化工原理

化工原理
化工原理

第一章 流体流动与输送机械

1. 燃烧重油所得的燃烧气,经分析知其中含CO 28.5%,O 27.5%,N 276%,H 2O8%(体积%),试求此混合气体在温度500℃、压力101.3kPa 时的密度。

2.已知20℃下水和乙醇的密度分别为998.2 kg/m 3和789kg/m 3

,试计算50%(质量%)乙

醇水溶液的密度。又知其实测值为935 kg/m 3

,计算相对误差。

3.在大气压力为101.3kPa 的地区,某真空蒸馏塔塔顶的真空表读数为85kPa 。若在大气压力为90 kPa 的地区,仍使该塔塔顶在相同的绝压下操作,则此时真空表的读数应为多少?

4.如附图所示,密闭容器中存有密度为900 kg/m 3的液体。容器上方的压力表读数为42kPa ,又在液面下装一压力表,表中心线在测压口以上0.55m ,其读数为58 kPa 。试计算液面到下方测压口的距离。

5. 如附图所示,敞口容器内盛有不互溶的油和水,油层和水层的厚度分别为700mm 和600mm 。在容器底部开孔与玻璃管相连。已知油与水的密度分别为800 kg/m 3和1000 kg/m 3。

(1)计算玻璃管内水柱的高度;

(2)判断A 与B 、C 与D 点的压力是否相等。

6.水平管道中两点间连接一U 形压差计,指示液为汞。已知压差计的读数为30mm ,试分别计算管内流体为(1)水;(2)压力为101.3kPa 、温度为20℃的空气时压力差。

7,用一复式U 形压差计测量水流过管路中A 、B 两点的压力差。指示液为汞,两U 形管之间充满水,已知h 1=1.2m ,h 2=0.4m ,h 4=1.4m ,h 3=0.25m ,试计算A 、B 两点的压力差。

题4 附图 B D

h 1 h 2

A

C

题 5 附图 题7 附图

3

4

6

2 4

3

1

5

8.根据附图所示的双液体U 管压差计的读数,计算设备中气体的压力,并注明是表压还是绝压。已知压差计中的两种指示液为油和水,其密度分别为920 kg/m 3

和998 kg/m 3

,压差计的读数R =300mm 。两扩大室的内径D 为60mm ,U 管的内径d 为6mm 。

9. 为了排出煤气管中的少量积水,用附图所示的水封装置,水由煤气管道中的垂直支管排出。已知煤气压力为10kPa (表压),试求水封管插入液面下的深度h 。

10.绝对压力为540kPa 、温度为30℃的空气,在φ108×4mm 的钢管内流动,流量为1500m3/h (标准状况)。试求空气在管内的流速、质量流量和质量流速。

11.硫酸流经由大小管组成的串联管路,其尺寸分别为φ76×4mm 和φ57×3.5mm 。已知硫酸的密度为1831 kg/m 3,体积流量为9m 3/h ,试分别计算硫酸在大管和小管中的(1)质量流量;(2)平均流速;(3)质量流速。

12. 如附图所示,用虹吸管从高位槽向反应器加料,高位槽与反应器均与大气相通,且高位槽中液面恒定。现要求料液以1m/s 的流速在管内流动,设料液在管内流动时的能量损失为20J/kg (不包括出口),试确定高位槽中的液面应比虹吸管的出口高出的距离。

13.用压缩空气将密闭容器(酸蛋)中的硫酸压送至敞口高位槽,如附图所示。输送量为0.1m 3

/min ,输送管路为φ38×3mm 的无缝钢管。酸蛋中的液面离压出管口的位差为10m ,且在压送过程中不变。设管路的总压头损失为3.5m (不包括出口),硫酸的密度为1830 kg/m 3,问酸蛋中应保持多大的压力?

题8 附图

1

2

h 1 题9 附图

题12 附图

1

题13 附图

14.如附图所示,某鼓风机吸入管内径为200mm ,在喇叭形进口处测得U 形压差计读数R =15mm (指示液为水),空气的密度为1.2 kg/m 3,忽略能量损失。试求管道内空气的流量。

15.甲烷在附图所示的管路中流动。管子的规格分别为φ219×6mm 和φ159×4.5mm ,在操作条件下甲烷的平均密度为1.43 kg/m 3

,流量为1700m 3

/h 。在截面1和截面2之间连接一U 形压差计,指示液为水,若忽略两截面间的能量损失,问U 形压差计的读数R 为多少?

16,,如附图所示,用泵将20℃水从水池送至高位槽,槽内水面高出池内液面30m 。输送量为30 m 3

/h ,此时管路的全部能量损失为40J/kg 。设泵的效率为70%,试求泵所需的功率。

17.附图所示的是丙烯精馏塔的回流系统,丙烯由贮槽回流至塔顶。丙烯贮槽液面恒定,其液面上方的压力为2.0MPa (表压),精馏塔内操作压力为1.3MPa (表压)。塔内丙烯管出口处高出贮槽内液面

30m ,管内径为140mm ,丙烯密度为600kg/m 3

。现要求输送量为40×103kg/h ,管路的全部能量损失为150J/kg (不包括出口能量损失),试核算该过程是否需要泵。

18.某一高位槽供水系统如附图所示,管子规格为φ45×2.5mm 。当阀门全关时,压力表的读数为78kPa 。当阀门全开时,压力表的读数为75 kPa ,且此时水槽液面至压力表处的能量损失可以表示为2

u W f =∑J/kg (u 为水在管内的流速)。试求:

(1)高位槽的液面高度;

(2)阀门全开时水在管内的流量(m 3

/h )。

题14 附图

2

R

题15 附图

1

2

题17

附图

h

题18 附图

1

19.附图所示的是冷冻盐水循环系统。盐水的密度为1100 kg/m 3

,循环量为45 m 3/h 。管路的内径相同,盐水从A 流经两个换热器至B 的压头损失为9m ,由B 流至A 的压头损失为12m ,问:

(1)若泵的效率为70%,则泵的轴功率为多少?

(2)若A 处压力表的读数为153kPa ,则B 处压力表的读数为多少?

20.25℃水在φ60×3mm 的管道中流动,流量为20m 3

/h ,试判断流型

21,运动粘度为3.2×10-5m 2/s 的有机液体在φ76×3.5mm 的管内流动,试确定保持管内层流流动的最大流量。

22,计算10℃水以2.7×10-3

m 3

/s 的流量流过φ57×3.5mm 、长20m 水平钢管的能量损失、压头损失及压力损失。(设管壁的粗糙度为0.5mm )

23.如附图所示,用泵将贮槽中的某油品以40m 3/h 的流量输送至高位槽。两槽的液位恒定,且相差20m ,输送管内径为100mm ,管子总长为45m (包括所有局部阻力的当量长度)。已知油品的密度为890kg/m 3,粘度为0.487Pa ·s ,试计算泵所需的有效功率。

24,一列管式换热器,壳内径为500mm ,内装174 根φ25×2.5mm 的钢管,试求壳体与管外空间的当量直径。

25.求常压下35℃的空气以12m/s 的速度流经120m 长的水平通风管的能量损失和压力损失。

管道截面为长方形,长为300mm ,宽为200mm 。(设d ε=0.0005)

26.如附图所示,密度为800 kg/m 3

、粘度为1.5 mPa ·s 的液体,由敞口高位槽经φ114×4mm 的钢管流入一密闭容器中,其压力为0.16MPa (表压),两槽的液位恒定。液体在管内的流速为1.5m/s ,管路中闸阀为半开,管壁的相对粗糙度d ε=0.002,试计算两槽液面的垂直距离z ?。

题19

附图

题23 附图 题26 附图

27.从设备排出的废气在放空前通过一个洗涤塔,以除去其中的有害物质,流程如附图所示。气体流量为3600m 3/h ,废气的物理性质与50℃的空气相近,在鼓风机吸入管路上装有U 形压差计,指示液为水,其读数为60mm 。输气管与放空管的内径均为250mm ,管长与管件、阀门的当量长度之和为55m (不包括进、出塔及管出口阻力),放空口与鼓风机进口管水平面的垂直距离为15m ,已估计气体通过洗涤塔填料层的压力降为2.45kPa 。管壁的绝对粗糙度取为0.15mm ,大气压力为101.3 kPa 。试求鼓风机的有效功率。

28.如附图所示,用离心泵将某油品输送至一密闭容器中。A 、B 处压力表的读数分别为1.47MPa 、1.43 MPa ,管路尺寸为φ89×4mm ,A 、B 两点间的直管长度为40m ,中间有6个90o标准弯头。已知油品的密度为820 kg/m 3,粘度为121mPa ·s ,试求油在管路中的流量。

29.20℃苯由高位槽流入贮槽中,两槽均为敞口,两槽液面恒定且相差5m 。

输送管为φ38×3mm 的钢管( =0.05mm )总长为100m (包括所有局部阻力的当量长度),求苯的流量。

30.如附图所示,密度为ρ的流体以一定的流量在一等径倾斜管道中流过。在A 、B 两截面间连接一U 形压差计,指示液的密度为ρ0,读数为R 。已知A 、B 两截面间的位差为h ,试求:

(1) AB 间的压力差及能量损失;

(2) 若将管路水平放置而流量保持不变,则压差计读数及AB 间的压力差为多少?

题27 附图

0.5m

题28 附图 1.5m

A B

B

R

h

A

题30 附图

31.如附图所示,高位槽中水分别从BC 与BD 两支路排出,其中水面维持恒定。高位槽液面与两支管出口间的距离为10m 。AB 管段的内径为38mm 、长为28m ;BC 与BD 支管的内径相同,均为32mm ,长度分别为12m 、 15m (以上各长度均包括管件及阀门全开时的当量长度)。各段摩擦系数均可取为0.03。试求:

(1)BC 支路阀门全关而BD 支路阀门全开时的流量; (2)BC 支路与BD 支路阀门均全开时各支路的流量及总流量。

32.在内径为80mm 的管道上安装一标准孔板流量计,孔径为40mm ,U 形压差计的读数为350mmHg 。管内液体的密度为1050kg/m3,粘度为0.5cP ,试计算液体的体积流量。

33.用离心泵将20℃水从水池送至敞口高位槽中,流程如附图所示,两槽液面差为12m 。输送管为φ57×3.5mm 的钢管,总长为220m (包括所有局部阻力的当量长度)。用孔板流量计测量水流量,孔径为

20mm ,流量系数为0.61,U 形压差计的读数为400mmHg 。摩擦系数可取为0.02。试求:

(1)水流量,m 3/h ;

(2)每kg 水经过泵所获得的机械能。

34,以水标定的转子流量计用来测量酒精的流量。已知转子的密度为7700 kg/m 3,酒精的密度为790 kg/m 3,当转子的刻度相同时,酒精的流量比水的流量大还是小?试计算刻度校正系数。

35.在一定转速下测定某离心泵的性能,吸入管与压出管的内径分别为70mm 和50mm 。当流量为30 m 3/h 时,泵入口处真空表与出口处压力表的读数分别为40kPa 和215kPa ,两测压口间的垂直距离为0.4m ,轴功率为3.45kW 。试计算泵的压头与效率。

题31 附图

10

题33 附图

12

36.在一化工生产车间,要求用离心泵将冷却水从贮水池经换热器送到一敞口高位槽中。已知高位槽中液面比贮水池中液面高出10m ,管路总长为400m (包括所有局部阻力的当量长度)。管内径为75mm ,换热器的压头损失为g

u

2322

,摩擦系数可取为0.03。此离心泵在转

速为2900rpm 时的性能如下表所示: Q /(m 3

/s) 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 H /m

26

25.5

24.5

23

21

18.5

15.5

12

8.5

试求:(1)管路特性方程;

(2)泵工作点的流量与压头。

37.用离心泵将水从贮槽输送至高位槽中,两槽均为敞口,且液面恒定。现改为输送密度为1200 kg/m 3

的某水溶液,其它物性与水相近。若管路状况不变,试说明:

(1)输送量有无变化? (2)压头有无变化? (3)泵的轴功率有无变化? (4)泵出口处压力有无变化?

38.用离心泵向设备送水。已知泵特性方程为2

01.040Q H -=,管路特性方程为

2

03.025Q H e +=,两式中Q 的单位均为m 3

/h ,H 的单位为m 。试求该泵的输送量;

39.用型号为IS65-50-125的离心泵将敞口贮槽中80℃的水送出,吸入管路的压头损失为4m ,当地大气压为98kPa 。试确定此泵的安装高度。

40.用油泵从贮槽向反应器输送44℃的异丁烷,贮槽中异丁烷液面恒定,其上方绝对压力为652kPa 。泵位于贮槽液面以下1.5m 处,吸入管路全部压头损失为1.6m 。44℃时异丁烷的密度为530kg/m 3

,饱和蒸汽压为638 kPa 。所选用泵的允许汽蚀余量为3.5m ,问此泵能否正常操作?

41.用内径为100mm的钢管将河水送至一蓄水池中,要求输送量为70m3/h。水由池底部进

入,池中水面高出河面26m。管路的总长度为60m,其中吸入管路为24m(均包括所有局

部阻力的当量长度),设摩擦系数λ为0.028。今库房有以下三台离心泵,性能如下表,试

从中选用一台合适的泵,并计算安装高度。设水温为20℃,大气压力为101.3kPa。(略)序号型号Q,m3/h H,m n,rpm η,%(NPSH)允

1

IS100-80-125

60

100 24

20

2900

67

78

4.0

4.5

2

IS100-80-160

60

100 36

32

2900

70

78

3.5

4.0

3 IS100-80-200 60

100

54

50

2900

65

76

3.0

3.6

42.常压贮槽内装有某石油产品,在贮存条件下其密度为760 kg/m3。现将该油品送入反应釜中,输送管路为φ57×2mm,由液面到设备入口的升扬高度为5m,流量为15m3/h。釜内压力为148kPa(表压),管路的压头损失为5m(不包括出口阻力)。试选择一台合适的油泵。

43.现从一气柜向某设备输送密度为1.36kg/m3的气体,气柜内的压力为650Pa(表压),设备内的压力为102.1kPa(绝压)。通风机输出管路的流速为12.5m/s,管路中的压力损失为500Pa。试计算管路中所需的全风压。(设大气压力为101.3kPa)

第二章非均相物系分离

1、试计算直径为30μm的球形石英颗粒(其密度为2650kg/ m3),在20℃水中和20℃常压空气中的自由沉降速度。

2,密度为2150kg/ m3的烟灰球形颗粒在20℃空气中在层流沉降的最大颗粒直径是多少?

3、直径为10μm的石英颗粒随20℃的水作旋转运动,在旋转半径R=0.05m处的切向速度为12m/s,,求该处的离心沉降速度和离心分离因数。

4、某工厂用一降尘室处理含尘气体,假设尘粒作滞流沉降。下列情况下,降尘室的最大生产能力如何变化?

(1)要完全分离的最小粒径由60μm降至30μm;

(2)空气温度由10℃升至200℃;

增加水平隔板数目,使沉降面积由10m2增至30 m2。

5、已知含尘气体中尘粒的密度为2300kg/ m3。气体流量为1000 m3/h、黏度为3.6×10-5Pa.s、密度为0.674kg/ m3,若用如图2-6所示的标准旋风分离器进行除尘,分离器圆筒直径为400mm,试估算其临界粒径及气体压强降。

6、有一过滤面积为0.093m2的小型板框压滤机,恒压过滤含有碳酸钙颗粒的水悬浮液。过滤时间为50秒时,共得到2.27×10-3 m3的滤液;过滤时间为100秒时。共得到3.35×10-3 m3的滤液。试求当过滤时间为200秒时,可得到多少滤液?

7、某生产过程每年须生产滤液3800 m3,年工作时间5000h,采用间歇式过滤机,在恒压下每一操作周期为2.5h,其中过滤时间为1.5h,将悬浮液在同样操作条件下测得过滤常数为K=4×10-6m2/s;q e=2.5×10-2m3/m2。滤饼不洗涤,试求:

(1)所需过滤面积,

(2)今有过滤面积8m2的过滤机,需要几台?

8、BMS50/810-25型板框压滤机,滤框尺寸为810×810×25mm,共36个框,现用来恒压过滤某悬浮液。操作条件下的过滤常数为K=2.72×10-5 m2/s;q e=3.45×10-3m3/m2。每滤出1 m3滤液的同时,生成0.148 m3的滤渣。求滤框充满滤渣所需时间。若洗涤时间为过滤时间的2倍,辅助时间15min,其生产能力为多少?

9、有一直径为1.75m,长0.9m的转筒真空过滤机过滤水悬浮液。操作条件下浸没度为126o,转速为1r/min,滤布阻力可以忽略,过滤常数K为5.15×10-6m2/s,求其生产能力。

10、某转筒真空过滤机每分钟转2转,每小时可得滤液4 m3。若过滤介质阻力可以忽略,每小时获得6 m3滤液时转鼓转速应为多少?此时转鼓表面滤饼的厚度为原来的多少倍?操作中所用的真空度维持不变。

第三章传热

1. 红砖平壁墙,厚度为500mm,内侧温度为200℃,外侧温度为30℃,设红砖的平均导热系数为0.57 W/(m·℃)。试求:(1)单位时间、单位面积导出的热量;(2)距离内侧350mm处的温度。

2. 在外径100mm的蒸汽管道外包一层导热系数为0.08 W/(m·℃)的绝热材料。已知蒸汽管外壁150℃,要求绝热层外壁温度在50℃以下,且每米管长的热损失不应超过150W/m,试求绝热层厚度。

3.某燃烧炉炉墙由耐火砖、绝热砖和普通砖三种砌成,它们的导热系数分别为1.2W/(m·℃),0.16 W/(m·℃)和0.92 W/(m·℃),耐火砖和绝热转厚度都是0.5m,普通砖厚度为0.25m。已知炉内壁温为1000℃,外壁温度为55℃,设各层砖间接触良好,求每平方米炉壁散热速率。

4. 燃烧炉炉墙的内层为460mm厚的耐火砖,外层为230mm厚的绝热砖。若炉墙的内表面温度t1为1400℃,外表面温度t3为100℃。试求导热的热通量及两种砖之间的界面温度。设两种砖接触良好,已知耐火砖的导热系数为λ1=0.9+0.0007t,绝热砖的导热系数为λ2=0.3+0.0003t。两式中t可分别取为各层材料的平均温度,单位为℃,λ单位为W/(m·℃)。

5.设计一燃烧炉时拟采用三层砖围成其炉墙,其中最内层为耐火砖,中间层为绝热砖,最外层为普通砖。耐火砖和普通砖的厚度分别为0.5m和0.25m,三种砖的导热系数分别为1.02 W/(m·℃)、0.14 W/(m·℃)和0.92 W/(m·℃),已知耐火砖内侧为1000℃,普通砖外壁温度为35℃。试问绝热砖厚度至少为多少才能保证绝热砖内侧温度不超过940℃,普通砖内侧不超过138℃。

6. 550?φmm 的不锈钢管,其材料热导率为21W/m·K ;管外包厚40mm 的石棉,其材料

热导率为0.25W/(m·K)。若管内壁温度为330℃,保温层外壁温度为105℃,试计算每米管长的热损失;

7. 蒸汽管道外包有两层导热系数不同而厚度相同的绝热层,设外层的对数平均直径为内层的2倍。其导热系数也为内层的两倍。若将二层材料互换位置,假定其它条件不变,试问每米管长的热损失将变为原来的多少倍?说明在本题情况下,哪一种材料放在内层较为适合?

8 常压下温度为20℃的空气以60m 3/h 的流量流过直径为φ57?3.5mm 、长度为3m 的换热管内,被加热升温至80℃,试求管内壁对空气的对流传热系数。

9. 96%的硫酸在套管换热器中从90℃冷却至30℃。硫酸在直径为φ25×2.5mm 、长度为3m 的内管中流过,流率为800kg /h 。已知在管内壁平均温度下流体的粘度为9.3cP 。试求硫酸对管壁的传热膜系数。已知硫酸在定性温度下的物性如下:K J/kg 6.1p ?=k c ,K W/m 36.0?=λ s Pa 100.83??=-μ 3

kg/m

1836=ρ

10. 98%的硫酸以0.6m/s 的流速在套管换热器的环隙间流动。 硫酸的平均温度为70℃,换热器内管直径为φ25×2.5mm ,外管直径是φ51×3mm 。试求:硫酸的对流传热系数。已知定性温度下硫酸的物性为: K J/kg 58.1p ?=k c ,K W/m 36.0?=λ s Pa 104.63??=-μ

3

kg/m

1836=ρ;壁温60℃下硫酸黏度67.=w μcP

11 水在一定流量下流过某套管换热器的内管,温度可从20℃升至80℃,此时测得其对流传热系数为1000W/(m 2?K)。试求同样体积流量的苯通过换热器内管时的对流传热系数为多少?已知两种情况下流动皆为湍流,苯进、出口的平均温度为60℃。

12 150℃的饱和水蒸汽在一根外径为100mm、长0.75m的管外冷凝,已知管外壁温度为110℃。分别求该管垂直和水平放置时的蒸汽冷凝传热系数。

13.竖直放置的蒸汽管,管外径为l00mm,管长3.5m。若管外壁温度110℃,周围空气温度为30℃,试计算单位时间内散失于周围空气中的热量。

14 在一套管式换热中用的冷却水将流量为1.25kg/s的苯由80℃冷却至40℃。冷却水进口温度为25℃,其出口温度选定为35℃。试求冷却水的用量。

15 流量为10000m3/h(标准状况)的空气在换热器中被饱和水蒸汽从20℃加热至60℃,所用水蒸汽的压强为400kPa(绝压)。若设备热损失为该换热器热负荷的6%,试求该换热器的热负荷及加热蒸汽用量。

16 在一套管换热器中用饱和水蒸汽加热某溶液。水蒸汽通入环隙,其对流传热系数为10000 W/m2?℃;溶液在φ25?2.5mm的管内流动,其对流传热系数为800 W/m2?℃。换热管内污垢热阻为1.2?10-3m2?℃/W,管外污垢热阻和管壁忽略不计。试求该换热器以换热管的外表面为基准的总热系数及各部分热阻在总热阻中所占的百分数。

17. 以三种不同的水流速度对某台列管式换热器进行试验。第一次试验在新购进时进行;第二次试验在使用了一段时间之后进行。试验时水在管内流动,且为湍流,管外为饱和水蒸气冷凝。管子直径为φ25×2.5mm的钢管,其材料导热系数为45 W/(m?℃)。两次试验结果如下

实验次数第一次第二次

水流速度(m/s)

1.0 1.5 1.0

总传热系数(W/m2?K) 2115 2660 1770

试计算:

(1)第一次试验中蒸汽冷凝传热系数;

(2)第二次实验时水侧的污垢热阻(蒸汽侧污垢热阻忽略不计)。

18 在一石油热裂装置中,所得热裂物的温度为300℃。今拟设计一列管式换热器,用来将热石油由25℃预热到180℃,要求热裂物的终温低于200℃,试分别计算热裂物与石油在换热器中采用逆流与并流时的平均温差。

19 拟在列管式换热器中用初温为20℃的水将流量为1.25kg/s的溶液(比热容为1.9kJ /kg?℃、密度为850kg/m3)由80℃冷却到30℃。换热直径为φ25×2.5mm。水走管程、溶液走壳程,两流体逆流流动。水侧和溶液侧的对流传热系数分别为0.85kW/(m2?℃)和

1.70kW/(m2?℃),污垢热阻和管壁热阻可忽略。若水的出口温度不能高于50℃,试求换热器的传热面积。

20 在列管式换热器中用水冷却油,并流操作。水的进、出口温度分别为15℃和40℃,油的进、出口温度分别为150℃和100℃。现因生产任务要求油的出口温度降至80℃,假设油和水的流量、进口温度及物性均不变,原换热器的管长为lm,试求在换热管根数不变的条件下其长度增至多少才能满足要求。设换热器的热损失可忽略。

21 一列管冷凝器,换热管规格为25×2.5mm,其有效长度为3.0m。水以0.65m/s的流速在管内流过,其温度由20℃升至40℃。流量为4600kg/h、温度为75℃的饱和有机蒸汽在壳程冷凝为同温度的液体后排出,冷凝潜热为310kJ/kg。已知蒸汽冷凝传热系数为820 W/ m2?℃,水侧污垢热阻为0.0007m2?K/W。蒸汽侧污垢热阻和管壁热阻忽略不计。试核算该换热器中换热管的总根数及管程数。

22 在某四管程的列管式换热器中,采用120℃的饱和水蒸汽加热初温为20℃的某种溶液。溶液走管程,流量为70000kg/h,在定性温度下其物性为:粘度3.0×10-3Pa·s,比热1.8kJ/kg·K,导热系数0.16W/m·K。溶液侧污垢热阻估计为6×10-4 m2·℃/ W,蒸汽冷传热系数为10000 W/m2·℃,管壁热阻忽略不计。换热器的有关数据为:换热管直径mm

φ,管

5.2

25?

数120,换热管长6米。试求溶液的出口温度。

23 有一逆流操作的列管换热器,壳程热流体为空气,其对流传热系数

1001=αW/(m 2

?K);冷却水走管内,其对流传热系数20002=αW/(m 2

?K)。已测得冷、热流体

的进、出口温度为:201=t ℃、852=t ℃、1001=T ℃、702=T ℃。两种流体的对流传热系数均与各自流速的0.8次方成正比。忽略管壁及污垢热阻。其它条件不变,当空气流量增加一倍时,求水和空气的出口温度2't 和2'T ,并求现传热速率Q ’比原传热速率Q 增加的倍数。

24 两平行的大平板相距8mm ,其中一平板的黑度为0.2,温度为420K ;另一平板的黑度为0.07,温度为300K ,试计算两板之间的辐射传热热通量。

25 试计算一外径为48mm ,长为12m 的氧化钢管,其外壁温度为300℃时的辐射热损失。若将此管放置于:

(1)空间很大的的厂房内,其刷有石灰粉的墙壁温度为27℃,石灰粉刷壁的黑度为0.91; (2)截面为200?200mm 的红砖砌成的通道中,通道壁面的温度为27℃。

第四章蒸发

1、用一单效蒸发器将2500kg/h的NaOH水溶液由10%浓缩到25%(均为质量百分数),已知加热蒸气压力为450kPa,蒸发室内压力为101.3kPa,溶液的沸点为115℃,比热容为3.9kJ/(kg·℃),热损失为20kW。试计算以下两种情况下所需加热蒸汽消耗量和单位蒸汽消耗量。(1)进料温度为25℃;(2)沸点进料。

2、试计算30%(质量百分数,的NaOH水溶液在60 kPa(绝)压力下的沸点。

3、在一常压单效蒸发器中浓缩CaCl2水溶液,已知完成液浓度为35.7%(质分数),密度为1300kg/m3,若液面平均深度为1.8m,加热室用0.2MPa(表压)饱和蒸汽加热,求传热的有效温差。

4、用一双效并流蒸发器将10%(质量%,下同)的NaOH水溶液浓缩到45%,已知原料液量为5000kg/h,沸点进料,原料液的比热容为3.76kJ/kg。加热蒸汽用蒸气压力为500 kPa(绝),冷凝器压力为51.3kPa,各效传热面积相等,已知一、二效传热系数分别为K1=2000 W/(m2·K),K2=1200 W/(m2·K),若不考虑各种温度差损失和热量损失,且无额外蒸汽引出,试求每效的传热面积。

化工原理公式和重点概念

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μτ= 静力学方程 g z p g z p 2211 +=+ρ ρ 机械能守恒式 f e h u g z p h u g z p +++=+++2222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 2 32d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η

最大允许安装高度 100][-∑--=f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体) (饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+ 恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑=V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μρρ18)(2 g d u p p t -=, 2R e

化工原理 第二版 答案

第二章 习题 1. 在用水测定离心泵性能的实验中,当 流量为26 m 3/h 时,泵出口处压强表和入口处真空表的读数分别为152 kPa 和24.7 kPa ,轴功率为 2.45 kW ,转速为2900 r/min 。若真空表和压强表两测压口间的垂直距离为0.4m ,泵的进、出口管径相同,两测压口间管路流动阻力可忽略不计。试计算该泵的效率,并列出该效率下泵的性能。 解:在真空表和压强表测压口处所在的截面11'-和22'-间列柏努利方程,得 22112212,1222e f p u p u z H z H g g g g ρρ-+++=+++∑ 其中:210.4z z m -=41 2.4710()p P a =-?表压 52 1.5210p Pa =?(表压) 12u u = ,120f H -=∑ 则泵的有效压头为: 5 21213(1.520.247)10()0.418.41109.81 e p p H z z m g ρ-+?=-+=+=? 泵的效率3 2618.4110100%53.2%1023600102 2.45e e Q H N ρη??==?=??

该效率下泵的性能为: 326/Q m h = 18.14H m =53.2%η= 2.45N kW =

3. 常压贮槽内盛有石油产品,其密度为 760 kg/m 3,黏度小于20 cSt ,在贮存条件下饱和蒸气压为80kPa ,现拟用 65Y-60B 型油泵将此油品以15 m 3/h 的流 量送往表压强为177 kPa 的设备内。贮槽液面恒定,设备的油品入口比贮槽液面高5 m ,吸入管路和排出管路的全部压头损失分别为1 m 和4 m 。试核算该泵是否合用。 若油泵位于贮槽液面以下1.2m 处,问此泵能否正常操作?当地大气压按101.33kPa 计。 解:要核算此泵是否合用,应根据题给条件计算在输送任务下管路所需压头,e e H Q 的值,然后与泵能提供的压头数值 比较。 由本教材附录24 (2)查得65Y-60B 泵的性能如下: 319.8/Q m h =,38e H m =,2950/min r r =, 3.75e N kW =,55%η=,() 2.7r NPSH m = 在贮槽液面11'-与输送管出口外侧截面22'-间列柏努利方程,并以截面11'-

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理 七、实验数据处理 1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。 实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。实验装置所用紫铜管的规格162mm mm φ?、 1.2l m =,求得紫铜管的外表面积 200.010.060318576281.o S d l m m m ππ=??=??=。 根据2 4s s V V u A d π= =、0.012d m =,得到流速u ,见下表2: 表2 流速数据 取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示: 表3 查得的数据 t 进/℃ t 出/℃ t 平均/℃ ()p c J kg ????? ℃ Pa s μ? ()W m λ?????℃ ()3 kg m ρ-? 22.1 77.3 49.7 1005 0.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.6 84 59.8 1005 0.0000201 0.029 1.06 根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、 ()()ln m T t T t t T t T t ---?=--进出进出 , 求出Q 序号 ()31s V m h -? ()1u m s -? 1 2.5 6.140237107 2 5 12.28047421 3 7.5 18.42071132 4 10 24.56094843 5 12.5 30.70118553 6 15 36.84142264 7 17.5 42.98165975 8 20 49.12189685

广西大学《化工原理》认知实习报告材料

《化工原理》认知实习报告 化学化工学院 1.明阳生化厂 简述:广西明阳生化股份始建于1958年(前身为广西明阳淀粉厂),自1987年起,与广西大学合作,共同研制开发木薯变性淀粉综合利用产品1996年经自治区科委批准成立了广西明阳淀粉化工工程技术中心。公司拥有了干法淀粉生产线1条、湿法淀粉生产线2条,2010年产量预计达25万吨,;拥有酒精生产车间2个,年产酒精15000吨。目前采用木薯原料,可工业化生产木薯淀粉、木薯变性淀粉、酒精等三大类二十多个系列产品,成为目前全国变性淀粉产、销量最大,生产品种最多的生产企业,是广西最大的淀粉生产企业和最大的酒精生产厂。 变性淀粉生产工艺流程图: 原料→碎解(脱皮→洗涤→粉碎)→精制(洗涤浆液→分离木薯渣→浆液浓缩)→ 湿法(原淀粉→变性淀粉)→烘干→包装→入库 流程说明: 一、碎解工段:输送带→洗薯笼→碎解机→一级浆→二级清洗→碎解回收装置→9个大吃贮存洗薯水处理后外排 4条生产线,产量1500吨/天。木薯进厂验收后立即榨完。碎皮含有19~22%淀粉,作回收处理。 二、精制车间: 主要作用:洗浆(分渣)、分离、浓缩 精加工淀粉浆液 精致车间→立筛、曲筛→分离机→二级分离机 湿法工段 (将浆液浓缩、去黄浆、渣) 分离机:利用离心机转子高速旋转产生 的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动 重的部分向外移 轻的部分集中在中 心附近旋转器

三、湿法车间:主要作用是将原淀粉制成需要的变性淀粉。 精加工淀粉浆液→反映槽(加料进行反应)→小反应罐→中和→食品线 精浆桶←旋流器(分离浓缩作用)←缓冲桶(抽离变性浆) 变性浆→下一工序 四、烘干车间:主要作用是离心脱水。热气流烘干变性淀粉浆,然后包装成品,入库。 变性浆→高位槽→离心机→旋风分离器(提供热气流)→热风机(提供60~80℃热风,将浆夜吹散、烘干)→筛粉机(细度控制在98%左右) 旋风分离器:旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 五、包装车间:包装成品入库。 实习心得和改进建议:淀粉厂是我们这次实习参观的第一站,也是听得最认真,最仔细的一站。生产淀粉所用的原料是木薯,除了生产变性淀粉外,该厂也生产酒精。但当天由于生产酒精的车间出现了些问题,我们并不能参观,算是此行较大的遗憾。淀粉生产过程中涉及的单元操作有:粉碎、分离、提取、干燥、过滤等。 2.明阳糖厂 简介: 明阳糖厂是糖业最大的机制糖生产企业,1956年建厂,现有职工总数1082人,其中专业技术人员225人,1998年获ISO9000质量体系认证,2001年通过安全标准化企业验收,是广西首批被授予“清洁生产企业”之一。 五十年来,明阳糖厂从一个日处理甘蔗250吨的小厂发展到日处理甘蔗13800吨、 年处理220万吨以上,年产白砂糖15万吨以上的大型企业,主导产品“明阳”牌一级白砂糖以低色值、低SO2残留量和无絮凝物等特点,树立高品质的市场形象,而成为众多客户的首选,并与可口可乐、百事可乐等饮料巨人建立密切合作关系。 制糖工艺流程: 甘蔗→打碎→热水泡制浆→渣浆分离→压榨机(6道工序)→制炼车间→澄清→过滤→上浮→蒸发→煮糖→冷凝结晶→干燥降温→包装→成品入库 流程说明: 一、压蔗车间(6工序) 压蔗车间是全场第一道工序,由甘蔗,堆场和2条生产线组成。1#生产线有6座Φ 1000×2000压榨机组成,2#生产线由6座Φ710×1370压榨机组成。日处理甘蔗13000吨,主要设备:桥式起重机、卸蔗台、喂蔗台、蔗带、撕解机、中间输送机、压榨机等。 简要流程:蔗仓→蔗台→蔗刀机→一级蔗带→蔗刀机→二级蔗带 (浆和渣分离,渣由传送带输送出去)

化工原理重要概念和公式

《化工原理》重要概念 第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。 系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。 粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。 平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度 u 、压强 p 的脉动性,即是否存在流体质点的脉动性。 第二章流体输送机械 管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。 输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量 (J/N) 。 离心泵主要构件叶轮和蜗壳。 离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。 叶片后弯原因使泵的效率高。 气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象。 离心泵特性曲线离心泵的特性曲线指 H e~ q V ,η~ q V , P a~ q V 。 离心泵工作点管路特性方程和泵的特性方程的交点。 离心泵的调节手段调节出口阀,改变泵的转速。 汽蚀现象液体在泵的最低压强处 ( 叶轮入口 ) 汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。 必需汽蚀余量 (NPSH)r 泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少 离心泵的选型 ( 类型、型号 ) ①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。 正位移特性流量由泵决定,与管路特性无关。 往复泵的调节手段旁路阀、改变泵的转速、冲程。 离心泵与往复泵的比较 ( 流量、压头 ) 前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。前者不易达到高压头,后者可达高压头。前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。 通风机的全压、动风压通风机给每立方米气体加入的能量为全压 (Pa=J/m 3 ) ,其中动能部分为动风压。

化工原理-第二版答案

化工原理 - 第二版答案

3 第三章 机械分离和固体流态化 2. 密度为 2650 kg/m 3 的球形石英颗粒在 20℃空气中自由沉降,计算服从 斯托克 斯公式的最大颗粒直径及服从牛顿公式 的最小颗粒直径。 解: 20o C 时, 空气 1.205kg / m 3 , 1.81 10 5 Pa s 对应牛顿公式, K 的下限为 69.1 , 斯脱克斯区 K 的上限为 2.62 那么,斯托克斯区: ( s )g 2 d max 2.62 57.4 m 1.205 (2650 1.205) 9.81 d min (1.81 10 5)2 69.1 1513 m 1.205 (2650 1.205) 9.81 (1.81 10 5) 2

3.在底面积为40 m2的除尘室内回收气 体中的球形固体颗粒。气体的处理量为 3600 m3/h ,固体的密度3000kg / m3,操 作条件下气体的密度 1.06kg / m3,黏度 为2×10-5 P a·s。试求理论上能完全除去的最小颗粒直径。 解:在降尘室中能被完全分离除去的最小颗粒的沉降速度u t , 则 ut V s 3600 0.025m / s t bl 400 3600 假设沉降在滞流 区,用斯托克斯公式求算最小颗粒直径。

3 假设合理。求得的最小粒径有效 d min 18 2 10 5 0.025 17.5um (3000 1.06) 9.81 R et 18 u t ( s )g 核算沉降流型: d min u t 17.5 10 6 0.025 1.06 0.023 1 2 10 5 0.023 1

化工原理第10章

第10章习题解答 1 在操作条件下,以纯净的氯苯为萃取剂,在单级接触萃取器中,萃取含丙酮的水溶液。丙酮-水-氯苯三元混合液的平衡数据见本题附表。试求: ⑴在直角三角形坐标系下,绘制此三元体系的相图,其中应包括溶解度曲线、联接线和辅助曲线; ⑵若近似地将前五组数据中B与S视为不互溶,试在X-Y直角坐标图上标绘分配曲线; ⑶若丙酮水溶液质量比分数为0.4,并且m B/m S=2.0,在X-Y直角坐标图上求丙酮在萃余相中的浓度; ⑷求当水层中丙酮浓度为45%(质量%,下同)时,水与氯苯的组成以及与该水层成平衡时的氯苯层的组成; ⑸由0.12kg氯苯和0.08kg水所构成的混合液中,尚需加入多少kg丙酮即可成为三元均相混合液; ⑹预处理含丙酮35%的原料液800kg,并要求达到萃取平衡时,萃取相中丙酮浓度为30%,试确定萃取剂(氯苯)的用量; ⑺求条件⑹下的萃取相和萃余相的量,并计算萃余相中丙酮的组成; ⑻若将条件⑹时的萃取相中的溶剂全部回收,求可得萃取液的量及组成。 解:⑴依平衡数据绘出溶解度曲线如附图1-1所示,图中各点代号与数据的对应关系注于附表1-1中。联结互成平衡的两液层组成点得E1R1、E2R2、E2R2……等平衡联结线。 由E1、E2、E3……各点作平行于AB边的直线,再由R1、R2、R3……各点作平行于AS边的

直线,两组线分别相交于点G、H、I、J、K,连接P、G、H、I、J、K即得辅助曲线。 ⑵将前五组数据转换为质量比浓度,其结果列于附表1-2中,并在X-Y直角坐标图上标绘分配曲线,如图1-2。 附表1-2 ⑶由X F=0.4,在图1-2上,自点X F作斜率为-m B/m S=-2.0的直线与分配曲线相交于点T,点T的横坐标即为丙酮在萃余相中的浓度X R=0.25。 图1-1 图1-2 ⑷水层中各组分的浓度 由所绘制的溶解度曲线如图1-3,在AB边上确定组分A的浓度为45%的点F,由点F绘直线FW平行于三角形底边BS,则FW线上各点表示A的组成均为45%。FW与溶解度曲线左侧的交点R,即代表水层中含A为45%的组成点,由图可读得点R组成为(质量%): x A=45%x B=52.8%x S=2.2%

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对 流向),观测并记录各测压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化?这一现象说明了什 么?这一高度的物理意义是什么? 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度?为什么? 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观 察其的液位高度H / 并回答以下问题: (1) 各H / 值的物理意义是什么? 答:当测压管小孔转到正对流向时H / 值指该测压点的冲压头H / 冲;当测压管小孔转到垂直流向时H / 值指该测压点的静压头H / 静;两者之间的差值为动压头H / 动=H / 冲-H / 静。 (2) 对同一测压点比较H 与H / 各值之差,并分析其原因。

答:对同一测压点H >H /值,而上游的测压点H / 值均大于下游相邻测压点H / 值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H / 差值越大? (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可 以看出2 2 u d l H f ? ?=λ与管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u = 22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和 全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145 .036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145.036004 16.0360042 2=???=???= ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???=ππd Vs u c 半 (m/s ) C 点全开时的流速: 393.0012.036004 16.0360042 2=???=???= ππd Vs u c 全 (m/s ) 实验二:雷诺实验 1. 根据雷诺实验测定的读数和观察流态现象,列举层流和湍流临界雷诺准数的计算过程,并提供数据完整的原始数据表。 答:根据观察流态,层流临界状态时流量为90( l/h )

化工原理概念汇总汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =

完整版化工原理第二版答案

2 第四章习题 2.燃烧炉的内层为460mn 厚的耐火砖, 外层为230mm 厚的绝缘砖。若炉的内表 面温度t i 为1400C ,外表面温度t s 为 100°C 。试求导 热的热通量及两砖间的界 面温度。设两层砖接触良好,已知耐火砖 的导热系数为 1 0.9 0.0007t ,绝缘砖的导 热系数为 2 0.3 0.0003t 。两式 中t 可分别 取为各层材料的平均温度,单位 为C ,入 单位为W/(m ?C )。 解:设两砖之间的界面温度为t 2 ,由 热通量 t 1 t 2 b 1 t 2 七3 b 2 ,得 1 2 t 2 100 t t 230 10 /(0.3 0.0003 2 3 ) 2 t 2 949 °C 0.40/0.97 0.0007 t 1 t 2 1400 949 168SW/m 2 1400 t 2 3 460 10 /(0.9 0.0007

3 .直径为60mm 3mm,钢管用30mn厚的软木包扎,其外又用100mn厚的保温灰包扎,以作为绝热层。现测得钢管外壁面温度为-110 C ,绝热层外表面温度10C。已知软木和保温灰的导热系数分别为 0.043和0.07W/(m「C ),试求每米管长的冷量损失量。 解:每半管长的热损失,可由通过两层圆筒壁 的传热速率方程求出: Q ________ t i 上 3 __________ 丨丄詩亠心 2 1 r i 2 2 r2 1100 10 1 ~~60 1 , 160 In In 2 3.14 0.04 3 30 2 3.1 4 0.0007 60 25W/m 负号表示由外界向体系传递的热量,即为冷量损失。

化工原理课后题答案(部分)

化工原理第二版 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由 于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一 组绘平衡t-x图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下该溶液的平衡数据。 温度C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压

以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B *)/(P A *-P B *) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A *x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0 y 1 0.767 0.733 0.524 0 根据平衡数据绘出t-x-y曲线 3.利用习题2的数据,计算:⑴相对挥发度;⑵在平均相对挥发度下的x-y数据,并与习题2 的结果相比较。 解:①计算平均相对挥发度 理想溶液相对挥发度α= P A */P B *计算出各温度下的相对挥发度: t(℃) 248.0 251.0 259.1 260.6 275.1 276.9 279.0 289.0 291.7

化工原理实习目的

化工原理实习目的 化工原理实习的开展能使学生们不断充实和完善自身知识结构。化工原理实习目的是为大家带来的,希望对大家有所帮助。 第一篇:化工原理实习目的 通过对德邦化工各车间的实际学习,初步了解联合制减法原理和工艺流程、各车间的主要设备以及特点、各车间岗位的特点,并且对江苏省连云港德邦化工厂的发展历史、企业模式等做相关了解。通过对化工设备的实际学习,了解其工作原理。 在学习相关专业知识后,通过生产实习,理论联系实际,巩固书本知识,学习动手实践技能,丰富与提高理论知识;同时接触了解生产的形式,以及实际生产有可能遇到的问题以及解决方法;最后,为以后融入社会上岗工作提供机会。 第二篇:化工原理实习目的 作为一个工科院校,生产实习是我们高材专业知识结构中不可缺少的组成部分,并作为一个独立的项目列入专业教学计划中的。其目的在于通过实习使学生获得基本生产的感性知识,理论联系实际,扩大知识面;同时专业实习又是锻炼和培养学生业务能力及素质的重要渠

道,培养当代大学生具有吃苦耐劳的精神,也是学生接触社会、了解产业状况、了解国情的一个重要途径,逐步实现由学生到社会的转变,培养我们初步担任技术工作的能力、初步了化工工艺的基本方法和技能。 在实习的过程中,通过对工厂的了解,与工人、技术人员交谈,得以对所学专业在国民经济中所占的地位与作用的认识有所加深,培养事业心,使命感和务实精神,为适应从学生到工作者做准备。 同时通过这次实习使我们得到一次综合能力的训练和培养。在整个实习过程中,充分发挥学生学习的主动性、积极性,在生产现场细心观察,虚心请教,积极思考,多方了解,大胆提出自己的想法,在有限的实习时间里使各方面的能力都得到锻炼。 这些实际知识,对我们学习后面的课程乃至以后的工作,都是十分必要的基础。 第三篇:化工原理实习目的 通过本次认识实习,对我们以后《化工原理》课程的学习有很好的感性认识,有利于理论和实际更好的结合和理解。认识实习是我们专业教学计划中一个重要的实践教学环节,为学生由学校到工厂,由理论到实践之间架起的一座桥梁。通过生产工艺及设备的参观实习使学生了解化工生产实际,增加感性认识,从而加强工程观

化工原理基本概念

基本定义 理想溶液 ideal solution(s):溶液中的任一组分在全部浓度范围内都符合拉乌尔定律[1]的溶液称为理想溶液。 这是从宏观上对理想溶液的定义。从分子模型上讲,各组分分子的大小及作用力,彼此相似,当一种组分的分子被另一种组分的分子取代时,没有能量的变化或空间结构的变化。换言之,即当各组分混合成溶液时,没有热效应和体积的变化。即这也可以作为理想溶液的定义。除了光学异构体的混合物、同位素化合物的混合物、立体异构体的混合物以及紧邻同系物的混合物等可以(或近似地)算作理想溶液外,一般溶液大都不具有理想溶液的性质。但是因为理想溶液所服从的规律较简单,并且实际上,许多溶液在一定的浓度区间的某些性质常表现得很像理想溶液,所以引入理想溶液的概念,不仅在理论上有价值,而且也有实际意义。以后可以看到,只要对从理想溶液所得到的公式作一些修正,就能用之于实际溶液。 各组成物质在全部浓度范围内都服从拉乌尔定律的溶液。[2]对于理想溶液,拉乌尔定律与亨利定律反映的就是同一客观规律。其微观模型是溶液中各物质分子的大小及各种分子间力(如由A、B二物质组成的溶液,即为A-A、B-B及A-B 间的作用力)的大小与性质相同。由此可推断:几种物质经等温等压混合为理想溶液,将无热效应,且混合前后总体积不变。这一结论也可由热力学推导出来。理想溶液在理论上占有重要位臵,有关它的平衡性质与规律是多组分体系热力学的基础。在实际工作中,对稀溶液可用理想溶液的性质与规律作各种近似计算。 泡点: 液体混合物处于某压力下开始沸腾的温度,称为在这压力下的泡点。 若不特别注明压力的大小,则常常表示在0.101325MPa下的泡点。泡点随液体组成而改变。对于纯化合物,泡点也就是在某压力下的沸点。 一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温度,也就是一定组成的液体在一定压力下与蒸气达到汽液平衡时的温度。泡点随液相组成和压力而变。当泡点与液相组成的关系中,出现极小值或极大值时,这极值温度相应称为最低恒沸点或最高恒沸点,这时,汽相与液相组成相同,相应的混合物称为恒沸混合物。汽液平衡时,液相的泡点即为汽相的露点。

化工原理第二章习题及答案

第二章流体输送机械 一、名词解释(每题2分) 1、泵流量 泵单位时间输送液体体积量 2、压头 流体输送设备为单位重量流体所提供的能量 3、效率 有效功率与轴功率的比值 4、轴功率 电机为泵轴所提供的功率 5、理论压头 具有无限多叶片的离心泵为单位重量理想流体所提供的能量 6、气缚现象 因为泵中存在气体而导致吸不上液体的现象 7、离心泵特性曲线 在一定转速下,离心泵主要性能参数与流量关系的曲线 8、最佳工作点 效率最高时所对应的工作点 9、气蚀现象 泵入口的压力低于所输送液体同温度的饱和蒸汽压力,液体汽化,产生对泵损害或吸不上液体 10、安装高度 泵正常工作时,泵入口到液面的垂直距离 11、允许吸上真空度 泵吸入口允许的最低真空度 12、气蚀余量 泵入口的动压头和静压头高于液体饱和蒸汽压头的数值 13、泵的工作点 管路特性曲线与泵的特性曲线的交点 14、风压 风机为单位体积的流体所提供的能量 15、风量 风机单位时间所输送的气体量,并以进口状态计 二、单选择题(每题2分) 1、用离心泵将水池的水抽吸到水塔中,若离心泵在正常操作范围内工作,开大出口阀门将导致() A送水量增加,整个管路阻力损失减少

B送水量增加,整个管路阻力损失增大 C送水量增加,泵的轴功率不变 D送水量增加,泵的轴功率下降 A 2、以下不是离心式通风机的性能参数( ) A风量B扬程C效率D静风压 B 3、往复泵适用于( ) A大流量且流量要求特别均匀的场合 B介质腐蚀性特别强的场合 C流量较小,扬程较高的场合 D投资较小的场合 C 4、离心通风机的全风压等于( ) A静风压加通风机出口的动压 B离心通风机出口与进口间的压差 C离心通风机出口的压力 D动风压加静风压 D 5、以下型号的泵不是水泵( ) AB型BD型 CF型Dsh型 C 6、离心泵的调节阀( ) A只能安在进口管路上 B只能安在出口管路上 C安装在进口管路和出口管路上均可 D只能安在旁路上 B 7、离心泵的扬程,是指单位重量流体经过泵后以下能量的增加值( ) A包括内能在内的总能量B机械能 C压能D位能(即实际的升扬高度)B 8、流体经过泵后,压力增大?p N/m2,则单位重量流体压能的增加为( ) A ?p B ?p/ρ C ?p/ρg D ?p/2g C 9、离心泵的下列部件是用来将动能转变为压能( ) A 泵壳和叶轮 B 叶轮 C 泵壳 D 叶轮和导轮 C 10、离心泵停车时要( ) A先关出口阀后断电 B先断电后关出口阀 C先关出口阀先断电均可 D单级式的先断电,多级式的先关出口阀 A 11、离心通风机的铭牌上标明的全风压为100mmH2O意思是( ) A 输任何条件的气体介质全风压都达100mmH2O B 输送空气时不论流量多少,全风压都可达100mmH2O C 输送任何气体介质当效率最高时,全风压为100mmH2O D 输送20℃,101325Pa空气,在效率最高时,全风压为100mmH2O D 12、离心泵的允许吸上真空高度与以下因素无关( ) A当地大气压力B输送液体的温度

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1—x A ) 根据道尔顿分压定律:p A =Py A 而P=p A +p B 则两组分理想物系的气液相平衡关系: x A =(P—p B 0)/(p A 0—p B 0)———泡点方程 y A =p A 0x A /P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。

2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图

相关文档
最新文档