分,详细阐述了光电传感器检测信号原理,叙述了设计所采用的光电传感器接口电路详细设计方案,分析了传感器采用该种布局方案的原因。针对机器人的机械特性和速度要求,选用了L298N驱动芯片驱动电机,分析了它的优缺点和可行性。 机器人主控系统硬件部分阐述了主控芯片选型,主控电路设计方案,以及相应的接口说明。软件部分在MSP430平台上实现了快速、稳定、准确的巡线方法。 关键词:机器人;巡线;光电检测;PWM驱动。

智能化机器人设计说明书

机械装备设计制造综合技能大赛 设 计 说 明 书 姓名:孙小平洪耀林徐海昌 指导老师:黄伟玲 2014年9月17日 江西·赣州

摘要 随着计算机技术,人工智能技术的迅速发展以及智能采集器的不断改进和推陈出新,智能信息采集装置已经取得了很大进展。但是对于应用比较复杂通用性较高的全自动信息采集车还没有突破性的进展。智能数据信息采集车的研究将会告别信息相互孤立缺乏联动性的现象,是一个复杂的,面向智能化的,不断发现的过程。近年来,很多关于信息采集的研究和设计,尤其是智能数据信息采集车更是吸引了很多人的眼球。对于智能信息采集车来说,不但要有环境信息获取功能,还要有对信息理解和信息处理的功能。对自动信息采集车的研究是针对环境空间的识别,然后建立相应数据通道,通过雷达和无线装置把获取的数据传送到终端。 智能信息采集车采用了应用范围广,性价比高的基于单片机的多数据通道采集系统,将来自传感器的信号通过转换器转换为数字信号后由单片机采集然后利用SPI通信将数据送到主机进行数据的存储后期处理与显示实现数据处理功能强大的智能化高端信息采集设备。 智能数据信息采集车是一个集自动驾驶、环境感知、规划决策等功能于一体的综合系统。它集中的运用了人工智能、导航、传感器及自动控制等技术;应用了计算机、信息传递、通信交流等现代装备,是典型的高新技术综合体。 关键词:智能信息采集车、智能化、传感器、数据通道、现代装备

第一章绪论 (1) 1.1 信息采集的现状及发展概述 (1) 1.2信息采集车国内外研究现状 (2) 1.3智能信息采集车的背景意义 (4) 1.4 设计要求及内容 (6) 第二章智能信息采集车的结构与工作原理 (6) 2.1 数据获取装置的设计 (6) 2.2 行走方案选择 (7) 2.3基本结构 (9) 2.4工作原理 (11) 第三章智能信息采集车的功能与特点 (12) 3.1 智能信息采集车的功能 (12) 3.2智能信息采集车的特点 (13) 第四章智能信息采集车的设计思路 (15) 4.1 基本工作思路 (15) 4.2动力选择思路 (15) 4.3设计后的调整 (16) 第五章总结与展望 (17) 参考文献 (18)

物料搬运机器人手的系统设计

天津大学 毕业设计 中文题目:物料搬运机器人手部系统的设计 英文题目:Material handling system design robot Hand department 学生姓名 系别机电 专业班级 2 指导教 成绩评定 2010年6月

目录 1 引言 (1) 1.1 机器人概述 (1) 1.2 机器人的研究历史及现状 (1) 1.3 机器人的发展趋势 (2) 2 手部的设计与计算 (3) 2.1 手部的设计 (3) 2.2 驱动方式 (3) 2.3 手部夹紧力的计算 (5) 2.4 弹簧的计算[6] (5) 2.5 手部电机选择原则【7】........................... 错误!未定义书签。 2.5.1 一般执行电机的选择原则...................... 错误!未定义书签。 2.5.2 电机的选用.................................. 错误!未定义书签。 2.6 手部电机参数计算.............................. 错误!未定义书签。 2.7 电机转速与夹紧力速度几何关系的确定............ 错误!未定义书签。 3 手臂的设计与计算............................... 错误!未定义书签。 3.1 手臂结构设计.................................. 错误!未定义书签。 3.2 手部质量计算.................................. 错误!未定义书签。 3.2.1 爪子的质量计算.............................. 错误!未定义书签。 3.2.2 手部外壳质量计算............................ 错误!未定义书签。 3.2.3 手部主轴的质量计算.......................... 错误!未定义书签。 3.2.4 其它部件的质量估算.......................... 错误!未定义书签。 3.3 手臂计算及电机选择............................ 错误!未定义书签。 4 结论.......................................... 错误!未定义书签。【参考文献】................................... 错误!未定义书签。致谢............................................ 错误!未定义书签。附录1:英文文献 .................................. 错误!未定义书签。附录2:英文文献翻译 .............................. 错误!未定义书签。

巡检机器人的调研报告

上海电力学院 关于巡检机器人的调研报告 院(系部)自动化工程学院 专业名称: 电机与电器 学生姓名: 杨雪莹 导师: 薛阳 2013 年 12 月

目录 1 巡检机器人的发展状况........................... 错误!未定义书签。 2 巡检机器人的应用............................... 错误!未定义书签。 高压线路巡检机器人.......................... 错误!未定义书签。 机器人仿真.............................. 错误!未定义书签。 巡检机器人越障.......................... 错误!未定义书签。 变电站巡检机器人............................ 错误!未定义书签。 校园巡逻机器人.............................. 错误!未定义书签。 3 总结 .......................................... 错误!未定义书签。参考文献 ........................................ 错误!未定义书签。

1 巡检机器人的发展状况 目前巡检机器人已在多个领域中应用,它的智能化推动着它在应用领域的市场前景将是越来越广,尤其是在电力行业。它在多种场合发挥着作用,如变电站,高压线路中等等。 2013年12月9号中山供电局经过三个多月的试运行,该局将“智能巡检机器人”正式投入到500千伏桂山巡维中心使用,开创南方电网公司首例无轨化设备巡视工作。传统的机器人需要铺设类似于火车轨道那样的磁轨,机器人就只能沿着磁轨作运动。而最新投入使用的机器人实现了无轨化运作,不需要铺设任何轨道,也无需进行任何基建工程,机器人就可以直接在日常的路面上运作,既省下基建施工的时间,又节约了投入成本。凭靠机器人配备的四驱越野底盘,还可以爬上30度的陡坡。该机器人上配备了激光扫描设备,可将站内的设备位置,道路扫描为地图,我们在后台为它规划好巡视路径后,它就可以按照指示去工作了。 机器人巡线最大的优点则是,无论白天黑夜还是刮风下雨,它都可以在没有人看管的情况下能自动自觉并出色完成一般日常巡视所包含的工作内容。这样一来,机器人不但减轻了工作量,而且在遇到严重故障或者恶劣天气时,它还可以降低工作人员的安全风险。 智能机器人还具有自动续航功能,当蓄电池电量低于设定值时,它将自动驶入存放室进行充电。据悉,中山供电局通过对智能巡检机器人进行了三个月的试用,已经收到不错的成效。此次正式投入使用,在南方电网公司尚属首例。 2013年11月11日上午,在国家知识产权局与世界知识产权组织举办的第十五届中国专利奖颁奖大会上,由国网山东电力科学研究院申报的外观专利“变电站巡检机器人”荣获外观专利金奖,成为5个金奖之一。这是国家电网公司历史上获得的第一个中国外观专利金奖,也是中国电力行业惟一当选的金奖。 变电站巡检机器人能够全天候全方位全自主对变电站设备进行无人值守巡检,从而代替繁重的变电站设备人工巡检,提高了变电站巡检的自动化、智能化水平,确保了智能电网的安全可靠运行。 该变电站巡检机器人产品外壳采用无污染、抗冲击、高绝缘的ABS树脂材料,具有较好的环保性和安全性;产品外观采用了“仿人”化创新性设计,整体颜色融合变电站“环境”因素,同时配以红色的机器人颈部绕圈与多色的告警指示灯

智能巡检机器人项目申请报告

智能巡检机器人项目 申请报告 规划设计 / 投资分析

智能巡检机器人项目申请报告 电力设备的检修模式的发展大致可以分为三个阶段:事故检修-定 期检修-状态检修。事故检修是20世纪50年代以前主要采取的方式, 即在设备发生故障或事故以后进行检修;定期检修是一种基于时间的 检修,其理论依据是:设备能通过定期检修,周期性地恢复到接近新 设备的状态;状态检修是通过对设备状态进行监测后根据其健康状态 安排检修的一种策略,是按设备的实际运行情况来决定检修时间与部位,针对性较强,且经济合理。 市场需求主要来源于两大电网公司及其下属企业。电网公司按照 政府及其公司采购的相关管理办法,对属于国家依法必须招标的项目 以公开招标方式进行采购;对于其他产品及服务,各级电网公司可根 据实际情况,自主选择采用公开招标或非招标的方式进行采购。非招 标方式主要包括竞争性谈判、单一来源采购、询价采购以及零星采购。招标和非招标采购活动可由电网公司自行组织实施,也可由电网公司 委托招标代理机构组织实施。本行业企业主要是通过参与两大电网及 其下属公司的招投标或竞争性谈判来获取订单。

我国配电自动化发展工作起步于80年代末,随着坚强智能电网建设的提出,在总结之前的经验教训基础上,国家电网公司于2009年重新制定了智能电网配电环节的发展战略、技术导则及建设改造原则,并于2010年开展新一轮的配电自动化建设。南方电网公司也从2009年开始逐步启动配电自动化的规模试点建设,在广州、深圳、佛山、珠海等12个城市开展了试点工作。 该智能巡检机器人项目计划总投资14036.84万元,其中:固定资产投资10138.87万元,占项目总投资的72.23%;流动资金3897.97万元,占项目总投资的27.77%。 达产年营业收入28596.00万元,总成本费用22476.73万元,税金及附加242.56万元,利润总额6119.27万元,利税总额7205.87万元,税后净利润4589.45万元,达产年纳税总额2616.42万元;达产年投资利润率43.59%,投资利税率51.34%,投资回报率32.70%,全部投资回收期4.56年,提供就业职位572个。 本报告所涉及到的项目承办单位近几年来经营业绩指标,是以国家法定的会计师事务所出具的《财务审计报告》为准,其数据的真实性和合法性均由公司聘请的审计机构负责;公司财务部门相应人员负责提供近几年来既成的财务信息,确保财务数据必须同时具备真实性和合法性,如有弄虚作假等行为导致的后果,由公司财务部门相关人员承担直接法律责任;

工业机器人课程设计

河南机电高等专科学校《机器人应用技术》课程作品 设计说明书 作品名称:多功能机械手 专业:机电一体化技术 班级:机电124班 扣号: 姓名:流星 2014 年 10 月 1 日

目录 一课题概述 (2) 1、选题背景 (2) 2、发展现状和趋势 (3) 3、研究调研 (4) 二机械手组成及工作过程 (6) 1、整体结构分析 (6) 2、所需器材 (6) 3、底座部分 (8) 4、躯干部分 (9) 5、上臂部分 (10) 6、手爪部分 (11) 7、机械手系统的总调试 (12) 三软件部分 (13) 1、机械手软件编制流程图 (13) 2、机械手运行控制程序图 (14) 四设计体会 (15) 一课题概述 1、选题背景 随着我国经济的高速发展,各种电子产品和各种创新机械结构的出现,工业机器人的作用在装配制造业产业中的地位更加重要了。另一方面随着人们生活水平的提高传统制造产业劳动力生产成本进一

步提高,这也使企业意识到用高速准确的机械自动化生产代替传统人工操作的重要性。其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。在机械行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更为普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。但目前我国的工业机械手技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国机械行业自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计具有重要意义。 在这样一个大的背景下结合自己的专业机电一体化,我们选择多功能机械手来作为我们的设计题目。结合专业特点使用德国慧鱼机器人教学模型作为我们实现这一课题的元件。利用慧鱼模型的各种机械结构组装出机械手的机械部分,用pc编程实现对机械手的自动控制,利用限位开关来保护电机和控制机械手位置的准停。 这个课题可以充分的体现机电一体化的由程序自动控制机械结构的运动,对自己以前的所学的课程也是一种巩固。另一方面这个机械手可以实现一定的搬运功能具有很强的实用性能。 2、发展现状和趋势

自动搬运机器人设计开题报告

本科毕业设计开题报告 题目:自动搬运机器人设计 院(系):电气与信息工程学院 专业:电子信息工程 班级: 姓名: 学号: 指导教师: 开题报告日期:2012年12月25日

填写说明 一、开题报告应包括下列主要内容: 1.研究目的和意义; 2.国内外发展情况(文献综述); 3.研究/设计的目标; 4.研究/设计主要内容; 5.时间进程; 6.参考文献。 二、开题报告字数应不少于2.5千字。 三、开题报告时间应最迟应于开题答辩后一周上交。 四、若本次开题报告未通过,需在1个月内再次进行开题报告。 五、开题报告结束后,评议小组给出开题报告成绩,由教研室归档。 六、双面打印。 七、此表不够填写时,可另附页。

黑龙江科技学院本科毕业设计开题报告 题目自动搬运机器人设计 1、研究目的和意义 本课题最终目的在于研制机器搬运取代人工搬运工作,由于现代工业的迅猛发展,使得机器人已被越来越多的应用到科技、生产加工、服务等各个领域,并将有着更加广泛的发展,机器人的研制和生产已迅速发殿起来的一门新兴的技术。机器人是提高生产效率、改善产品质量的重要工具。将机器人应用于生产具有如下优点: 以提高生产过程中的自动化程度,有效的完成工业生产的各种操作流程,以及人工所不能完成的一些操作,从而可以提高劳动生产率和降低生产成本;以改善劳动条件,避免人身事故,在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而搬运机器人即可部分或全部代替人安全的完成作业,使劳动条件得以改善。在一些简单、重复,特别是较笨重的操作中,可以避免由于操作疲劳或疏忽而造成的人身事故;可以减轻人力,并便于有节奏的生产,代替人进行工作,直接减少人力劳作,同时由于还可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产,是现代机械工业发展的必然趋势,通过机器人及搬运机械手结构设计的分析研究,熟悉了机器人设计分析的思路和流程,了解了我国和世界其他各国机器人的发展水平和现状,认知了当今机械行业的最新前沿科技,检测了自己在分析理论和解决实际问题上的能力,为日后的研究工作打下了良好的基础。 2、国内外发展情况(文献综述) 自从20世纪60年代初人类制造出第一台工业机器人以后,机器人就显示出了极强的生命力。经过四十年的迅速发展,在工业发达国家中,工业机器人已经广泛应用于汽车及汽车零部件制造业、机械加工行业、电子电气行业、橡胶及塑料工业、食品工业、木材与家具制造业等诸多领域中。机器人的分类方法有多种,按其应用可分为,工业机器人、军用机器人、农业机器人、服务机器人、水下机器人、空间机器人和娱乐机器人。作为先进制造业中不可替代的重要装备和手段,工业机器人是机器人中的一个重要分支,是机器人领域的重要研究发展方向,对工业机器人运动轨迹规划和控制的研究,一直受到人们的普遍关注。工业机器人已经成为衡量一个国家制造业水平和科技水平的重要标志,搬运机械人的是工业机器人的一个重要分支,它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。目前,对机器人技术的发展有最重要影响的国家是日本和美国,美国在机器人技术的综合性水平上仍处于领先地位,日本生产的机器人数量和种类则居世界首位。 我国发展机器人技术起步于20世纪70年代末,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人。但是我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离。总体来说,我国仍是一个机器人设备的消费市场,行业市场处于发展壮大中,因此,装卸、搬运等工序机械化的迫切性,搬运机器人就是为实现这些工序的自动化而产生的。搬运机械手在锻造工业中的应用能进一步发展锻造设备的生产能力,改善热、累等劳动条件。国外在这方面的运用不仅在单机、专机上采用,以减轻工人的劳动强度,并和机床共同组成一个综合的数控加工系统。同时研究采用摄象机和力传感装置和微型计算机连在一起,能确定零件的方位达到准确搬运的目的。所以搬运机器人以及搬运机械手的研究发展是我国现代化工业发展的必然趋势。

迎宾机器人设计

1引言 1.1设计目的 机器人可以干人不愿意干的事,把人从有毒的、有害的、高温的或危险的,这样的环境中解放出来,同时机器人可以干不好干的活,比方说在汽车生产线上我们看到工人天天拿着一百多公斤的焊钳,一天焊几千个点,就重复性的劳动,一方面他很累,但是产品的质量仍然很低;另一方面机器人干人干不了的活,这也是非常重要的机器人发展的一个理由,比方说人们对太空的认识,人上不去的时候,叫机器人上天,上月球,以及到海洋,进入到人体的小机器人,以及在微观环境下,对原子分子进行搬迁的机器人,都是人们不可达的工作。 机器人是一个具有有类人的功能,比如说作业功能;感知功能;行走功能;还能完成各种动作,还有一个特点是根据人的编程能自动的工作,这里一个显著的特点,就是可以编程,改变工作、动作、工作的对象和工作的一些要求。是人造的机器或机械电子装置,所以这种机器人仍然是个机器。但是目前还没有一个统一的有关机器人定义,一般来说认为机器人是计算机控制的可以编程的目前能够完成某种工作或可以移动的自动化机械,这是美国工程师协会定的一个定义,但日本和其他国家也对机器人有不同的看法,从完整的更为深远的机器人定义来看,应该更强调机器人智能,所以又提出来机器人的定义是能够感知环境,能够有学习、情感和对外界一种逻辑判断思维的这种机器。那么这给机器人提出来更高层次的要求,所以要求设计出机器人。 1.2设计背景 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,也同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中,各国加强了经济的投入,就加强了本国的经济的发展。 另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么人类的发展随着人们这种社会发展的情况,人们越来越不断探讨自然过程中,在改造自然过程中,认识自然过程中,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 “迎宾机器人”是一个机电结合的制作。在现实当中,当客人来到门口时,会向客人热情的说一句“欢迎光临”,同时记下进入人数,同样当有客人从门口离

关节型搬运机器人设计..

关节型搬运机器人设计 摘要 随着现代工业机器人技术的发展,工业机器人的使用迅速增长。本文通过对国内外工业机器人的分析,并结合搬运所需要的条件,设计出了工厂自动化生产和生产线使用的搬运机器人。 本文着重对搬运机器人的总体设计方案、机构及控制系统从理论上进行了详细的分析和设计。在搬运机器人总体设计中,采用了应用最为广泛的平面关节型;在机构设计中,主要设计了搬运机器人末端执行器、手腕、手臂和腰的机械结构;在末端执行器设计上采用了一种具有接近觉、接触觉及滑动觉的初级智能机械手;在控制系统的设计中,采用可编程控制器(PLC)进行控制,并对控制系统的硬件原理做了分析,对PLC 的程序也进行了编译;在驱动系统设计中,采用了气动和电机两种驱动方式,主要动作采用电机驱动。 关键词:搬运机器人,三感觉机械手,可编程序控制器 Design of the joint transporting robot Abstract Under the development of the modern industrial robot’s technology , the use of industrial robot increases rapidly. Through analyzing the domestic and foreign industrial robots, combing the conditions of the transportation, the transporting robot for the factory automation produce and the production line is designed in this article. The emphasis on this article is to analyze and design the transporting robot in theory. The analytical objects include the total scheme, the mechanism design, and the control system design. In the total scheme design, the most wildly applied plane joint type is chosen. In the mechanism, the transporting robot’s end-effector, the wrist, the arm and the waist are mainly designed. A kind of the approaching sense, the contact sense and the skidding sense primary intelligence manipulator is adopted in the end-effector; In the control system, the programmable controller (PLC) is used, the principle of hardware is analyzed and the programs in PLC are compiled. In the actuating system, two driving types are used which include the pneumatic operation and the motor. The main movement is driven by the motor. Key words: Transporting robot, three feelings manipulators, programmable controller (PLC)

巡线机器人中传感器的运用

巡线机器人中传感器的运用 参加Roborave机器人大赛不仅可以锻炼参与者解决问题能力,实践动手能力,还能训练其工程思维能力。我们都知道,在数学上对于一个问题有许多解法,答案不是唯一的。工程上也是如此,解决问题的方法有很多,其中,容错率和效率就是要考虑的重要指标。这里我想讨论一下如何把机器人巡线和在箱子里放固定数量的乒乓球做到又快又好,以下是我在准备参加比赛和在比赛时所用的不同方案,经过学习和比对得出的一些心得。 (图为清华教授姜玉芹、毛勇现场指导照片) 大赛机器人的运行环境是大赛的场地,比赛时场地的情况将非常复杂,因此,机器人必须知道自己当前的位置才能决定要执行怎样的动作,定位是大赛机器人各种性能发挥的基础,也是机器人全场路径自动规划的基础。我们在Roborave 机器人大赛中运用基于巡线技术的定位方案对大赛机器人来讲是一种比较可靠和有针对性的方案。 Roborave对于巡线的要求并不高,用一个巡线传感器和最简单的if语句就可以完成。传感器需要在黑线内,因为它靠识别黑线上的白色来进行巡线的。这个时候你会发现小车虽然可以前进,但是会大幅度的左右摇摆,而且遇到一条以上的黑线比如路口就无法判断方向了,并且小车速度不能过快,因为当速度过快时,它会冲出范围原地快速转圈,而转速很快时,小车没有足够的时间识别并做出反应,导致很难继续巡线,任务必然失败。多加一个传感器就成了一个很好的解决方案。当我们有两个传感器时,可以同时进行巡线,当两个传感器都感应到线的时候可以判定为路口然后停下,随机进入一个再判断是否正确的入口,如果不是则掉头。 当选择用两个传感器时,就可以完成Roborave的巡线要求,并有一定的判断能力,但是在只有两个传感器的情况下,运行速度会受到很大的限制。如果速度过快,小车会冲出跑道,黑线不在两个传感器以内,就无法自主返回。如果使用更多的传感器提高冗余,进一步提高容错率,就可以使小车加速。即使黑线不在车最内侧的传感器范围内,也就是冲出来跑道,依然可以通过外侧的传感器加大小车的转向角度和速度使小车返回原位。通过多次实验,我们用五个传感器完美的实现这个功能,为了使小车在转向时更快,可以在小车的最外侧靠小车中间的地方再加两个传感器,功能是进行直角转弯。 我们在比赛中用于巡线的传感器组合是由多组反射式红外光电传感器组成,组与组之间的工作相互独立。其工作原理是:红外发射管发射一定强度的红外光,接受管用来检测反射光的强度,由于场地的光线和黑色引导线的颜色相差很大,因此,引导线上的反射光强度和场地的反射光强度就会有较大的差别,这些都会影响传感器的测量结果。因此在设计时采用了对对典型值进行实地反复测量的方法。将一个场地的2个典型反射光强度进行反复采样,然后将结果存入控制器的flash中,作为比赛时的典型值,即实现对场地反光强度的记忆。

全国大学生机器人搬运比赛部分程序(aw60)

全国大学生机器人搬运比赛部分程序(aw60)

图1比赛场地示意图

图2机器人出发区示意图4 //-------------------------------------------------------------------------* //机器人搬运比赛程序如下: // 项目名: 基于Freescale AW60的* // 硬件连接: * // 程序描述: 定时器2作为颜色传感器计数器;定时器1通道0-1作为PWM输出;通道2作为颜色传感器的定时器溢出中断 // 超声波计数用定时器 1 *

// 说明: * // ? * // * // 作者信息? * // 版本信息? * // 完成时间? * // 修订记录:* // 时间:* // 内容:? * //-------------------------------------------------------------------------* //调用头文件 #include "Includes.h" void main(void) { //定义变量,不管在主程序还是子函数,都

需要把变量的定义放在最前面,否则会报错 int D=0; int m=0; char num1=0; //用于计数用 char num2=0; //用于转弯计数用char flag_forward=1; //前进的标志位char flag_backward=1; //后退的标志位 //用到的端口,一定要记得初始化端口数据方向寄存器 //液晶模块 //PTGDD |= 0b00011111; //液晶模块IO 的输入输出配置 //颜色传感器模块 //PTCDD |= 0b00101100; //配置颜色传感器模块 // PTFDD &= 0b11111110; //红外传感器模块及驱动模块 PTDDD = 0b00000111; // PTDD4作为定时器2的外部时钟输入 PTBDD = 0b01000000; //前五个是红外传感器,最后两个是超声波的发送和接收

开题报告:智能循迹机器人设计(硬件部分)

毕业设计(论文)开题报告 自动化 智能循迹机器人设计(硬件部分) 一、课题的目的及意义 1. 研究目的 智能化作为现代社会的新产物,是以后的发展方向,随着信息技术的快速发展,智能化已经成为时代发展的需要,当人们遇到一些环境恶劣,不能人工完成的任务,可采用智能循迹机器人完成相关的任务,无需人为管理,即可完成预期所要达到或是更高的目标。基于生产现场和日常生活的实际需要,研究和开发智能循迹机器人具有十分重要的意义,可以提高劳动生产效率,改善劳动环境。近年来机器人的智能水平不断提高,并且迅速地改变人们的生活方式。 同遥控机器人不同,遥控机器人需要人为控制转向、启停和进退,而智能机器人则可以通过计算机编程来实现对其行驶方向、启停以及速度的控制,无需人为干预,它集中运用计算机、传感、信息、通信、导航及自动控制等技术,是典型的高技术综合体,是21世纪的科技制造点之一。随着机器人工业的迅速发展,关于机器人的研究也就越来越受到人们的关注,全国各高校也都很重视该课题的研究,可见研究意义重大,本设计就是对智能机器人的初步研究和设计,设计好的智能循迹机器人具有自动循迹、躲避障碍物等功能。 2. 研究意义 根据学校对嵌入式系统开发的需求,依据提高学生实际动手操作能力和思考能力,加强学生对现实生活中嵌入式系统的应用为参照物,智能循迹机器人全新的设计模板,良好的电路设计,机电组合,系统开发,是加强学生学习兴趣的动源,使学生可以充分发挥自主动手能力。使学生从理论到实践的运用。 二、国内外研究概况及发展趋势 现代智能机器人发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几届的电子设计大赛智能机器人又在向声控系统发展。比较出名的飞思卡尔智能小车更是走在前列。本次设计主要实现循迹避障这两个功能。 智能机器人的发展现状智能机器人是第三代机器人,这种机器人带有多种传感器能够将

搬运机器人结构设计与分析设计说明

搬运机器人结构设计与分析 摘要 在当今大规模制造业中,企业为提高生产效率,保障产品质量,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作。 本课题主要对搬运机器人的机械部分展开讨论,对原有的机械结构提出了新的改进方法,并把现在的新技术应用到本课题中,从而使得搬运机器人更加适用于现在的工业工作环境。通过详细了解搬运机器人在工业上的应用现状,提出了具体的搬运机器人设计要求,并根据搬运机器人各部分的设计原则,进行了系统总体方案设计以及包括:机器人的手部、腕部、臂部、腰部在的机械结构设计。此搬运机器人的驱动源来自液压系统,执行元件包括:柱塞式液压缸、摆动液压缸、伸缩式液压缸等。通过液压缸的运动来实现搬运机器人的各关节运动,进而实现搬运机器人的实际作业。 关键词:搬运机器人;液压系统;机械结构设计;操作

Abstract In the modern large-scale manufacturing industry,enterprises to improve productivity, and,guarantee product quality, as an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. Industrial robot technology standards and application level, to a certain extent, reflect a level of national industrial automation. Currently, Industrial robot mainly tasked with welding, spraying, handling and stacking, repetitive and intensity of significant work. The subject of the main part of the handling of their machinery discussions, and on the original mechanical structure proposed for the new improved method, which makes the handling robot is more applicable to the present industrial working environment.Through a detailed understanding of the robot in the industrial application,to propose specific handling robot design requirements,and according to the robot design principles of various parts, for the system as well as including:the robot's hand, wrist, arm, waist, the design of mechanical structures.The transfer robot driven by the source from the hydraulic system, and the implementation of components including:plunger hydraulic cylinders, hydraulic cylinders, swing, telescopic hydraulic cylinders, etc.Through the hydraulic cylinder movements to implement the joint transport robot motion,And realize the operational handling robot. Keywords:Transfer robot;Hydraulic System;Mechanical Design;Operating

巡线机器人设计说明书

第一章绪论 §1.1研究背景及意义 电力系统最重要的任务是提供高质量和高可靠性的电力。电力传输必须依靠高压输电线路,它的安全稳定运行直接影响电力系统的可靠性。由于输电线路分布点多、面广,绝大部分远离城镇,所处地形复杂,自然环境恶劣,且电力线及杆塔附件长期暴露在野外,会受到持续的机械张力、电气闪络、材料老化的影响而产生断股、磨损、腐蚀等损伤,如不及时修复更换,原来微小的破损和缺陷就可能扩大,最终导致严重事故,造成大面积停电,从而造成极大的经济损失和严重的社会影响。所以,必须对输电线路进行定期巡视检查,随时掌握和了解输电线路的运行情况以及线路周围环境和线路保护区的变化情况,以便及时发现和消除隐患,预防事故的发生,确保供电安全。目前,对输电线路的巡检主要采用两种方法,即地面人工目测法和直升飞机航测法。前者的巡检精度低,劳动强度大,且存在巡检盲区。部分地区大雪封山时,车辆和行人无法进入(如图1.1所示);在深山还有野兽出没,这给巡视人员带来了很大的安全隐患;后者则存在飞行安全隐患且巡线费用昂贵(如图1.2所示)。如果用直升机巡视替代地面巡视,则每100公里1年巡视费用同塔双回线需217.92万元(单回线136万元)。如果用直升机在整个东北电网覆盖地区巡视则需超过5000万元。费用过于昂贵,直接限制了直升机巡视的广泛推广。 由于巡线机器人可以克服上述缺陷,因此,巡线机器人已成为特种机器领域的一个研究热点。巡线机器人不仅可以减轻工人巡线的劳动强度,降低高压输电的运行维护成本,还可以提高巡检作业的质量和科学管理技术水平,对于增强电力生产自动化综合能力,创造更高的经济效益和社会效益都具有重要意义。 巡线机器人悬挂于架空避雷线上,并以此为行驶作业路径,通过自动控制方式完成输电线路巡检作业,及对线路的机械电气故障,包括绝缘子劣化和污秽、导线的机械破损、连接金具机械松脱等故障进行检测。其特殊的作业环境要求机器人能够沿输电导线全程运行,包括沿输电导线的直线段和耐张线段实现滚动爬行,跨越及避让悬垂线夹、悬垂绝缘子、防振锤、耐张线夹等结构型障碍物。 因此,机器人的本体设计是整机设计中一个相当重要的部分,需经过多次反复才能完成;在进行机器人结构分析和设计时,需要建立一定的实验环境(导线物理模型、障碍物等),对样机进行多次实验以检验其是否能达到预期的目标,这就导致其设计的周期长、设计效率低以及改型工作量大等缺点。此外,样机的单机制造增加了成本。在竞争的市场条件下,基于物理样机的设计验证过程严重

机器人创新实验智能巡线小车报告

实验报告 (理工类) 课程名称: 机器人创新实验 课程代码: 学生所在学院: 机械工程学院 年级/专业/班: 2014级机电一班 学生姓名: 学号: 实验总成绩: 任课教师: 韦兴平 开课学院: 机械工程学院 实验中心名称: 机械工程基础实验中心

一设计题目 利用Arduino设计搭建智能巡线小车 二小组成员分工 姓名学号班级任务分工 袁成 三实验内容(图文记录平时上课关键知识) 1、小灯延时闪烁实验:小灯延时一秒闪烁一次,指令:delay(xx)。应用举例:delay(500); 实验一的步骤把开发板连到PC机上; (2.采用杜邦线把红外探头VCC和GND分别连接到开发板的5V和地,OUT端连到开发板的任意一个模拟量输入端口; (3.设置对应的模拟量输入端口为输入模式; (4.读取模拟量端口的值; (5.打开串口并设置波特率; (6.打开串口监视器,拿一物体遮挡在红外探头前方并移动,观察串口监视器中读取的模拟量值是否变化; (7.观察串口监视器界面的运行结果,如不符合预期设计要求,则重复修改及下载程序,直到符合要求为止。 指令:(xx)。打开串口并设置通信波特率。应用举例:(9600) ; //打开串口并设置通信波特率为9600。 指令:(val)。在串口监视器中显示变量val的值。应用举例:(val) ; //在串口监视器中显示变量val的值。 3、红外线对管实验: 前端红外探头输出是模拟电压,中控板通过电压比较器LM339模拟电压转化为高电平或者低电平两种结果,便于程序进行判断。以第一路红外探头来说明它的工作原理,IN1-为可调电阻调节的电压输入端,IN+为探头输出的电压,当IN1-大于 IN+电压时,对应的OUT1输出电压接近0V,此时,第一路的LED灯亮;当IN1-小于 IN+电压时,对应的OUT1输出电压接近5V,第一路的LED灯灭。调节可调电阻旋钮,可以改变IN-参考电压值。 指令:pinMode(pin, mode)。将一个引脚配置成输入或者输出模式。应用举例:pinMode(7, INPUT); // 将引脚7定义为输入接口;pinMode(5, OUTPUT); // 将引脚7定义为输出接口。指令:int analogRead(pin)。读取模拟输入引脚的值,并将其表示为0至1023之间的数值,对应0至5V的电压。应用举例:val = analogRead(0); // 读取模拟接口0的值,并赋值给val。 4、超声波测距实验:超声波距离测试。 6、小车循迹实验 四最终作品设计方案(图文说明设计作品原理)(20分) 1、小车循迹原理 巡线小车红巡线原理采用了红外线探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。红外探测器探测距离有限,一般最大不应超过3cm。 2、设计要求 (1)自动寻迹小车从安全区域启动。 (2)小车按指定路线运行,自动区分直线轨道和弯路轨道,在指定弯路处拐弯,实现灵活前

相关文档
最新文档