概率统计考试题

概率统计考试题
概率统计考试题

湖北汽车工业学院

概率论与数理统计考试试卷

(2012~2013~2)

一、(本题满分24,每小题4分)单项选择题(请把正确答案的代码填入题前的括号):

【】1.假设事件和满足,则

B是必然事件..

..

【】2.设随机变量X服从参数为的泊松分布,则概率为

....

【】3.下列函数不是随机变量密度函数的是

【】4.已知、相互独立,,, 则服从

....

【】5.在总体中抽取样本则下列统计量中为总体均值的无偏估计 量的是

. .

. .

【】6.设为随机变量,且有,则有

与独立. 与相关.

与的相关系数..

二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在题后的横线上):

1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为.

2.设,,,则.

3.设~,则.

4.设相互独立且都服从区间上的均匀分布,.

5.设随机变量的可能取值为,对应概率分别为其分布函数为则. 6.设一批零件的长度服从正态分布,其中和均未知,现从中随机抽取16个零件,测得样本均值为,样本标准差,则样本均值的置信水平为的置信区间为.(精确到小数点后面三位)

(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。现从甲箱中任取3件产品放入乙箱后,求从乙箱中任取一件产品是次品的概率.

本题满分8分)已知某种机械零件的直径(mm)服从正态分布.规定直径(mm)之间为合格品,求这种机械零件的不合格品率.

五、(本题满分14分)设二维随机变量的概率密度为

求 (1)的边缘概率密度,; (2)概率;

判断,是否相互独立.

六、(本题满分10分)设总体的概率密度为

其中参数未知,如果取得样本观测值, 求参数的最大似然估计值.

七、(本题满分10分)设某课程考试的成绩服从正态分布,现随机抽取36

位考生的成绩,得平均成绩为分,标准差为分,则在显著性水平下

可否认为这次考试全体考生的平均成绩为分.

附:公式与数据

一、单正态总体常用统计量及其分布,对应临界值(即分位数)的性质

(1),

(2),

二、单正态总体均值的置信水平为的置信区间

(1)已知:

(2)未知:

三、单正态总体关于均值的假设检验

已知未知

原假设备择假设

在显著性水平下关于的拒绝域

四、备用数据

概率统计期中考答案版

《_》 期中考试 (一、四) 班级 ______ ___ 姓名 _______学号 _ ___ 一、选择题(共6题,每题3分,共计18分) 1. 事件C 发生导致事件A 发生, 则 B 。 A. A 是C 的子事件 B. C 是A 的子事件 C. A C = D .()()P C P A > 2. 设事件B A ,两个事件,111 (),(),()2310 P A P B P AB ===,则()P A B = B 。 A . 1115 B .415 C .56 D .16 (逆事件概率,加法公式,()1()1[()()()]P A B P A B P A P B P AB =-=-+-U ) 3. 设X ~2(,)N μσ,那么当σ增大时,{2}P X μσ-< C 。 A .增大 B .减少 C .不变 D .增减不定

(随机变量的标准正态化,2(2)1=Φ-) 4. 已知B A ,是两个事件,X ,Y 是两个随机变量,下列选项正确的是(C ) A . 如果 B A ,互不相容,则A 与B 是对立事件 B . 如果B A ,互不相容,且()()0,0>>B P A P ,则B A ,互相独立 C . Y X 与互相独立,则Y X 与不相关 D . Y X 与相关,则相关系数1ρ= 5.已知2,1,(,)1,DX DY Cov X Y === 则(2)D X Y -= ( C ) (A) 3; (B) 11; (C) 5; (D) 7 (考查公式(2)4()()2cov(2,)D X Y D X D Y X Y -=+-) 6.若X,Y 为两个随机变量,则下列等式中成立的是( A ) A.EY EX Y X E +=+)( B.DY DX Y X D +=+)(

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02,

概率B期中考试A卷答案

上海海洋大学试卷答案 学年学期 20 14 ~ 20 15 学年第 2 学期 考核方式 闭卷 课程名称 概率论与数理统计期中考答案 A/B 卷 (期中 )卷 一、填空题(每小题3分,共27分) 1.已知P(A)=0.4,P(B)=0.3,P(A ∪B)=0.7,则()P AB = 0.4 ,(|)P A B = 3/7 2.对事件A 、B 、C 满足=)A (P 41)()B (P = =C P ,16 1 )()(p ==BC P AC ,则A 、B 、C 都不发生的概率为 3/8 3.离散型随机变量X 只取π,2,1-三个可能值,取各相应值的概率分别为22,,a a a -, 则=a -1/2 4. 袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回). 已知第二次取出的是黑球,则第一次取出的也是黑球的概率为 2/9 5.每次试验成功率为p (0 < p < 1),进行重复试验,则直到第十次试验才取得三次成功的概率为 36p 3 (1-p) 7 6.设随机变量K 在区间(0, 5)上服从均匀分布,则方程210x Kx ++=无实根的概率为 2/5 7. 已知~(5,16),X N 且}{}{c X P c X P <=>,则c = 5 8. 设X ~ B(2, p), Y ~ B(3, p), 若5 {1}9 P X ≥= ,则{1}P Y ≥= 19/27 9. 设X 与Y 相互独立,X 的密度函数为22,0 ()0 x X e x f x -?>=??其它,Y 的分布律为 3 3{},0,1,2, ,k P Y k e k k -===! 且32Z X Y =--,则()E Z =-21/2,()D Z = 109/4

同济大学_概率论与数理统计期中试卷

同济大学 09 学年 第一学期 专业 级《 概率统计 》期中试卷 考试形式:( 闭卷 ) 一、填空题(共 30 分,每空2分): 1.事件C B A ,,中至少有一个发生可表示为 ,三个事件都发生可表示为 ,都不发生可表示为 . 2.设()4.0=A P ,()3.0=B P ,()4.0=B A P ,则() =B A P . 3.一袋中有10个球,其中3个黑球,7个白球. 每次从中任取一球,直到第3次才取到黑球的概率为 ,至少取3次才能取到黑球的概率为 . 4.设随机变量X 的分布函数()??? ?? ??≥<≤<≤--<=31318 .0114 .010x x x x x F ,则X 的分布列为 . 5.进行10次独立重复射击,设X 表示命中目标的次数,若每次射击命中目标的概率都是4.0,则X 服从 分布,其数学期望为 ,方差为 . 6.设连续型随机变量()λe X ~,)0(>λ,则=k 时,{}4 12= >k X P . 7.已知随机变量()2~P X ,则102-=X Y 的数学期望=EY ,方差=DY . 8. 已知随机变量X 的概率密度函数为()?? ?>-<≤≤-=2 ,20 2225.0x x x x f ,则X 服从 分布,设随机变量 12+=X Y ,则=EY . 二、选择题(共10 分,每小题 2 分) 1.设事件B A ,互不相容,且()()0,0>>B P A P ,则有 ( ) (A )()0>A B P (B )() ()A P B A P = (C )() 0=B A P (D )()()()B P A P AB P =

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一 一、填空题(每空2分,共20分) 1、设X 为连续型随机变量,则P{X=1}=( 0 ). 2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ). 3、若随机变量X 的分布律为P{X=k}=C(2/3)k ,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ). 5、已知随机变量X ~N(μ,σ2 ),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6 且X 与Y 相互独立。 则A=( 0.35 ),B=( 0.35 ). 7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ). 二、计算题(每题12分,共48分) 1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率. 解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(3 1 =?+?+?== ∑=i i i A B P A P B P (2)21.049.0/)3.035.0()|(2=?=B A P 2、已知随机变量X 的概率密度为 其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1). ?? ?? ?<≥=-0 00)(2x x e A x f x λλ

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

概率论与数理统计期中试卷(1-4章)附答案及详解

X,

23π+=X Y 5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2, 0(~22N X ,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D 6. 设二维正态分布的随机变量)0,3,4,2 ,1( ),(2 2-N ~Y X ,且知8413.0)1(=Φ,则 -<+)4(Y X P 7. 已知随机变量X 的概率密度2 01()0 a bx x f x ?+<<=??其他, 且41)(=X E ,则a b ) (X D 8. 设4. 0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率; (2)任取一个零件经检验是废品,试求它是由乙机床生产的概率. 解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A 再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得 .02.0)(,03.0)(;3 1 )(,32)(====A B P A B P A P A P …… 3’ (1)由全概率公式知 027.075 2 02.03103.032)()()()()(≈=?+?= +=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73 ()1()0.973.75 P B P B =-= ≈ …… 1’ (2)由贝叶斯公式知 .4 102.03 103.03202.031 )()()()()()()(=?+??=+=A B P A P A B P A P A B P A P B A P …… 3’

最新概率论与数理统计期中考试试题1

概率论与数理统计期中考试试题1 一.选择题(每题4分,共20分) 1.设,,A B C 为三个随机事件,,,A B C 中至少有一个发生,正确的表示是( ) A. ABC B. ABC C. A B C D. A B C 2.一个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为 ( ) A. 12 B. 14 C. 13 D. 15 3.设,A B 为随机事件,()0.5,()0.6,(|)0.8P A P B P B A ===,则()P A B =( ) A .0.7 B. 0.8 C. 0.6 D. 0.4 4. 一电话总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为( ) A. 423e - B. 223e - C. 212e - D. 312 e - 5.若连续性随机变量2 (,)X N μσ,则X Z μσ -= ( ) A .2(,)Z N μσ B. 2(0,)Z N σ C. (0,1)Z N D. (1,0)Z N 二. 填空题(每题4分,共20分) 6. 已知1 ()2 P A =,且,A B 互不相容,则()P AB = 7. 老张今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年内因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司赔付10万元;若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0元的概率为 8. 设连续性随机变量X 具有分布函数 0,1()ln ,11,x F x x x e x e

四川大学概率统计往年期末试题

四川大学期末考试试题 (2008-2009学年第二学期) 一、单项选择题(每空2分,共10分) 1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P Y ( ) (A)0.8 (B)0.5 (C)0.65 (D)0.95 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61 )(625102π则 E(X)=( ) (A)5 (B)3 (C)-3 (D)-5 3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( ) (A)??? ??+3531y F (B))53(+y F (C) )353(-y F (D) ?? ? ??+35y F 4.设总体n X X X ,,,21Λ是独立同分布的随机变量序列,均服从参数为1的指数分布,令∑==n i i X n X 122 1,则?→?P X 2( ) (A)1 (B)2 (C)3 (D)4 5.设总体3212 ,,),,(~X X X N X σμ是来自X 的样本,记 32114 14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效 (A)1Z (B)2Z (C)3Z (D)无法判断 二、填空题(每空2分,共10分) 1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______; 2.设), 3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______; 3.设)4 3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则~Z _________分布; 4.设)(~λP X ,已知1)]2)(1[(=--X X E ,则=λ__________; 5.设总体)1,0(~N X ,321,,X X X 分别是来自X 的样本,

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题(免费) 一 填空题(每小题 2分,共20 分) 1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ). 2.设()0.3,()0.6P A P A B == ,则()P A B =( ). 3.设随机变量X 的分布函数为??? ? ? ????> ≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ), ()6 P X π > =( ). 4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2 X E ( ). 5.若随机变量X 的概率密度为2 36 ()x X p x -= ,则(2)D X -=( ) 6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( ). 7.设二维随机变量(X,Y )的联合分布律为 X Y 1 2 ?i p 0 a 12 1 6 1 1 3 1 b 则 ( ), ( ).a b == 8.设二维随机变量(X,Y )的联合密度函数为? ? ?>>=--其它 00,0),(2y x ae y x f y x ,则 =a ( ) 9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数X Y ρ=( ). 10.设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ). 二.选择题(每小题 2分,共10 分) 1.设当事件C B 和同时发生时事件A 也发生,则有( ).

) ()()(1 )()()()(1)()()()() ()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥= 2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ? (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ). (a )sin 0()20 x x p x π? <=( ). 1 11() 1 () () ()4 28 a b c d 三、解答题(1-6小题每题9分,7-8小题每题8分,共70分) 1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三 车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。 2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数X 的概率分布 ;(2)求X 的分布函数()F x . 3.设随机变量X 的密度函数为(1) 01()0 A x x f x -<. 4.设随机变量X 的密度函数为sin 0()20 x x f x π? <

概率论与数理统计期末试卷及答案

2016-2017学年第二学期期末考试课程试卷(A ) 警告、记过、留校察看,直至开除学籍处分! 一、 选择题(每题3分,共15分) 1. 设事件1A 与2A 同时发生必导致事件A 发生,则下列结论正确的是( B ). A .)()(21A A P A P = B. 1)()()(21-+≥A P A P A P C. )()(21A A P A P Y = D. 1)()()(21-+≤A P A P A P 2.假设连续型随机变量X 的分布函数为()F x ,密度函数为()f x .若X 与-X 有相同的分布函数,则下列各式中正确的是( C ). A .()F x =()F x - B .()F x =()F x -- C .()f x =()f x - D .()f x =()f x -- 3. 已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为( D )。 学号:________________ 姓名:________________ 班级:______________ 请考生将答案写在试卷相应答题区,在其他地方作答视为无效!

A. )2(2y f X - B. )2(y f X - C. )2(21y f X -- D. )2 (21y f X - 4. 设随机变量服从正态分布, 对给定的, 数满足, 若, 则等于( A )。 A. 12u α- B. 21u α- C. 2u α D. 1u α- 5. 12,,n X X X L 是来自正态总体()2,μσX N :的样本,其中μ已知,σ未知,则 下列不是统计量的是( C )。 A. 4 114i i X X ==∑ B. 142X X μ+- C. 4 2 211 ()i i K X X σ==-∑ D. 4 2 1 1()3i i S X X ==-∑ 二、 填空题(每题3分,共15分) 事件,则“事件,A B 发生但C 不发生”表示为 。 2. 三个人独立破译一份密码,各人能译出的概率分别为4 1 ,51,31,则密码能译出 的概率为 3/5 。

概率论与数理统计期末试卷及答案(最新1)

概率论与数理统计期末试卷 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、,则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B) 取到1只白球 (C) 没有取到白球(D) 至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A) 随机事件(B) 必然事件 (C) 不可能事件(D) 样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B) 与不互斥 (C) (D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D)

6. 设相互独立,则()。 (A) (B) (C) (D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D) 0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3 (B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 10. 设事件A与B同时发生时,事件C一定发生,则()。 (A) P(A B) = P (C) (B) P (A) + P (B) –P (C) ≤1 (C) P (A) + P (B) –P (C) ≥1 (D) P (A) + P (B) ≤P (C) 三、计算与应用题(每小题8分,共64分) 1. 袋中装有5个白球,3个黑球。从中一次任取两个。 求取到的两个球颜色不同的概率。 2. 10把钥匙有3把能把门锁打开。今任取两把。 求能打开门的概率。 3. 一间宿舍住有6位同学, 求他们中有4个人的生日在同一个月份概率。 4. 50个产品中有46个合格品与4个次品,从中一次抽取3个, 求至少取到一个次品的概率。

概率论与数理统计期中考试试题1

概率论与数理统计期中考试试题1 一.选择题(每题4分,共20分) 1.设A.β,C为三个随机事件,A,B,C中至少有一个发生,正确的表示是() A. ABC B. ABC C. Λ∪B∪C D. AUBUC 2.—个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为() A.丄 B.丄 C. - D.- 2 4 3 5 3.设A,8 为随机事件,P(A) = 0.5,P(B) = 0.6,P(B IA)=O.8 ,则P(AU B)=() A. 0.7 B. 0.8 C. 0.6 D. 0.4 4.一总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为() 2 , 2 , 1 2 1 3 A. B. C. 一e~ D. 一尸 3 3 2 2 5?若连续性随机变量X?Ngb?则Z =兰二《~ () σ A. Z ?N(//,σ2) B. Z ?N(0,σ2) C. Z?7V(0,l) D. Z ?N(l,0) 二.填空题(每题4分,共20分) 1 - 6.已知P(A) =—?且A,3互不相容,则P(AB)= _________________ 2 7.老今年年初买了一份为期一年的保险,保险公司陪付情况如下:若投保人在投保后一年因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司陪付10万元;若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年因意外死亡的概率为 0. 0002,因其他原因死亡的概率为0. 0050,则保险公司赔付金额为0元的概率为_____________ 8.设连续性随机变量X具有分布函数 O5X < 1 F(X) = In x,?≤ X

厦门大学概率论与数理统计期中试卷1

以下解题过程可能需要用到以下数据: (1)0.8413,(1.28)0.9000,(1.65)0.9500,(2)0.9772,(2.33)0.9900Φ=Φ=Φ=Φ=Φ= 计算(总分100,要求写出解题步骤) 1.(8分)已知事件A 与B 相互独立,P(A)=0.3, P(B)=0.4。 求()P AB 和()P A B ?。 2.(10分)一个坛中有4个黑球2个白球, 先后取球两次。第一次从该坛中任取一只球,察看其颜色后放回, 同时放入与之颜色相同的2个球, 然后第二次再从该坛中任取一只球。 (1). 问第二次取出的是白球的概率为多少? (2). 若已知第二次取出的是白球, 问第一次所取为白球的概率是多少? 3.(10分)设随机变量X 的概率密度函数为 ,12,(), 01,0,c x x f x x x -<≤??=<≤???其它 , 其中c 为未知常数. (1). 求c 的值. (2). 求()1/23/2P X <<. 4. (10分) 设某厂生产的灯泡寿命服从正态分布2(1200,50)N (单位:小时)。 (1)求该厂灯泡寿命超过1136小时的概率; (2)若购买该厂灯泡5只,则其中至少2只灯泡寿命超过1136小时的概率是多少? 5.(18分)设随机变量X ,Y 相互独立同分布, 其概率密度函数均为 1,03,()30,x f x ?<

概率论与数理统计期末考试试题及答案

《概率论与数理统计》期末考试试题(A) 专业、班级: 姓名: 学号: 十二总成绩 、单项选择题(每题3分共18分) 1. D 2 . A 3 . B 4 . A 5 . (1) (2)设随机变量X其概率分布为X -1 0 1 2 P 则 P{X 1.5}() (A) (B) 1 (C) 0 (D) 设事件A与A同时发生必导致事件A发生,则下列结论正确的是( (A) P (A) P(A I A2) (B) P(A) P(A i) P(A2) (C) P(A) P(A1 A2) (D) P(A) P(A i) P(A2) 设随机变量X~N( 3, 1), Y ?N(2, 1),且X 与Y相互独 7,贝y z~(). (A) N(0, 5); (B) N(0, 3); (C) N(0, 46); (D) N(0, 54).

(5)设 X1X2, 未知,贝U( n (A) X i2 i 1 ,X n为正态总体N(, )是一个统计量。 (B) (C) X (D) (6)设样本X i,X2, 为H o: (A)U (C) 2)的一个简单随机样本,其中2, ,X n来自总体X ~ N( 0( 0已知) (n 1)S2 2 二、填空题(每空3分 xe x 1. P(B) 2. f(x) 0 (1) 如果P(A) 0, P(B) H1 : (B) (D) 共15分) 0, P(A B) 设随机变量X的分布函数为 F(x) 则X的密度函数f(x) 3e P(A) n (X i ) i 1 2), 2未知。统计假设 则所用统计量为( 3 . 1 4. 则P(BA) 0, 1 (1 x)e x, x 0, 0. n (X i 1 P(X 设总体X和丫相互独立,且都服从N(0,1) , X1,X2, 样本,丫1,丫2, Y9是来自总体丫的样本,则统计量 服从分布(要求给出自由度)。t(9 ) 2) )2 X9是来自总体X的 X1 U肩

武汉大学2010-2011概率论与数理统计B期末试卷

武汉大学 2010-2011第二学期 概率论与数理统计B 期末试题(54学时) 一、(12 分)若B 和 A 为事件, ()0.5,()0.6,(|)0.8 P A P B P B A === 求 ⑴ () P A B è ; ⑵ (()()) P A B A B -?è 。 二、(12 分) 某车间的零件来自甲、 乙、 丙三厂, 其各占比例为 5: 3: 2, 次品率分别为0.05,0.06,0.03; 现从中任取一件,求 :⑴它是次品的概率?⑵如果它是次品,它来自乙厂的概率? 三、(12 分)随机变量X 的密度函数为 1 0 sin () 2 x x f x p ì << ? = í ? ? 其他 。A 表示事件“ 3 X p 3 ” ⑴求 () P A ; ⑵对X 进行 4 次独立观测,记A 出现的次数为Y ,求其概率分布及 2 Y 的数学期望。 四、(14 分)若随机变量(,) X Y 的联合概率密度为 (2) 2 (,) 0 x y e f x y -+ ì = í ? 0,0 x y >> 其他 ; ⑴求随机变量X 和Y 的边缘概率密度 ()?() x y f x f y ; ⑵ X 和Y 是否独立 ?(3)求 2 Z X Y =+ 的概率密度。 五、(12 分) 若随机变量 (,) X Y 在区域 2 :01, D x x y x ££££ 上服从二维均匀分布, 求随机变量(,) X Y 的 相关系数 xy r 。 六、(14 分)若 12 , n X X X K 为来自 2 (0,) N s 的样本; X 为样本均值, i i Y X X =- 1,2 i n = K 求(1) i Y 的方差;(2) 1 ov(,) n C Y Y 。 (3)当a 为何值时, 2 1 222 23 n aX F X X X = +++ L 服从F 分布? 七、(12 分)若随机变量X 在区间(0,) q 服从均匀分布, 12 , n X X X K 是其样本, 求(1)q 的矩估计和极大似然估计。 (2) 判别他们的无偏性。 八、(12 分)设某次考试的学生成绩服从正态分布,从中任取 36 位学生的成绩,得平均分为68.5, 标准差为 6分;问:可否认为学生的平均分显著小于70 分? ( 0.05 a = ) 已知: 0.050.050.0250.025 (35) 1.690,(36) 1.688,(35) 2.030,(36) 2.028 t t t t ==== 0.050.025 1.65, 1.96 u u ==

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的 概率为__________. 答案: 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 & 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 】 由 )2(4)1(==≤X P X P 知 λ λλλλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F =

相关文档
最新文档