各种方法导热系数检测简介

各种方法导热系数检测简介
各种方法导热系数检测简介

对于导热硅胶片、导热膏和导热塑料等热传导性材料,实验室常采用的材料导热系数测试方法包括稳态热板法与激光闪射法,原理都是根据傅里叶定律。

国际通用标准是美国材料试验协会(ASTM)的ASTM-D5470,ASTM-E1461,ASTM-E1530三种常用标准。各种不同的测试方法与测试标准得出的数据差异较大。ASTM-D5470与ASTM-E1461的测试值较为相近,对于导热硅胶片,国内生产导热硅胶片的企业主流还是采用

ASTM-D5470标准,这种测试方式更能模拟实际的使用状态,通过热阻反映导热系数。国外大多著名导热硅胶片生产企业也同样采用这一测试方法和条件。

ASTM-D5470:热导性电绝缘材料的热传输特性的标准试验方法,采用稳态热流计法,对样品施加一定的热流量,压力,测试样品的厚度和在热板/冷板间的温度差,得到样品的导热系数,需要样品为较大的块体以获得足够的温度差。

ASTM-E1461:用闪光法(激光闪射法)确定固体热扩散率的试验方法,高强度的能量脉冲对小而薄的圆盘试样进行短时间的辐照。脉冲的能量被样品的前表面吸收并记录其所导致后表面温度上升(温度自记曲线)。热扩散系数的值通过试样的厚度和后表面温度上升达到某一比值的最大值

所需要的时间计算出来。原理是一束激光打在样品上表面,用红外检测器测下表面的温度变化,实际测得的数据是样品的热扩散率。

1

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

导热系数实验报告

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2)

导热系数的测量实验精选报告.doc

导热系数的测量 【实验目的】 用稳态法测定出不良导热体的导热系数,并与理论值进行比较。 【实验仪器】 导热系数测定仪、铜- 康导热电偶、游标卡尺、数字毫伏表、台秤 ( 公用 ) 、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 【实验原理】 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h、温度分别为T1、 T2的平行平面(设T1>T2),若平面面积均为 S,在t 时间内通过面积S 的热量Q 免租下述表达式: Q S (T 1 T 2 ) (3-26-1 ) t h 式中,Q 为热流量; 即为该物质的导热系数,在数值上等于相距单位长度的两平面t 的温度相差 1 个单位时,单位时间内通过单位面积的热量,其单位是W (m K ) 。 在支架上先放上圆铜盘P,在 P 的上面放上待测样品B,再把带发热器的圆铜盘 A 放在B 上,发热器通电后,热量从 A 盘传到 B 盘,再传到 P 盘,由于 A,P 都是良导体,其温度即可以代表 B 盘上、下表面的温度 T1、T2,T1、 T2分别插入 A、P盘边缘小孔的热电偶 E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G, 切换 A、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1 )可以知道,单位时间内通过待测样品 B 任一圆截面的热流量为 Q (T1 T2 ) R B2 (3-26-2) t h B B B 1 2 的值不变,式中, R 为样品的半径, h 为样品的厚度。当热传导达到稳定状态时, T 和 T 遇事通过 B 盘上表面的热流量与由铜盘 P 向周围环境散热的速率相等,因此,可通过铜 2 的散热速率来求出热流量Q 。实验中,在读得稳定时 1 2 盘 P 在稳定温度 T t T 和 T 后,即可将 B 盘移去,而使 A 盘的底面与铜盘 P 直接接触。当铜盘 P 的温度上升到高于稳定时的 T2值若干摄氏度后,在将 A 移开,让 P 自然冷却。观察其温度T 随时间 t 变化情况, 然后由此求出铜盘在T2的冷却速率T T , 而 mc , 就是铜盘 P 在温度为 T2时的散t T T2 t T T2 热速率。但要注意,这样求出的T 是铜盘 P 在完全表面暴露于空气中的冷却速率,t T T2 其散热表面积为 2 R B2 2 R P h P。然而,在观察测量样品的稳态传热时,P盘的上表面是被样品覆盖着的,并未向外界散热,所以当样品盘 B 达到稳定状态时,散热面积仅为:

导热系数测量

导热系数测量 在某些应用场合,了解陶瓷材料的导热系数,是测量其热物理性质的关键。陶瓷耐火材料常被用作炉子的衬套,因为它们既能耐高温,又具有良好的绝热特性,可以减少生产中的能量损耗。航天飞机常使用陶瓷瓦作挡热板。陶瓷瓦能承受航天飞机回到地球大气层时产生的高温,有效防止航天器内部关键部件的损坏。在现代化的燃气涡轮电站,涡轮的叶片上的陶瓷涂层(如稳定氧化锆)能保护金属基材不受腐蚀,降低基材上的热应力。作为有效的散热器能保护集成电路板与其它电子设备不受高温损坏,陶瓷已经成为微电子工业领域关键材料。若要在和热相关的领域使用陶瓷材料,则要求精确测量它们的热物理性能。在过去的几十年里,已经发展了大量的新的测试方法与系统,然而对于一定的应用场合来说并非所有方法都能适用。要得到精确的测量值,必须基于材料的导热系数范围与样品特征,选择正确的测试方法。 基本理论与定义 热量传递的三种基本方式是:对流,辐射与传导。对流是流体与气体的主要传热方式,对固态与多孔材料传热不起重要作用。 对于半透明与透明陶瓷材料,尤其在高温情况下,必须考虑辐射传热。除了材料的光学性质外,边界状况亦能影响传热。关于辐射传热方式的详细介绍见文献一(1)。 对于陶瓷材料而言传导是最重要的传热方式。热量的传导基于材料的导热性能——其传导热量的能力(2)。厚度为x 的无限延伸平板热传导可用Fourier 方程进行描述(一维热传递): Q = -λ·△T/△x Q 代表单位表面积在厚度(△x)上由温度梯度(△T)产生的热流量。两个因子都与导热系数(λ)相关联。在温度梯度与几何形状固定(稳态)的情况下,导热系数代表了需要多少能量才能维持该温度梯度。 在对建筑材料(如砖)与绝热材料进行表征时,经常用到k 因子。k 因子与材料的导热系数和厚度有关。 k –value = λ/ d 这一因子并不能用来鉴别材料,而是决定最终产品厚度的决定因素。 现代电子元件与陶瓷散热器上通常发生的是动态(瞬时)过程。需要更复杂的数学模型描述这些动态热传递现象,在此不做讨论。

保温隔热绝热材料性能检测导热系数检测方法

保温隔热绝热材料性能检测导热系数检测方法 1.1 适用范围及引用标准 1.1.1 适用范围 本规程规定了保温、隔热、绝热材料导热系数的检测方法。 本规程适用于保温、隔热、绝热材料干燥匀质试件导热系数(被测试件的热阻应大于0.1 m2·K/W)的测定,且所测定的结果均为在给定平均温度和温差下试件的导热系数。 1.1.2 引用标准 下列标准所包含的条文,通过在本规程中引用而构成为本规程的条文。使用本规程的各方应探讨使用下列标准最新版本的可能性。 GB 4132 绝热材料名词术语 GB 10294-1988 绝热材料稳态热阻及有关特性的测定防护热板法 GB 10295-1988 绝热材料稳态热阻及有关特性的测定热流计法 GB 10296-1988 绝热材料稳态热阻及有关特性的测定圆管法 GB 10297-1988 非金属固体材料导热系数的测定方法热线法 GB 3399-1982 塑料导热系数试验方法护热平板法

1.2 仪器设备 1.2.1 量具 应符合GB6342规定。 1.2.2 导热系数仪 导热系数仪根据测试原理不同可分为分为防护热板式导热系数仪、热流计式导热系数仪等。防护热板式导热系数仪示意图见图1.1,热流计式导热系数仪示意图见图1.2。 a双试件装置b单试件装置 图1.1 防护热板式导热系数仪示意图

a 单热流计不对称布置 b 双热流计对称布置 c 双试件式装置 图1.2 热流计式导热系数仪示意图 1.3 检测程序 1.3.1 绝热用模塑聚苯乙烯泡沫塑料(EPS)导热系数检测程序 EPS板导热系数的测定按GB 10294-1988或GB 10295-1988规定进行;仲裁方法时执行GB 10294-1988。

导热系数的测定_评分标准(精)

“导热系数的测定”实验报告评分标准 第一部分:预习报告(20分) 一、实验目的 1.掌握用稳态法测量不良导体的导热系数的方法。 2.了解物体散热速率和传热速率的关系。 3.理解温差热电偶的特性。 二、实验仪器 发热盘,传热筒,杜瓦瓶,温差电偶,待测橡胶样品 ,数字电压表,停表。 三、实验原理 1 ?热传导定律:—— S ; 2 ?导热系数概念:等于相距单位长度的两平面的温度相差为一个单位时,在单位时间内通 过单位面积所传递的热量,单位是瓦?米-1?开-1( W- m1? K1),导热系数是反映材料的导 热性能的重要参数之一; 3?稳态法(通过控制热源传热在样品内部形成稳定的温度分布,而进行的测量)测不良导体的导热系数的方法; 4散热板自由冷却与稳态时,由于散热面积不同因而要引入修正系数: 2 R c 2:';R c h e _ 1 D e 4h C 2二R C 2「R C h C2 D e 2h c

5 ?温差热电偶的工作原理 四、实验内容和步骤 1橡胶盘,黄铜盘直径,高度D B,h B,D c,h c,黄铜盘质量m,数据由实验室提供。 2、稳态法测传热板,散热板的温度哥0,20; 3、测量散热板(黄铜盘)的冷却速率22^,计算■ o 第二部分:数据采集与实验操作(40分) 有较好的动手能力,能够很好解决实验过程中出现的问题,数据采集记录完整准确,操作过程无误(35-40分); 有一定的动手能力,能够解决实验过程中出现的一般问题,数据采集记录完整,操作过程无大的违规(35-20); 动手能力较差,难以解决实验过程中出现的一般问题,数据采集与记录不完整、有偏差,有 违规操作(0-20分)o 操作要点: 1 导热系数测定仪的使用(数字电压表调零,热电偶接线,); 2.构建稳态环境,保持哥°在 3.50mV ±0.03mV范围内,测量匕0 ; 3.测量黄铜盘的冷却速率。保持稳态时散热板的环境: a .电风扇一直工作。 b. Io附近的冷却速率。

试验9不良导体导热系数的测定

实验九不良导体导热系数的测量 导热系数(热导率)是反映材料热性能的物理量,导热是热交换三种(导热、对流和辐射)基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各个研究领域的课题之一,要认识导热的本质和特征,需了解粒子物理而目前对导热机理的理解大多数来自固体物理的实验。材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。 因此,材料的导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、 温度、压力及杂质含量相联系。在科学实验和工程设计中所用材料的导热系数都需要用实验的方法测定。(粗略的估计,可从热学参数手册或教科书的数据和图表中查寻) 1882年法国科学家J?傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律基础之上,从测量方法来说,可分为两大类:稳态法和动态法,本实验采用的是稳态平板法测量材料的导热系数。 【实验目的】 1?了解热传导现象的物理过程 2 ?学习用稳态平板法测量材料的导热系数 3 ?学习用作图法求冷却速率 4 ?掌握一种用热电转换方式进行温度测量的方法 【实验仪器】 YBF-3导热系数测试仪、冰点补偿装置、测试样品(硬铝、硅橡胶、胶木板)、塞尺等 【实验原理】 为了测定材料的导热系数,首先从热导率的定义和它的物理意义入手。热传导 定律指出:如果热量是沿着z方向传导,那么在z轴上任一位置z o处取一个垂直截 面积ds,以dT表示在z处的温度梯度,以dQ表示在该处的传热速率(单位时间 dz dt 内通过截面积ds的热量),那么传导定律可表示成: .dT dQ=-:?()z0dsdt (9-1) dz 式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。(9-1)式中比例系数'即为导热系数,可见热导率的物理意义:在温度梯度为

固体导热系数的测定实验报告

学生物理实验报告 实验名称固体导热系数的测定 学院专业班级报告人学号 同组人学号 理论课任课教师 实验课指导教师 实验日期 报告日期 实验成绩 批改日期

1.数字毫伏表 一般量程为20mV。3位半的LED显示,分辨率为10uV左右,具有极性自动转换功能。 2.导热系数测量仪 一种测量导热系数的仪器,可用稳态发测量不良导体,金属气体的导热系数, 散热盘参数

傅里叶在研究了固体的热传定律后,建立了导热定律。她指出,当物体的内部有温度梯度存在时,热量将从高温处传向低温处。如果在物体内部取两个垂直于热传导方向,彼此相距为h 的两个平面,其面积元为D,温度分别为21T T 和,则有 dt dQ =–dS dx dT λ 式中dt dQ 为导热速率,dx dT 为与面积元dS 相垂直方向的温度梯度,“—”表示热量由高温区域传向低温区域,λ即为导热系数,就是一种物性参数,表征的就是材料导热性能的优劣,其单位为W/(m ·K ),对于各项异性材料,各个方向的导热系数就是不同的,常要用张量来表示。 如图所示,A 、C 就是传热盘与散热盘,B 为样品盘,设样品盘的厚度为B h ,上下表面的面积 各为B S =2 B R π,维持上下表面有稳定的温度21T T 和,这时通过样品的导热速率为 dt dQ =–B B S h T T 21 -λ 在稳定导热条件下(21T T 和值恒定不变) 可以认为:通过待测样品B 的导热速率与散热盘的周围环境散热的速率相等,则可 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置图

材料导热系数测试实验

东南大学材料科学与工程 实验报告 学生姓名张沐天班级学号实验日期2015.11.27 批改教师 课程名称________________ 材料性能测试实验________________________ 批改日期 实验名称__________ 材料导热系数测试实验 ________________________ 报告成绩 一、实验目的 1?掌握稳态法测定材料导热系数的方法 2.了解材料导热系数与温度的关系 二、实验原理 不同温度的物体具有不同的内能,同一个物体不同区域如果温度不等,则他们热运动的激烈程度不同,含有的内能也不相同。这些不同温度的物体或区域,在相互靠近或接触时,会以传热的形式交换能量。由于材料相邻部分之间的温差而发生的能量迁移称为热传导。在热能工程、制冷技术、工业炉设计等一系列技术领域中,材料的导热性都是一个重要的问题。 1?材料的导热性及电导率 材料的导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1K,在1s 钟内,通过1m2面积传递的热量,单位为W/(m ? K),也叫热导率。热导率入由简化的傅 )dT q =-入— 里叶导热定律dx决定。 2?热传导的物理机制 热传导过程就是材料的能量传输过程。在固体中能量的载体可以有自由电子、声子和光子,因此固体的导热包括电子导热、声子导热和光子导热。 1)电子和声子导热 纯金属中主要为电子导热,在合金、半金属或半导体、绝缘体的变化过程中,声子导热所占比例逐渐增大。 2)光子导热 固体中分子、原子和电子的振动、转动等运动状态的改变会辐射出频率较高的电磁波,其中具有较强热效应的是波长在0.4-40pm间的可见光与部分近红外光的区域,这部分辐射线称为热射线。热射线的传递过程称为热辐射。 3?影响导热系数的因素 1)温度 金属以电子导热为主,电子在运动过程中将受到热运动的原子和各种晶格缺陷的阻挡,从而形成对热量传输的阻力。 一般来说,纯金属的导热系数一般随温度的升高而降低;而今导热系数一般随温度的升高 而升高;玻璃体的导热系数则一般随温度的降低而减小。 2)原子结构 物质的电子结构对热传导有较大影响。具有一个价电子的,导电性能良好的、德拜温度较高的单质都具有较高的导热系数。 3)成分和晶体结构

材料导热系数测试实验

材料导热系数测试实验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

东南大学材料科学与工程 实验报告 学生姓名 张沐天 班级学号 实验日期 批改教师 课程名称 材料性能测试实验 批改日期 实验名称 材料导热系数测试实验 报告成绩 一、实验目的 1.掌握稳态法测定材料导热系数的方法 2.了解材料导热系数与温度的关系 二、实验原理 不同温度的物体具有不同的内能,同一个物体不同区域如果温度不等,则他 们热运动的激烈程度不同,含有的内能也不相同。这些不同温度的物体或区域, 在相互靠近或接触时,会以传热的形式交换能量。由于材料相邻部分之间的温差 而发生的能量迁移称为热传导。在热能工程、制冷技术、工业炉设计等一系列技 术领域中,材料的导热性都是一个重要的问题。 1.材料的导热性及电导率 材料的导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为 1K ,在1s 钟内,通过1m2面积传递的热量,单位为 W/(m ·K),也叫热导率。热导率λ由简化的傅里叶导热定律 dx dT -q λ 决定。 2.热传导的物理机制 热传导过程就是材料的能量传输过程。在固体中能量的载体可以有自由电子、声 子和光子,因此固体的导热包括电子导热、声子导热和光子导热。

1)电子和声子导热 纯金属中主要为电子导热,在合金、半金属或半导体、绝缘体的变化过程中,声子导热所占比例逐渐增大。 2)光子导热 固体中分子、原子和电子的振动、转动等运动状态的改变会辐射出频率较高的电磁波,其中具有较强热效应的是波长在间的可见光与部分近红外光的区域,这部分辐射线称为热射线。热射线的传递过程称为热辐射。 3.影响导热系数的因素 1)温度 金属以电子导热为主,电子在运动过程中将受到热运动的原子和各种晶格缺陷的阻挡,从而形成对热量传输的阻力。 一般来说,纯金属的导热系数一般随温度的升高而降低;而今导热系数一般随温度的升高而升高;玻璃体的导热系数则一般随温度的降低而减小。 2)原子结构 物质的电子结构对热传导有较大影响。具有一个价电子的,导电性能良好的、德拜温度较高的单质都具有较高的导热系数。 3)成分和晶体结构 合金中加入杂质元素将提高热阻,使导热系数降低。杂志原子与基体金属的结构差异较大的元素,对基体导热系数的影响也较大。 4)压强,密度,气孔率等 压强,密度,气孔率等因素也会对材料的导热系数产生影响,影响材料导热系数的因素是复杂的。 4.导热系数的测试方法

导热系数的测定讲解

导热系数的测定 导热系数(热导率)是反映材料导热性能的物理量,它不仅是评价材料的重要依据,而且是应用材料时的一个设计参数,在加热器、散热器、传热管道设计、房屋设计等工程实践中都要涉及这个参数。因为材料的热导率不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响热导率的数值,所以在科学实验和工程技术中对材料的热导率常用实验的方法测定。 测量热导率的方法大体上可分为稳态法和动态法两类。本测试仪采用稳态法测量不同材料的导热系数,其设计思路清晰、简捷、实验方法具有典型性和实用性。测量物质的导热系数是热学实验中的一个重要内容。 【实验目的】 1、了解热传导现象的物理过程 2、学习用稳态平板法测量材料的导热系数 3.学习用作图法求冷却速率 4、掌握一种用热电转换方式进行温度测量的方法 【实验仪器】 1、YBF-3导热系数测试仪一台 2、冰点补偿装置一台 3、测试样品(硬铝、硅橡胶、胶木板)一组 4、塞尺一把 【仪器简介】 仪器的面板图 上面板图 下面板图 加热温度的设定:

①.按一下温控器面板上设定键(S ),此时设定值(SV )显示屏一位数码管开始闪烁。 ②. 根据实验所需温度的大小,再按设定键(S )左右移动到所需设定的位置,然后通过加数键(▲)、减数键(▼)来设定好所需的加热温度。 ③.设定好加热温度后,等待8秒钟后返回至正常显示状态。 仪器的连接 连线图 从铜板上引出的热电偶其冷端接至冰点补偿器的信号输入端,经冰点补偿后由冰点补偿器的信号输出端接到导热系数测定仪的信号输入端。 【实验原理】 为了测定材料的导热系数,首先从热导率的定义和它的物理意义入手。热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0 处取一个垂直截面积d S (如图1)以 表示在Z 处的温度梯度,以 表示在该处的传热速率(单位时间内通过截面积d S 的热量),那么传导定律可表示成: (S1-1) 式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。式中比例系数λ即为导热系数,可见热导率的物理意义:在温度梯度为一个单位的情况下,单位时间内垂直通过单位面积截面的热量。 利用(S1-1)式测量材料的导热系数λ,需解决的关键问题两个:一个是 在材料内造成一个温度梯度 ,并确定其数值;另一个是测量材料内由高温 区向低温区的传热速率 。 1、关于温度梯度 为了在样品内造成一个温度的梯度分布,可以把样品加工成平板状,并把它 dt ds dz dT dQ Z ?-=0)(λdz dT dt dQ dz dT dt dQ dz dT

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。 h T T S t Q ) (21-??=??λ 单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: B B h T T R t Q )(212-???=??πλ 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。 这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热

导热系数的测试方法和装置-第四章

第四章 导热系数的测试方法和装置 一、测试方法分类 二、稳态法 1、 待测试样在一个不随时间而变化的温度场里,当达到热平衡后,一次测出导热系数公式中的值,即可得到导热系数。 2、稳态法实施过程中面对的问题 稳态法测量导热系数是面对的两个根本问题 -要得到一个与建立物理模型是所作的假设相符合的热流图像 1、设计一种装置,把热流约束在规定的方向(沿着一维方向流动) 2、设计各种形状式样,以便于数学描述 3、推导相应的数学公式描述便于制备的样品的热流图像 -待测样品的热流速率 1、测定流过试样的热量 2、测定用来加热试样的热量 稳态法 非稳态法 按热流的状态分 设计一种装置,把热流约束在规定的方向,又可把稳态法分为 纵向热流法 横向热流法 按是否直接测定热流量或功率 绝对法 包括平板法,圆柱体法,圆球体法,椭球体法 比较法 包括纵向热流发,径向热流法,比较器法 t F L Q ???==τλ t grad q -

3、同时测定全部或部分的输入热量和热损 4、使热量等同通过待测样和标样 三、非稳态法 试样的温度分布随时间变化,测试时往往是使试样的某一部分温度作突然的或周期性的变化。 测试中的标准样品: -必要性:为缩短研制周期并对测试装置的准确度或误差作必要的验证 -入选标样的要求:在宽广温度范围有良好的物理化学稳定性,易于加工,价格合适 -常用标样: 一种是作为非金属材料即导热系数较小的一类材料的标准样品——多晶32O Al -α 另一种是作为金属材料即导热系数较大的一类材料的标准样品——阿姆可工业纯铁 第三节 平板法 1、平板法是一种试样形状为圆盘形或方板型的纵向热流法,按其是否直接测定热流量或功率,又可分为绝对法和比较法两种。 2、平板法优缺点: 优点:试样容易制备,操作方便;具有相当高的测试准确度和实验温度。 缺点:试样太大,加工困难,径向热损很难减小到最低限度,测试周期长。 因此已被许多国家列为低导热系数材料的标准实验方法。 3、平板内纵向一维热流如何实现 (1)利用试样的低导热系数特点,把试样做的很薄,直径很大。 (2)把试样夹在带有加热器的热板和没有加热器的冷板间,试样冷面和热面的重心区域便有一较好的等温面,等温面之间产生均匀的热流。 4、测定Q 方法很多,直接测主发热器电功率,也可以在试样的冷面用水卡计测定。 5、平板法也可以测纤维或粉末材料的导热系数,试样需要用试样匣,匣盖和匣底均用高热导的金属或碳化硅簿圆片做成。 平板法还可以测导热系数较小的液态物质,注意防止对流传热,控制液体沿热流方向的厚度。 6、导热系数的测试误差随着不同试样和不同温度而变化。一般,热导高的材料,在较低温

导热系数测量实验报告

导热系数测量实验报告 篇一:导热系数实验报告 实验用稳态平板法测定不良导体的导热系数实验报告 一、实验目的. (1)用稳态平板法测定不良导体的导热系数. (2)利用物体的散热速率求传热速率. 二、实验器材. 实验装置、红外灯、调压器、杜瓦瓶、数字式电压表. 三、实验原理. 导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设z方向)进行时,热传导的基本公式可写为 dT dQ=?λ ????????? ---------------------------------------------() 它表示在dt时间内通过dS面积的

热量dQλ为导热系数,它的大小由物体????dT 本身的物理性质决定,单位为W????1????1,它是表征物质导热性能大小的物理量,式中符号表示热量传递向着温度降低的方向进行. 在图中,B为待测物,它的上下表面分别和上下铜、铝盘接触,热量由高温铝盘通过待测物B向低温铜盘传递.若B很薄,则通过B侧面向周围环境的散热量可以忽略不计,视热量只沿着垂直待测板B的方向传递.那么在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在?t时间内,通过面积为S、厚度为L的匀质圆板的热量为??? ?????? ---------------------------------------------()式中,???为匀质圆板两板面的恒定温差,若把()式写成 ?Q=?λ ??????

=?λ?? ---------------------------------------------()的形式,那么???便为待测物的导热速率,只要知道了导热速率,由()式即可求出λ. 实验中,使上铝盘A和下铜盘P分别达到恒定温度??1、??2,并设??1>??2,即热量由上而下传递,通过下铜盘P向周围散热.因为??1和??2不变,所以,通过B的热量就等于C向周围散发的热量,即B的导热速率等于C 的散热速率.因此,只要求出了C在温度??2时的散热速率,就求出了B的导热速率???. 因为P的上表面和B的下表面接触,所以C的散热面积只有下表面面积和侧面积之和,设为????,而实验中冷却曲线是C全部裸露于空气中测出来的,即在P的上下表面和侧面积都散热的情况下记录的.设其全部表面积为??全,根据散热速率与散热面积成正比的关系可得??? ?????? ???

导热系数的测量实验报告

导热系数的测量实验报告 Prepared on 22 November 2020

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。 h T T S t Q ) (21-??=??λ 单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为:

B B h T T R t Q )(212 -???=??πλ 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。 这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。 应该注意的是,这样得出的 t T ??是铜板全部表面暴露于空气中的冷却速率, 其散热面积为 2πRp2+2πRphp (其中 Rp 和 hp 分别是下铜板的半径和厚度),然而, 设样品截面半径为R ,在实验中稳态传热时,铜板的上表面(面积为 πRp2)是被 样品全部(R=Rp )或部分(R

固体导热系数的测定

固体导热系数的测定 实验仪器: YBF-5型导热系数测定仪(含加热盘A、散热盘P、数字电压表、计时秒表等)、测试材料(硅橡胶、胶木板)测温PT100、测试连接线、游标卡尺等。 实验原理: 热传导定律: 通过上部加热盘加热、下部散热盘散热达到稳态在材料内部维持均匀度温度梯度分布; 系统平衡时加热速率=传热速率=散热速率=冷却速率,故通过测量散热盘冷却时温度随时间的变化得到其T-t曲线,则 由此得 ①实验步骤: (1)测量测试材料及散热盘的厚度及直径; (2)在加热盘和散热盘间夹入胶木板; (3)设置加热温度为90度,加热至上下两盘温度稳定,记录此时上下两盘温度T1、T2; (4)迅速将胶木板换成硅橡胶,重复步骤(3); (5)将散热盘加热至较高温度再使其自然冷却,测定其温度随时间的变化。 实验数据:

数据处理: 查阅铜密度ρ=8930kg·m-3,比热容c=0.385kJ·K-1·kg-1。根据铜盘直径及厚度,计算出散热盘质量m=537.6g。 由T-t表绘得T-t曲线如下: 由图得到T2处的斜率: k(胶木板)=-0.0425 K/s k(硅橡胶)=-0.0426 K/s 带入①得 (胶木板)==0.427 W/(m·K) (硅橡胶)==0.279 W/(m·K) 总结与讨论: 思考题: 1.测导热系数要满足:维持材料内部均匀的温度梯度以及测得传热速率。通过上部加

热盘加热、下部散热盘散热达到稳态在材料内部维持均匀度温度梯度分布;系统平衡时加热速率=传热速率=散热速率=冷却速率,故通过测量散热盘冷却时温度随时间的变化得到其T-t曲线,求其在稳态温度处的斜率即为传热速率。 2.因为只有处于稳态温度时冷却速率与传热速率相等;通过在稳态温度附近使铜板自然然冷却绘制T-t曲线,取其在稳态温度处的斜率作为冷却速度。 3.测试材料具有一定侧面积,因而达到稳态时有少量热量从侧面散失,则上下铜盘的温度差略小于材料实际散失的热量,即(T1-T2)偏小,故计算所得导热系数可能偏小。

导热系数测量方法

导热系数测量方法(一) 导热系数测试方法,分为稳态法和瞬态法(又称为非稳态法)两类; 稳态法有:平板法、护板法、热流计法、热箱法等 瞬态法有:热线法、探针法、热盘法、热带法、激光法等 各种导热系数测试方法,有其自身的适用范围。由于物质具有固、液、气三种状态,不同状态时,其导热系数会差异很大;而不同状态时导热系数的测量也会有很大的不同; 相比于固体、液体和气体的导热系数测量更加困难,因为流体状态物质内更容易发生自然对流,温度场会很快发生变化,需要采集的速度相当快(如1秒),以避开自然对流的影响,所以对于仪器的要求会更高。 稳态法是指当待测试样上温度分布达到稳定后,即试样内温度分布是不随时间变化的稳定的温度场时,通过测定流过试样的热量和温度梯度等参数来计算材料的导热系数的方法。它是利用稳定传热过程中,传热速率等于散热速率的平衡条件来测量导热系数。 稳态法具有原理清晰、模型简单、可准确直接地获得热导率绝对值等优点,并适于较宽温区的测量;缺点是实验条件苛刻、测量时间较长、对样品要求较高;为了获得准确的热流,需要严格保证测试系统的绝热条件,附设补偿加热器并增加保温措施,以减小漏热损失;为了保证一维导热,通常对样品的尺寸要求较大,而且为了保证整个受热面温度场的均匀一致,对样品表面的平整度要求较高。 稳态法主要用于测量固体材料,特别是低导热系数材料(如保温材料)的导热系数,而要把它用于研究湿材料,如生物质、土壤等会遇到很大困难,因为试样会由于长时间保证一定的温度场而引起含湿量的变化将导致试样物性的改变,这将导致导热系数的测量结果不正确。而将稳态法用于液体导热系数的测量,更是非常困难,由于流体在温度梯度下产生自然对流,即使在一维热流下也难以做到纯粹的一维导热。 热流计法为相对测量方法,通常需要参比样品,且参比样品的导热系数测量必须由更高精度的方法或仪器获得,且热流计法的测量准确度永远不会高于参考样品的导热系数测量准确度;同时,热流计的应用范围应在参比样品导热系数数值附近区域,否则将引起较大误差; 激光法是获得热扩散系数的方法,如果需要获得导热系数,还需要有其他方法测量得到的密度值和比热值,然后带入公式计算得到导热系数,其导热系数的不确定度与上述三个物理量的测量准确度相关。

导热系数测量方法及仪器

导热系数测量方法及仪器 Jurgen Blumm NETZSCH-Geratebau GmbH,Selb/Bavaria,Germany 编译:曾智强耐驰仪器(上海)有限公司 前言 本文介绍了导热系数测量的基本理论与定义,激光法、热线法、热流法、保护热流法、保护热板法等几类测量方法的原理与应用,以及德国耐驰公司(NETZSCH)的相关仪器。 在某些应用场合,了解材料的导热系数,是测量其热物理性质的关键。例如,耐火材料常被用作炉子的衬套,因为它们既能耐高温,又具有良好的绝热特性,可以减少生产中的能量损耗。航天飞机常使用陶瓷瓦作挡热板。陶瓷瓦能承受航天飞机回到地球大气层时产生的高温,有效防止航天器内部关键部件的损坏。在现代化的燃气涡轮电站,涡轮的叶片上的陶瓷涂层(如稳定氧化锆)能保护金属基材不受腐蚀,降低基材上的热应力。有效的散热器能保护集成电路板与其它电子设备不受高温损坏,散热材料已经成为微电子工业领域关键材料。 在过去的几十年里,已经发展了大量的导热测试方法与系统。然而,没有任何一种方法能够适合于所有的应用领域,反之对于特定的应用场合,并非所有方法都能适用。要得到准确的测量值,必须基于材料的导热系数范围与样品特征,选择正确的测试方法。 基本理论与定义 热量传递的三种基本方式是:对流,辐射与传导。对流是流体与气体的主要传热方式,对固态与多孔材料传热不起重要作用。 对于半透明与透明材料,尤其在高温情况下,必须考虑辐射传热。除了材料的光学性质外,边界状况亦能影响传热。关于辐射传热方式的详细介绍见文献一1。 本文主要讨论的热传导。热量的传导基于材料的导热性能——其传导热量的能力2。厚度为x 的无限延伸平板热传导可用Fourier 方程进行描述(一维热传递): x T · △△λ-=Q Q 代表单位表面积在厚度(△x)上由温度梯度(△T)产生的热流量。两个因子都与导热系数(λ)相关联。 在温度梯度与几何形状固定的情况下,导热系数代表了稳态下需要多少能量才能维持该温度梯度。 在对建筑材料(如砖)与绝热材料进行表征时,经常用到k 因子。k 因子与材料的导热系数和厚度有关。 k =λ/d 这一因子并不能用来鉴别材料,而是决定最终产品厚度的因素。 测量装置 如今测量导热系数方法与仪器有许多种。使用Fourier 方程所描述的稳态条件的仪器主要适用于测量中低导热系数材料。使用动态(瞬时)方法的仪器,如热线法或激光散射法,用于测量中高导热系数材料。 稳态方法 1. 热流法导热仪: 如图1所示,将厚度一定的方形样品(例如长宽各 30cm ,厚10cm )插入于两个平板间,设置一定的温度梯度。使用校正过的热流传感器测量通过样品的热流。测量样品厚度、温度梯度与通过样品的热流便可计算导热系数。 图2示出了一种新型的热流法导热仪(HFM 436系列)。样品的厚度可达到10cm ,长与宽可达30或60cm 。测量温度为-20℃到100℃之间(取决于不同的型号)。这种仪器能测量导热系数在0.005到0.5W/m ·K 之间的材料,通常用于确定玻璃纤维绝热体或绝热板的导热系数与k 因子。该仪器的优点是易于操作,测量结果精确,测量速度快(仅为同类产品的四分之一),但是温度与测量范围有限。

相关文档
最新文档