浅谈天然料砂石加工系统工艺设计的几个问题

浅谈天然料砂石加工系统工艺设计的几个问题
浅谈天然料砂石加工系统工艺设计的几个问题

浅谈天然料砂石加工系统工艺设计的几个问题

郑崇飞

(中国水利水电第七工程局有限公司五分局四川彭山620860 ) 摘要:本文基于大渡河安谷水电站的天然料砂石加工系统工程,对天然料砂石加工系统工程的工艺设计要点进行初步分析,重点阐述了天然料加工系统在需要增加破碎工艺平衡骨料级配时的几个问题,并提出处理的方案,以供参考。

关键词:天然砂石料工艺设计问题

1、概述

水利水电工程项目附属工程天然砂石料加工系统一般在河流的中下游才具备使用条件,其工艺设计与目前大量使用的人工砂石加工系统有其独有的特点:

1、毛料各级配的比例与混凝土各级需要量的总比例一般差别较大,大量的水电工程为取得较好的经济效益需要破碎骨料以调节级配,这就使其砂石加工系统不为纯粹的简单筛分系统,实质是天然砂石骨料加工系统和人工骨料加工系统的结合,工艺设计相对复杂。

2、天然砂料直接冲洗筛分后其质量或数量一般难于满足工程项目的要求,这就导致需要制备人工砂掺入天然砂使用,补充其使用数量的同时调节其细度模数或石粉含量等指标,如大渡河下游天然砂为特细砂,就需要调节细度模数及控制石粉含量,工艺设计时必须充分考虑相应的工艺设计方案。

3、破碎天然卵石骨料和破碎开采块石毛料有其独有的特点,如破碎机加工的效率,破碎段的选择等。

总之,合理设计天然砂石加工系统,通过破碎平衡级配,在满足工程各级骨料的需求比例和总量的同时,控制好砂石骨料的质量,这与直接采用人工骨料加工系统比较将大量节约项目投资,可取得较好的经济和社会效益。

以下结合大渡河安谷水电站天然砂石加工系统,对使用天然料的加工系统工艺设计中常见的也容易出现的问题进行分析,并提供解决或改进的方案,为以后类似工程工艺设计提供参考。

2、安谷水电站天然料砂石系统工艺介绍

安谷水电站砂石加工系统工程主要承担电站厂坝枢纽土建及金属结构安装工程混凝土所需的骨料供应任务。系统设计满足混凝土浇筑高峰期月平均强度约14万m3/月混

凝土浇筑所需的粗、细骨料供应任务,设计加工系统毛料处理能力约1200 t/h,成品料生产能力约880t/h,其中砂生产能力约286t/h。

(1)系统设计工艺流程图见下图:

图1:安谷水电站天然料砂石加工系统工艺流程图

(2)系统主要设备配置表:

表1:安谷水电站天然砂石加工系统主要设备配置表

(3)系统特点:系统处理特大石及超径石的破碎加工采用三段破碎工艺;破碎料加工过程可单独运行:即中碎加工粗碎破碎后的骨料,细碎加工中碎破碎后的骨料,不与天然料混合加工(除多余的大石在细碎段进入细碎车间混合加工为特例);补充人工砂采用干法生产工艺。系统经过高峰期的运行生产检验,设计生产能力等指标达到设计要求,满足安谷水电站主体工程建设混凝土浇筑所需砂石骨料的强度要求。

3、系统工艺设计的几个问题

系统应适应料源级配比例变化

1、天然料级配组成变化影响

河道中开采天然砂石料的级配组成是变化的,不同料场的级配组成不同,相同料场的级配也不同。同一料场在上游一般骨料偏粗,砂料细度模数略偏大,下游骨料偏细,砂料细度模数偏细。在加工过程中是一个随时波动的过程,不可能做到进料的比例相同或相近,往往偏差较大,这就需要加工系统调节级配比例的破碎系统工艺设计有较大的适应性。在超径石级配(>150mm)变化时影响粗碎、中碎和细碎的破碎处理能力,在大石和特大石级配变化时直接影响细碎的破碎处理能力,如系统无法调节处理,将导致系统生产能力降效,无法满足生产能力要求,严重时将导致系统无法运行生产。

天然料加工系统受毛料级配比例变化影响,各处理车间实际处理能力不是一个严格过程,在计算系统处理能力时,除按平均值计算系统的处理能力还应该以毛料在极端值复核计算系统的处理能力(备注:极端值建议采用超径最多的三组平均值和含砂量最大的三组平均值)。以安谷水电站砂石加工系统的处理能力为例,如开采某部位料场超径

石含量比平均值增加10%,以1200t/h处理能力计算,则按同样的进料处理能力,系统需要增加处理约1200t/hX10%=120t/h的超径石,这将极大增加粗碎处理能力,如粗碎车间处理能力不够,只有减小进料总量平衡粗碎车间的处理能力,这将导致系统整体生产能力不够,影响生产;另如开采某部位料场砂料含量增加10%,这将导致天然料的筛分车间、洗砂车间增加处理1200t/hX10%=120t/h的砂料,如洗砂车间处理不够,将导致与超径石增加类似的结果,严重影响生产。安谷水电站砂石系统按毛料平均级配组成比例计算,粗碎车间破碎处理能力约为265t/h,成品砂处理能力约为286t/h,在保持进料生产能力基本不变的情况下某时段检测粗碎车间和成品天然砂车间处理能力见下表:

表2:粗碎车间处理能力

表3:成品砂生产能力

从上表看,如按平均毛料级配组成的比例配置设备,系统生产能力将无法满足生产要求,系统粗碎车间实际配备2台C110颚式破碎机,洗砂车间实际配备4台F15洗砂机,保证足够的生产能力富余是合理的。

2、设置料场调节破碎车间处理能力

由于毛料的级配组成比例变化,实际破碎的骨料处理能力是一个随机变化的过程,如采用三段破碎工艺调节生产骨料,宜在中碎前设置调节料场,如采用两段破碎调节生产骨料,宜在细碎前设置调节料场。以安谷水电站砂石加工系统为例,如超径石级配组成的比例增加10%,则每小时需增加处理约1200t/hX10%=120t/h的骨料,按每天生产14h计算,则每天增加处理的骨料约为1200t,折合为1200t/m3=750 m3,这就需要设置足够大的调节料场,将多余的骨料暂时缓冲存储在料场,在超径石含量百分率比平均值少的时候加工处理,这样可以平衡中碎、细碎的处理能力,保障生产的正常运行。

总之,工艺设计时需要仔细考虑毛料的比例变化,可通过调整设备进料处理能力或

增加调节料场的方法予以解决。

合理选择破碎段

天然料加工系统如采用破碎加工的砂石骨料来平衡成品骨料的级配,一般需要补充的是中石(20mm~40mm)和小石(5mm~20mm),大石(40mm~80mm)、特大石(80mm~150mm)常有富余,这就需要大石、特大石和超径石(>150mm)破碎成中石和小石。系统工艺可采用三段破碎,也可以采用两段破碎。采用三段破碎其实用范围较广,基本不受毛料最大粒径限制,采用二段破碎有其适应性的限制。

1、破碎机的适应性

为生产中石和小石,一般中等以上可碎岩石采用细碎型圆锥破碎机。砂石加工系统常用的各类破碎机排料口开度和出料最大粒径有其规律。

破碎机的排料开度与最大粒径之间的关系:

e=d/Z

e---------为破碎机的排料口开度,mm;

d---------产品的最大粒径,mm;

Z---------产品最大粒径与排料口开度的比值,参见表4:

表4:破碎产品中大于排列口的粒径含量β和Z值的关系

引自《水利水电工程施工组织设计手册》第4卷辅助企业第89-90页。

由上表可见,采用标准圆锥破碎机加工难碎岩石其最大粒径与排料开度的比值时,超排料口含量的比例为53%,加工中等破碎岩石其最大粒径与排料开度的比值为时,超排料口含量的比例为35%,易碎岩石其最大粒径与排料开度的比值为,超排料口的含量的比例为22%。为生产中石(20mm~40mm)和小石(5mm~20mm)及以下粒径骨料,其排料口开度按控制最大粒径40mm估算,当为中等可碎岩石约为40/=21mm,当为难碎岩石约为40/=17mm。实际水电工程细碎圆锥破碎机其常用的排料开度为17mm~25mm,并采用闭路循环破碎。满足该排料开度尺寸范围内正常运行的圆锥破碎机比较合适做为细碎段破

碎设备。

以水电工程砂石加工系统常用的美卓公司和山特维克公司细碎系列设备为例,其设备参数见表5:

表5:细碎设备参数统计表

以上设备排料口开度适合作为细碎设备,从表中可见其进料尺寸大致范围为≤150mm,基本限制加工为特大石及以下的粒径物料。可见如需加工中石和小石,设备排料开度要在合适的尺寸下运行,确定了设备的排料尺寸由设备参数性质,基本就确定了加工料源的最大尺寸。选择破碎机排料开度靠中间值的运行工况良好,调节生产时效果好,如在上限或下限长期运行,设备的维护工作量将增加,设备使用的经济性将降低,一般不选靠近破碎设备排料开度上限或下限尺寸工况下运行。

2、破碎比规律

根据长期统计各类破碎设备的破碎比规律:

i=D/d

D------------进料中的最大粒径,mm;

d-------------产品中的最大粒径,mm。

最大粒径除特殊注明者外,一般按过筛量为95%的筛孔尺寸计算。

常用破碎机的破碎比范围见下表:

表6:常用破碎机的破碎比范围

引自《水利水电工程施工组织设计手册》第4卷辅助企业第89-90页。

由以上常见破碎机的破碎比范围表,标准圆锥破碎机开路生产情况下其破碎比平均值为4,生产中石(20mm~40mm)和小石(5mm~20mm)及以下骨料,进料尺寸最大约为40mmX4=160mm,这与细碎型破碎机的进料最大开度尺寸基本一致。

破碎生产某种尺寸的成品骨料,生产料源即要满足合理的破碎比(根据岩石可碎性选择),也要满足设备的最大进料尺寸才能做到运行生产正常,否破碎机则将无法运行或运行效率低。

从上也可见为生产中石(20mm~40mm)及以下粒径骨料,其进料的料源最大粒径范围约为≤150mm,其实质为特大(80mm~150mm)和大石(40mm~80mm)作为料源。

3、破碎段选择

(1)二段破碎

根据以上破碎设备适应性和破碎比规律,破碎系统如采用二段破碎工艺,粗碎后的成品宜≤150mm才能在二段破碎工艺条件下生产中石和小石,即生产为特大或大石作为破碎生产中石和小石的源料。如粗碎采用颚破开路生产的情况下,为保证出产品粒径尺寸基本小于150mm,假设为难碎岩石其排料口开度宜小于150mm/=86mm,假设为中等可碎岩石其排料口开度宜小于150mm/=100m,其进料的最大粒径假设按破碎比小值计算宜小于150mmx3=450mm;如采用圆锥破碎机生产,假设为难碎岩石其排料口开度宜小于150mm/=62.5m,假设为中等可碎岩石其排料口开度宜小于150mm/=78mm,其进料的最大粒径假设按破碎比小值宜小于150mmx3=450mm。为保证进入二段细碎车间没有超径,往往需要一段粗碎车间采用闭路循环破碎或进一步减小排料口开度。如不采用闭路生产而采用开路生产工艺,采用颚破需要减小排料口开度至60~85mm,采用圆锥破碎机要减小排料口开度至35mm~55mm才能基本保证产品中没有超径。天然料卵石其强度一般较大,较大比例为难碎岩石。

粗碎如采用颚破,其进料范围较大,在采用蓖条筛分弃超径石的情况下进料尺寸能满足设备要求,同时需要排料口开度满足以上分析的排料开度尺寸大小,以美卓公司和山特维克公司的颚破系列产品为例,比较合适的为C80(排料口开度范围40mm~175mm)、JW806HD(排料口开度范围50mm~150mm)、JW906HD(排料口开度范围50mm~150mm),并宜采用闭路生产严格控制成品粒径。采用更大的破碎机就存在长期在其排料口开度偏小值的工况下运行,更换耐磨衬板频繁,运行效率低下,维修工作强度高,并在开路的情况下生产难以控制超径产生,系统将无法正常生产。

如二段破碎工艺的粗碎采用圆锥破碎机,则宜采用棒条筛或预筛分工艺,将超过破碎机最大进料尺寸的毛料剔除,严格控制选定圆锥破碎机的进料的尺寸,否则圆锥破碎机无法生产运行。因蓖条筛不能严格控制超径尺寸,采用蓖条的工艺将导致超径进入圆锥破碎机,系统无法正常生产。

当然在中等可碎岩石的情况下也可以采用反击破的二段破碎工艺,本文不再分析。

(2)三段破碎

三段破碎的粗碎一般采用颚破,中碎可采用圆锥或颚破,细碎一般采用圆锥破。增加了破碎段,其排料口开度和破碎比较容易满足设备和破碎的要求,建议大型天然料砂石系统的破碎部分采用三段破碎比较适宜,安谷水电站砂石加工系统补充破碎料,平衡级配比例即采用三段破碎工艺。

破碎料与天然料独立生产

天然料加工系统增加破碎工艺平衡级配比例,一般需要破碎的是大石、特大石及超径石,需要补充的部分是中石、小石或砂料。破碎系统如分开独立运行,即富余特大石、超径石首先分离出作为粗碎的料源首先加工处理,再粗碎后的破碎料作为中碎的料源,中碎后的破碎料作为细碎的料源,细碎后多余的中小石作为制砂料源逐级加工处理,在。采用破碎系统独立运行的工艺始终都加工破碎料,破碎效果较好,有利取得较好的生产效率和经济效益。

1、天然料颗粒形状多偏圆形,其粒型好,表面光滑,极少有针片不合格的骨料,直接筛分分级后本身就是质量较好的成品骨料。采用独立加工工艺,可做到只破碎富余的骨料补充至不足的砂石骨料中,与混合加工的工艺比较,可减少破碎天然料比例,改善成品骨料的质量。例如安谷水电站毛料中大石、特大石含量有富余,可做到成品中大石特大石全为天然料,这将改善其成品质量;中石和小石不足,天然料的中石、小石筛

分分级后全部作为成品料,只需要补充部分破碎后的中小石,并确天然料中的中小石不作为制砂的料源,而采用破碎料作为制砂的料源,与混合加工工艺比较,这将提高天然中石和小石在总成品中的组成比例,改善针片状质量,有利提高中小石成品的整体质量。

2、采用以上破碎独立的工艺破碎设备的产量将提高。天然毛料中的各级骨料的粒形圆滑,强度一般较高,在破碎机中与衬板之间的摩擦作用力相对破碎料较小,受压力后应力集中区相对较少,更不能做到在破碎腔中层压破碎的效果,直接加工破碎效果相对较差。安谷水电站砂石系统中碎圆锥破碎机S3800料源为经过粗碎破碎料,同河段沙湾电站砂石系统中碎圆锥破碎机S3800料源为天然料,类比其破碎产量差别较大,实测统计比较如下表:

表7:安谷水电站砂石系统S3800处理能力

:沙湾电站砂石系统S3800处理能力

表8

表10:沙湾电站砂石系统S3800颗粒级配组成试验成果表

从上表统计可见,在排料口开度,产品颗粒级配组成差别不大的情况下,其加工处理能力差别较大,在进料为破碎料情况下S3800单台处理能力为h,在进料为天然料单台处理能力为h,考虑试验误差大致相差70t/h,在类似工况下加工处理破碎料显然要比加工处理天然料效果好。

安谷水电站天然砂石系统工艺设计的破碎加工过程,其料源尽可能做到加工破碎后的骨料,如中碎全部加工粗碎后的骨料,细碎全部加工中碎后的骨料和少量富余的天然大石料,制砂全部加工细碎后的骨料。做到尽量减少破碎天然料,天然料尽最大比例出成品,设备加工处理效果良好。

天然砂和人工砂的掺和方案选择

1、根据天然砂质量指标选择合理的人工砂加工工艺

天然料加工系统如果砂料不足,就需要加工人工砂补充至天然砂中使用,天然砂一般质量指标差别较大,不同河流,不同河段的天然砂质量指标差别较大,如小于0.16mm 的粒径组成含量,细度模数的大小等。合理的掺入人工砂,可以改善天然砂的质量指标,如调整细度模数和石粉含量,使掺入后混合砂质量指标合格甚至优良。

根据水工混凝土施工规范规定:“由机械破碎、筛分制成的粒径小于4.75mm的岩石颗粒称机制砂,由机制砂和天然砂混合制成的砂称为混合砂,机制砂、混合砂统称人工砂。”这就要求混合砂按人工砂质量标准检测使用。

引自《水工混凝土施工规范》宣贯辅助材料DT/5144-2001第40页。

为使混合砂质量指标合格,掺入的人工砂质量指标和掺量比例可以通过天然砂的质量指标和比例估算,估算过程如下:

(1)掺入比例计算:

成品天然砂处理能力:a

1

吨/小时(根据毛料级配计算确定)

系统设计需要混合砂总处理能力:a

2

吨/小时(根据系统工艺设计指标确定)

天然砂百分率:X

1=(a

1

/a

2

)×100%;

人工砂百分率:X

2=[(a

2

-a

1

)/a

2

]×100%。

(2)质量指标计算方法:设B1、B2、B3、B4、B5、B6分别为天然砂5mm、2.5mm、1.25mm、0.63mm、0.315mm、0.16mm筛的累积筛余百分率;设C1、C2、C3、C4、C5、C6分别为人工砂5mm、2.5mm、1.25mm、0.63mm、0.315mm、0.16mm筛的累积筛余百分率,

则可以计算如下:

混合砂的石粉含量:Y

1 =(1-B6)×X

1

+(1-C6)×X

2

混合砂的细度模数:

M X= [ ( B2+B3+B4+B5+B6) ×X1+(C2+C3+C4+C5+C6) ×X2 ]-5(B1×X1+C1×X2)

100- (B1×X1+C1×X2)

上计算式中天然砂的累积百分率可以通过勘测文件查询或现场试验检测确定,通过预设定需人工砂的累积百分率C1~C6各值,可以试算出石粉含量和细度模数,直到石粉含量和细度模数指标满足规范要求,再通过预设的C1~C6值可以计算需要加工的人工砂石粉含量和细度模数指标,人工砂工艺设计时选择不同的工艺控制其石粉含量和细度模数指标,使混合砂质量指标合格。

安谷水电站砂石系统的天然砂为细砂,细度模数约为~之间,≤0.16mm的含量11%~18%,通过3:7或2:8的比例掺入立轴制砂机生产的较粗的人工砂,细度模数~,石粉含量18%~22%,掺和后混合砂细度模数~,石粉含量12%~18%,满足产量的同时达到质量要求,如果人工砂再采取弃石粉工艺,质量控制效果更理想。

通过调整人工砂的细度模数和石粉含量来调整混合砂的细度模数和石粉含量质量指标是比较理想的控制质量的方法。采用立轴制砂工艺生产人工砂细度模数可以通过增加3mm筛网工艺调节,石粉含量可以通过风选或脱水筛弃粉工艺调节,采用棒磨机生产人工砂细度模数可以通过增减装棒量调节,石粉含量可以通过脱水筛弃粉工艺调节。总之选择合理的人工砂加工工艺可以较好的控制混合砂的质量。

2、人工砂掺入方式

人工砂掺入方式较多,常用的方式有以下几种:

(1)在砂石加工系统内通过胶带机混合直接掺入:

该种方式工艺流程为天然料筛分脱水后的成品天然砂和制砂机生产的人工砂输送至一条胶带机混合后再输送至混合砂料场,系统不再分开设置人工砂和天然砂料场。采用该种方式需要保证天然砂和人工砂同时生产,否则混合砂质量掺入不均匀,质量难以保证,并确掺量比例较难控制。而砂石系统运行过程难免处理故障,往往需要单线运行。建议不采用该种掺入方式。

(2)成品料场掺入:

砂石系统设置天然砂和人工砂独立的料场,砂石系统运行生产的天然砂成品和人工

砂成品分别输送至各自的料场。在使用时通过合理调整砂料场的气动弧门卸料口大小,调整天然砂和人工砂掺入比例,为比较精确控制掺入比例,在成品砂料场出料胶带机上安装皮带秤随时监控掺入比例。采用该种方式工艺简单,需要增加的设备和料场建设工程量,但可以比较精确控制人工砂和天然砂掺入的比例并可随时调整掺入比例,能做到较好的控制混合砂的质量。建议采用该种掺入方式。

(3)在拌和楼中掺入:

目前水电工程拌和楼或拌和站一般有两个砂仓,两套砂称量输送系统。采用该种方式砂石加工系统仍然单独生产、输送、堆存人工砂和天然砂,再单独输送至拌和楼两个砂仓。在拌和楼生产过程中分别称量后掺入集中料斗。该种方式控制精确,调整掺入比例方便。在拌和系统与砂石系统距离较近的工程建议采用该种掺入方式。

总之在砂石系统生产过程中通过胶带机直接掺入生产混合砂,质量较难控制,混合砂的石粉含量或细度模数波动较大,当系统故障时可能达不到掺入的目的,给混凝土质量控制带来直接的影响。

安谷水电站砂石加工系统距离拌和系统较近,采用第三种方式掺入人工砂,运行效果良好,掺入比例精确,质量控制效果良好。

合理选择干法制砂或湿法制砂

安谷水电站砂石系统补充人工砂的制砂车间采用干法生产工艺,破碎效果良好,筛分后砂料的细粒径部分流失少,成品砂的产量相对湿法生产有所提高,但石粉含量调节不够灵活,在控制空气污染方便方案复杂,运行维护工作量大。

干法制砂生产工艺特点:

(1)采用干法制砂工艺,立轴破碎机的破碎效果比湿法生产要好,料源中含水少,成砂率更高,比湿法生产约可提高产量3%~10%。

(2)干法制砂生产工艺的料源含水要求严格,含水率一般不能超过2%,否则在筛分过程中砂料与筛网粘连堵孔,筛分效率降低,甚至无法筛分;为减小料源中石和小石的含水率,一般要求细碎后就采用干法分级生产中石和小石,如采用冲洗的湿法分级,很难控制中小石的含水率,甚至导致无法采用干法工艺生产人工砂。

(3)干法制砂工艺因没有洗砂机冲洗和脱水筛脱水过程,细颗粒基本没有流失,产品的石粉含量增高,细度模数减小。如需要降低石粉含量或增大细度模数,就需要采取特别的工艺,如风选弃石粉工艺。

(4)采用干法制砂工艺,其破碎过程、筛分过程和胶带机输送过程扬尘很大,会对环境带来严重污染,严重时影响作业环境,需要特别的空气污染环保方案。目前常用的措施有:a、料源中喷雾调整进料含水率和破碎车间全封闭控制破碎过程扬尘;b、筛分车间及附属溜槽、集中斗全封闭,并且安装收尘装置控制筛分过程扬尘;c、出料胶带机及溜槽喷雾,料场喷雾控制胶带机输送过程扬尘。采取以上特别的环境保护措施对场内空气也有一定的污染,如方案不适合控制扬程效果较差,对空气的影响与采取湿法工艺差别较大。

(5)采用干法工艺制砂,因其没有水冲洗的过程,可以节约用水,减少水处理工艺,节约能耗和减小对水体的污染。

总之,天然骨料加工系统如需要掺入人工砂作为补充,采用干法生产,应严格复核掺入后的石粉含量,如超标应该增加如风选弃粉的工艺,其工艺相对复杂,并且需要严格拟定并实施空气污染控制方案,否则将带来严重的空气污染,给周边及场内环境和操作工人健康带来损害。相应采用湿法制砂工艺,可通过脱水筛或回收装置灵活调节石粉含量,目前在水电工程砂石系统使用较多,其工艺成熟。对湿法制砂产生的废水宜采用加药装置、多级沉淀和回收利用等工艺处理,保证排放达标。

总之,合理选择干法或湿法制砂关系混合砂产品质量,关系环境保护,建议在需要补充石粉含量的情况下可采用干法制,需要弃石粉时宜采用湿法制砂,设计过程中优先考虑湿法制砂,因干法制砂的环境保护方案复杂,较难达到理想的效果。

4、小结

天然料加工系统受料源级配组成的影响,为取得较好的经济效益,一般需要破碎加工人工砂石骨料作为补充,其工艺设计相对有其特点:a、毛料级配组成变化需要加工系统要较好的适应性;b、加工的料源一般硬度较大,需要设置合理的破碎加工工艺流程,中细碎宜采用破碎料作为料源;c、生产的砂石骨料成品多为天然料和人工料的混合料,砂料的细度模数和石粉含量控制相对复杂;d、控制好空气污染,水体污染需要合理的工艺设计方案、较高的运行管理水平等。如何合理的设计系统工艺,控制好质量的同时保证产量,做到整体工艺设计经济合理需要一个不断改进的过程。

本文基于安谷水电站天然砂石加工系统,对系统工艺设计的处理能力的适应性,破碎料系统工艺设计的破碎段和破碎方式的选择,制砂工艺方案选择,成品料质量控制等常见的问题进行了初步的探讨,对系统的运行实际情况作出初步经验总结,并结合实际

运行的情况对工艺方案的选择提出了建议或改进方案。为以后的同类、类似工程工艺设计或从事相关工作的同行参考。

本文采用数据是实测平均值或统计值,难免偏差。不妥之处敬请指正。

作者简介:

郑崇飞(1975-)男,四川内江人,工程师,长期从事水电施工技术工作。

砂石骨料生产系统施工方案

砂石骨料生产系统设计说明 1.1 工程概述 砂石骨料生产骨料系统位于挡水坝下游一平台上,紧临混凝土拌和系统进行布置,总占地面积约6000m2。砂石骨料生产系统主要承担供应主体工程混凝土总量约11.1万m3的生产任务,主要生产大石(40~80mm)、中石(20~40mm)、小石(5~20mm)、以及砂(<5mm),其中粗骨料约16.5万t,细骨料约8.4万t。砂石骨料系统布置详见附图1《砂石骨料生产系统平面布置图》 1.2 料源简介 本标段砂石骨料料场为黑串沟人工骨料场,位于大坝左岸耳朵岩沟支沟黑串沟右岸山脊,距坝址约1.6km,距离砂石骨料系统约1.1km,有公路相通,运输较为方便。本标段总开采量为16.88万m3。 1.3 系统工艺流程设计 1.3.1 系统设计规模 本工程砂石系统以承担主体工程全部混凝土总量约11.1万m3所需砂石骨料的加工,系统生产能力应满足本标实际高峰月浇筑强度16500m3/月骨料供应,但根据招标文件要求,砂石系统生产能力满足混凝土浇筑高峰强度2.0万m3/月。按招标文件要求进行系统设计,骨料最大粒径为80mm,最小粒径为0.15mm。 根据初步计算,成品骨料综合级配见表1。 表1 成品骨料综合级配表 ⑴成品砂石料月需要量 高峰月成品砂石料需要量: Qc=20000m3×2.2t/m3=44000t/月

(注:系数2.2为每m3混凝土中的砂石料用量) ⑵高峰月毛料处理能力 按照成品砂石料的生产要求,考虑到整个加工过程中的加工损耗、运输损耗、堆存损耗、洗石损耗、细砂石粉流失等综合因素,高峰月毛料处理能力为:Qmd=Qc/η=4.4×104t/0.85=51765t /月 成品率η={k 3k 4 k 5 k 6 [1+v(k 1 k 2 -1)]}-1={1.03×1.02×1.02[1+0.35(1.25× 1.02-1)]}-1=0.85 ⑶系统设计毛料小时处理量及成品砂石料小时生产能力 高峰强度月,每月工作25天,每天工作8小时,并考虑生产不均匀系数K=1.1,系统设计小时毛料处理量为: Q h =Q md ×K/MN=51765×1.1/(25×8)=285t/h 成品小时生产能力为: Q=Q c ×K/MN=44000×1.1/(25×8)=242t/h 进过以上计算,本系统生产规模毛料小时处理量按300t/h,成品砂石料小时生产能力为250t/h进行设计,完全能满足高峰期月浇筑强度20000m3的骨料供应需求。 1.3.2 工艺流程设计 砂石料加工系统设计产出成品分别为大石(80~40mm)、中石(40~20mm)、小石(20~5mm)、砂(<5mm)4种料,设计主要采用粗碎、中碎和细碎的三段破碎及两段筛分来完成整个生产过程。根据破碎筛分的流程,确定生产工艺流程,工艺流程图详见附图2《砂石骨料生产系统工艺流程图》。 1.3.3 加工流程设备选型 1.3.3.1 选型原则 (1) 生产能力满足招标文件要求,并且要求有一定裕度; (2) 各粒径砂石料的产量能根据需要即时调整; (3) 成品砂石料储量满足混凝土高峰期浇筑5天用量; (4) 工艺性能可靠,节约占地,建设周期短。 3.3.3.2 设备选型 粗碎(第一段破碎):粗碎原料为黑串沟人工骨料料场的开采石料,要求石料粒径控制在600mm以下。根据生产骨料能力,选用1台JC1100型颚式破碎机作为粗碎设

牛角山砂厂爆破设计方案

牛角山砂石厂 台阶开采专项爆破设计方案牛角山砂石厂

牛角山砂石厂 台阶开采专项爆破设计方案 项目负责: 编制: 审核: 业主单位:清镇市牛角山砂石厂 二○一三年十一月

正文目录 前言 (1) 前言 (1) 一、设计依据与执行标准 (2) 二、矿区概况 (3) 三、矿山和输水隧道现状 (6) 四、台阶开采爆破设计 (9) 五、环境保护 (15) 六矿山安全生产 (18) 七、结论和建议 (20) 附图: 1.牛角山砂石厂矿山开采范围与输水隧道平面图 1∶2000 2.牛角山砂石厂矿山开采台阶与输水隧道A—A剖面图 1∶1000 附件: 1、委托书 2、采矿许可证(副本) 3、爆破工程资质证书 4、矿山承诺书

前言 为认真贯彻党中央关于矿山开发“在保护中开发,在开发中保护”、“开采资源、保护环境”的资源政策,切实加强矿产资源开发利用的管理,使矿产资源开发利用能够遵循科学、合理、有效的原则,坚持可持续发展战略,科学合理有效开发利用砂石资源,矿山开采的同时必须保护环境,不得影响、危及和破坏矿山周围风景名胜、国家电力设施、水库、供水管道等重大建构筑物。 清镇市牛角山砂石厂始建于2003年3月(之前为民采挖砂点),为一小型砂石厂,年产规模3万吨,2010年开采规模扩能至5.00万吨/年,矿区面积0.0428平方公里,有效期自2010年2月6日至2014年2月6日。现矿山开采范围的西北方,拐点坐标A、F的平面距离40~150米处(见平面图1),于2001年6月施工建有贵阳西郊水厂输水隧道,隧道走向为北东56°。输水隧道靠近矿山采石场处的底板高程约为1218.5m;输水隧道围岩为白云岩,岩层较稳固,而输水隧道采用钢筋混凝土支护,能抵抗一般地震的地震波。该隧道输送红枫湖至贵阳市两城区的生产生活用水。 矿山采石场最高开采标高为1364m,经多年开采其山头已下降至1330m,采石场开采完毕后最低开采标高为1290m(矿山准采最低标高)。采石场生产砂石需进行凿岩爆破,爆破所产生的地震波是否构成对输水隧道影响、从而导致其隧道壁产生开裂、漏水或使隧道振动垮塌,使之不能供水运行?为此,矿山开采生产爆破时为不影响输水隧道的安全运行,特需对砂石矿山采场台阶开采进行专项爆破设计,制定专项

砂石加工系统施工方案

1. 工程概况 河头上水库位于赫章县白果镇河头上村,所在河流为长江流域乌江水系六冲河上源右支后河支流前河的小支流上。水库工程主要任务是承担赫章县城白果片区3.8万居民生活用水。本工程为水库大坝枢纽工程,水库规模属小(1 )型,坝体为碾压混凝土重力坝,大坝坝高62.5m。 本工程原定砂石料场因地方政策变化、移民征地等问题不能按约定提供招标阶段所规划指定的砂石料场,在此情况下经综合考虑利用左坝肩修建管理房其场平开挖出的有用料进行加工砂石料,用于河头上水库工程施工。 2. 砂石骨料需求情况 根据招投标文件,本工程混凝土总量为12.24万m3,混凝土高峰浇筑强 度约2.6万m3/月,平均强度为2万m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80?40mm中石为40?20mm小石为20?5mm 砂为w 5mm 粗骨料同级别内要求粒径分布均匀,不得断挡,需满足DL/T5151-2014《水 工混凝土砂石骨料试验规程》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据毕节市勘测设计研究院提供的碾压混凝土施工技术要求配合比计算,总计需生产成品砂石骨料18.36万m3。 3. 砂石系统组成情况 3.1系统组成 根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、1条平筛、胶带机(2条)及两台制砂设备。本工程砂石加工系统机械设备情况见下表3-1 o 表3-1 砂石加工系统机械设备情况表

人工砂石料加工系统(定)

第6章砂石料加工系统 6.1工程概况 本标段只承担电源电站厂房及引水系统土建和金属结构与机电设备安装工程的施工。该标段主体及临建工程的混凝土总量约为6.1万m3,浆砌石2.9万m3。其中三级配混凝土1.53万m3、二级配混凝土 3.8万m3、一级配混凝土0.77万m3,砂浆1.16万m3。 根据招标文件要求,用于主体工程和重要部位的混凝土的骨料,采用经监理人批准后可利用的合格洞挖料,如人工砂产量不足可开采其培河口与恩梅开江左岸交汇处的天然砂砾石料场补充。恩梅开江沿江两岸分布有砂料场,调查砂料储量约15万m3,主要是细骨料。试验资料见表6.1-1。 表6.1-1 细骨料筛分试验成果表 6.2 砂石骨料加工工作范围 本工程砂石骨料加工分人工砂石骨料加工及天然砂石骨料加工。根据标书要求我公司要负责人工砂石料加工系统及天然砂骨料系统的全部施工详图设计、所有土建施工及机电设备采购、运输、安装、调试及试运行、人工砂石料采石毛料运输、天然砂骨料料源开采、人工砂石骨料加工系统及天然砂骨料系统的运行管理。 6.3砂石骨料加工工作项目 6.3.1砂石骨料加工主要工程项目包括(但不限于): (1) 原材料采集 本工程人工砂石骨料加工系统不需要另外开挖石料,只是利用合格洞挖料进行毛料运输。天然砂石骨料只是对其培河口与恩梅开江左岸交汇处的天然砂砾石料场进行骨料开采。 (2) 人工机制砂石料加工系统 1) 土建 主要包括:场平、半成品料堆和成品料堆、各车间、办公室、带式输送机基础及廊道、供水管敷设、废水处理厂、排水沟、场内道路等。

2) 设备及部分材料的采购、运输、保管。 3) 安装 主要包括:各车间所有设备、汽车受料仓及廊道内的给料机、带式输送机、配电、电器设备、钢桁架及管道的安装。 4) 调试、试运行 调试车间各种设备、带式输送机、电器设备、管道的试压等;试运行(包括空载试运行和负载试运行)。 5) 砂石系统运行维护 砂石加工系统运行期的砂石料生产。主要工作内容包括:毛料开采运输、砂石加工、给排水、废水处理、成品骨料质量检测、成品骨料计量等所有生产环节。 (3) 天然砂石料加工系统 如人工砂产量不足可开采其培河口与恩梅开江左岸交汇处的天然砂砾石料场补充,只在料场设置筛分系统,采用取砂弃石工艺,在加工厂生产的人工砂按比例进行掺合,使其达到要求的细度模数。 6.3.2砂石骨料加工自行承担和解决的工程施工所需的工程项目和临时工程(但不限于): (1) 施工交通(包括场内道路及砂石加工厂至拌和站道路之间的连接道路); (2) 施工供电(含运行期柴油发电机组变、配电设施采购、安装、运输、维护); (3) 施工及生产运行期间的供排水,含取水建筑物和水池建造,管路和设备的采购、安装,以及施工的运行、维护; (4) 施工照明; (5) 施工通信; (6) 修配厂、钢筋及木材加工厂等; (7) 仓库系统; (8) 临时房屋建筑工程; (9) 施工期环境保护设施。 6.4 本工程特点 6.4.1本工程是由承包人负责整个砂石骨料加工系统的详图设计和建筑安装工程的施工、生产调试到生产运行管理的全过程控制施工。同时包括人工砂石骨料加工系统及天

砂石厂开采设计策划方案

关岭自治县关索镇跃进砂石厂开采方案设计 (设计规模:3.50万立方米/年) 贵州正合矿产咨询服务有限公司二0一0年六月 关岭自治县关索镇跃进砂石厂开采方案设计 (设计规模:3.50万立方米/年)

设计: 审查: 项目负责: 贵州正合矿产咨询服务有限公司 二0一0年六月

目录 1 概述 (1) 1.1矿山位置、企业性质和隶属关系 (1) 1.2矿区范围、矿产资源赋存、工程地质等情况 (1) 1.3矿山现状、特点及存在要紧问题及建议 (2) 2 编制依据 (8) 2.1编制依据的文件(批准书、托付书、协议等) (8) 2.2编制依据的地质资料及有关矿山安全的基础资料 (8) 2.3编制依据的法规、规程、标准及技术规范 (8) 3 开采方案 (11) 3.1确定开采境地、保有储量、开采规模和服务年限 (11) 3.2开拓方案 (15) 3.3开采顺序和推进方式 (16) 3.4分层要素 (17) 3.5开采工艺、运输方式及爆破方案 (18) 3.6采场最终边坡要素 (19) 4 要紧设备选型、设施设计及布置 (21)

4.1矿山要紧设备选型 (21) 4.2要紧设施设计及布置 (22) 5 危害安全生产因素分析 (25) 5.1自然危害因素分析 (25) 5.2生产过程中危害因素分析 (26) 6 安全技术措施 (33) 6.1保障露天矿边坡稳定及防止坍塌的措施 (33) 6.2防止高处坠落的措施 (36) 6.3爆破安全措施 (37) 6.4爆破器材存储、加工安全措施 (42) 6.5运输和机械设备防护装置及安全运行保障措施 (43) 6.6供电系统及电器设备安全运行、防雷电措施 (51) 6.7矿山供水及排水措施 (56) 6.8矿山通讯设施 (57) 6.9空压机安全措施 (57) 6.10矿山防火措施 (59) 6.11岩溶塌陷防治措施 (59) 6.12预防其他危害的措施 (60)

砂石骨料加工系统建设方案(参考模板)

1.工程概况 木瓜溪水库位于石阡县中坝镇上游石阡河上,坝址距中坝镇3km,距石阡县13km。木瓜溪水库工程由挡水建筑物、泄水建筑物、放空建筑物、供水灌溉系统、引水发电系统及厂房建筑物等构成。坝型为常态混凝土双曲拱坝,挡水建筑物分为左右岸非溢流坝段,河床为溢流坝段,大坝坝顶高程为545.00m,最大坝高53米,底宽13.5m,顶宽5m,坝顶弧长度124.16m。坝身设一个溢流表孔(12m×7m,宽×高),堰顶高程533.0m,设置一道工作闸门,2个泄洪兼放空底孔(5m×4m,宽×高),底板高程513.00m,对称布置在表孔两侧,下游采用挑流消能。大坝下游接混凝土护坦,护坦底板厚度为2m,护坦边墙为贴坡混凝土结构,边墙底部与护坦相接,顶部厚度为1m,护坦边墙高度为16m。 厂区布置在大坝下游左岸,距坝下游150m,为地面厂房结构,装机容量为2400KW。 2.砂石骨料需求情况 根据招投标文件,本工程混凝土总量为61275m3,混凝土高峰浇筑强度约7832m3/月,平均强度为6104m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80~40mm,中石为40~20mm,小石为20~5mm,砂为≤5mm,粗骨料同级别内要求粒径分布均匀,不得断挡,需满足《水工混凝土施工规范》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据我公司实验室提供的推荐理论配合比计算,总计需生产成品砂石骨料13.75万t,各种砂石骨料需求强度为:砂102 m3/天、小石82m3/天、中石101m3/天、大石56m3/天。 3.砂石系统组成情况 3.1系统组成 根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、2条平筛、水池、胶带机(2条)及成品料场和场内排水沟、污水沉淀池等。砂石系统主要设备基础结构见附件一:《砂石系统平面布置

砂石加工系统

砂石料生产系统 混凝土90%由砂石料组成,每立方米混凝土需1.5m3砂石骨料,约合2.2t/ m3。砂石料生产系统是混凝土大坝的粮仓,是工程的命脉。因此,砂石生产系统的。规模也十分庞大,对工程建设的影响重大,应高度重视。 1砂石料源的选择 1.1砂石料的分类:天然砂石料、人工砂石料。 砂石料的综合成本:除计入开采、加工运输等成本外,还应包括料场及加工系统建设的土建和设备的一次性投资,以及采用不同类型骨料配制混凝土时其它成分材料差额的费用等。 有些工程招标时明确,综合成本还包括剥离层、边坡支护、场地排水、环境保护的费用。 1.2水工混凝土骨料的质量技术要求:详见《规范》 品质要求:骨料的级配、容重、比重、热学性能、物理力学指标(湿抗压强 度)。 有害成分:云母(<2%)、碱骨料、有机物、黏土、硫化物等应控制在一定范围。 1.3砂石料源的选择: 1.3.1.1最佳料源选择方案取决于料场的布局、开采条件、可利用料的贮量,质量级配、 加工条件、弃料量、运输方式、运输方式、运输距离及生产成本的因素,并结 合工程实际进行综合技术经济论证。 1.3.1.2料源分类:天然砂石料场:陆上料场、河滩料场、河床水下料场。 人工料场:采石厂。 工程开挖利用料:导流隧道、坝肩坝基开挖等弃渣。 1.4砂石料的开采: 1.4.1砂石料开采量:砂石料需要量应按各级配混凝土需要量按比例分别计算。初估时, 可以按每立方米约需1.5m3砂石净骨料,其中,粗骨料1.067 m3 (1.5t), 细骨料 0.433 m3(0.7t)。折合成开采量时需计入开采、加工、运输、储存等的损耗系数。系 数可参阅有关资料。 1.4.2人工料场的开采:一般用钻爆法松动岩体,控制开采石块的粒径,用鄂式破、反击 破、移动式破碎站破碎,对超大块石用二次爆破或液压破碎锤处理。 2砂石加工厂 水电工程要求砂石加工厂,“现代化、高标准、绿色环保、智能节能”。加工厂由粗碎、中细碎、筛洗、制砂等车间单元组成,三个生产环节,即毛料生产、半成品料生产、成品料生产。 粗碎车间:最大进料粒径可达1000mm以上,将石料破碎到300~ 70mm,采用反击破、鄂破、旋回破筛分一体化布置,使粗碎 大大优化。 中细碎车间:将石料破碎到70~20mm~1mm,采用闭路生产工艺,可以 按需生产,新式反击式破碎机大破碎比,高效能。圆锥破碎 机(单缸和多缸),粒形好,产量高。应用于三峡、江垭等。 2.1人工砂石料工艺筛分工艺:新型筛分设备,超宽筛、高强钢网筛、球击筛面筛等筛分 效效率高、噪声低、不塞孔。高效脱水筛。 棒磨机制砂:产品稳定,粒径、细度模数良好,缺点, 产量低,耗钢量大。 制砂车间:破碎机制砂:旋盘式圆锥破碎机、冲击式破碎机制砂。

砂石销售有限责任公司石灰石矿开采方案设计说明

砂石销售有限责任公司石灰石矿开采方案设计

目录 1 概述 (1) 1.1矿区位置、隶属关系和企业性质 (1) 1.2矿区地形地貌、气候、经济概况 (1) 1.3矿区开采围、矿产资源赋存及开采技术条件 (3) 1.4矿山现状、特点及存在的主要问题 (8) 1.5矿区周边环境描述 (10) 2 编制依据 (11) 2.1文件依据 (11) 2.2地质及其他资料依据 (11) 2.3法规、法规及规性文件、规程标准及技术规 (11) 3 矿山开采方案 (17) 3.1矿山开采情况 (17) 3.2开采方式 (17) 3.3采场最终边帮要素 (38) 3.4矿石加工 (39) 3.5排土场 (42) 3.6附属设施 (42) 4 主要设备设施及工业场地布置 (57) 4.1矿山主要设备 (57) 4.2工业场地布置 (57)

5 安全生产危害因素分析 (59) 5.1自然危害因素分析 (59) 5.2生产过程中的危害因素分析 (60) 5.3安全管理方面的危害因素分析 (71) 5.4项目前期开展的安全生产方面科研情况 (71) 6 安全对策措施 (72) 6.1自然危害安全对策措施 (72) 6.2矿山生产经营场所安全管理对策措施 (73) 6.3生产过程安全对策措施 (74) 6.4安全管理措施事故应急救援预案 (96) 7 安全设施 (101) 7.1露天采场安全设施 (101) 7.2采场防排水系统安全设施 (102) 7.3汽车运输系统安全设施 (102) 7.4皮带运输安全设施 (102) 7.5破碎系统安全设施 (102) 7.6供配电安全设施 (103) 7.7工业场地安全设施 (104) 7.8排土场安全设施 (104) 7.9建(构)筑物防火安全设施 (104) 7.10通信系统安全设施 (105) 7.11个人安全防护 (105)

砂石料加工系统施工组织措施

砂石料加工系统施工措施 一、概述 1.1 工程概况 引水式开发方式。坝型为埋石混凝土重力坝,最大坝高9.0m,正常蓄水位1697.0m,正常蓄水位以下库容24×104m3,电站总装机容量为21MW(2×10.5MW),额定水头140.0m,单机额定引用流量8.85 m3/s,总引用流量17.7m3/s。 1.2 设计依据 1、本工程招标文件技术条款中明确的技术标准和规范 2、《水利水电工程砂石料加工系统设计导则》 二、施工布置 2.1 施工场地布设 砂石料加工系统承担混凝土总量约4.88万m3,喷混凝土0.88万m3,需加工骨料7.32万m3,约11.72万t,其中加工砂5.23万T,碎石6.41万T。 根据渣场分布、料场布置位置及工作面分布情况,通过对开挖可利用料、骨料及混凝土运距分析和综合比较,共布置3个砂石加工系统,分别布置在3号渣场、4号渣场及7号渣场内,各占地面积1680m2。砂石料加工系统具体布置图详见图1;砂石料加工系统工艺流程见图2; 2.2 施工道路 乡村公路与自建施工道路,能够满足毛料和成品骨料的运输要求。 2.3 施工用水布置 根据场内用水规划,1、2号砂石料加工系统用水从五郎河抽水; 3号砂石料加工系统用水从团结大沟取水;详见表2。 砂石料加工系统用水布置表 表2

2.4 施工用电布置 施工用电主要为破碎、筛分系统生产用电及夜间施工照明用电。1号砂石料加工系统用电直接利用3号渣场内布置的一台S9-200/10变压器进行输电;2号砂石料加工系统用电直接利用4号渣场内布置的一台S9-200/10变压器进行输电;3号砂石料加工系统用电直接利用5号支洞口布置的一台S9-500/10变压器进行输电; 2.5 料场分布 根据施工招标文件及相关资料,洞挖可利用料约3.9万m3。 三、砂石骨料强度分析及设备选型 3.1 砂石骨料强度分析 根据投标文件及混凝土施工进度要求,混凝土高峰月浇筑强度5900m3/月,约需骨料为5900×2=11800t,每月按25天有效工作日,每天两班制生产,每班按10小时计算,砂石料筛分系统必须达到生产强度:11800÷25÷2÷10≈23.60t/h。设备有效利用率按85%考虑,砂石料筛分系统设计处理能力为30t/h ×0.85=25.5t/h>23.60t/h。各系统主要技术经济指标见下表7。 砂石料加工站主要技术经济指标表 表7

砂石骨料加工系统设计方案

善泥坡水电站场内交通工程 砂石料加工系统初步设计说明书 批准: 校核: 编写: 中国水利水电第九工程局有限公司善泥坡水电站项目部 二00九年九月十日

目录 设计背景 (4) 第一部分系统设计 (4) 1. 工艺流程设计 (4) 1.1 设计依据 (4) 1.2 设计原则 (4) 1.3 料源规划 (5) 1.4生产规模 (6) 1.5流程设计 (7) 1.6关键加工工艺 (8) 1.7 设备选型 (9) 1.8 料仓及成品供料 (12) 1.9 系统特点 (13) 2. 施工布置 (14) 2.1 布置原则 (14) 2.2 系统组成 (14) 2.3 车间布置 (14) 2.4供排水系统 (16) 2.5供配电系统 (16) 2.6 临时设施 (16) 2.7 主要土建工程量 (17) 3 电气系统设计的基本原则 (17) 3.1设备选型 (18) 3.2功率因素补偿 (18) 3.3系统照明 (18) 3.4计量设计 (18) 3.5消防 (18) 4 供排水系统设计 (18) 4.1概述 (18) 4.2供水方案 (19)

4.3水回收方式 (19) 4.4排水系统 (19) 4.5用水标准及用水量计算 (19) 4.6供水系统结构设计 (20) 4.7 管路布置 (21) 4.8 主要设备与工程量表 (21) 5钢结构设计 (25) 5.1 设计原则 (25) 5.2钢结构设计项目 (25) 5.3 钢结构设计 (25) 5.4钢结构主要工程量表 (27) 6钢筋混凝土结构设计 (27) 6.1 设计原则 (27) 6.2 钢筋混凝土结构设计项目 (28) 6.3 钢筋混凝土结构设计 (28) 6.4钢筋混凝土主要工程量 (30) 第二部分运行管理 (31) 7. 砂石料生产 (31) 7.1 概述 (31) 7.2 资源配置 (31) 8. 砂石骨料生产质量保证措施 (33) 8.1 建立健全质量管理保证体系和质量管理制度 (33) 8.2 砂石骨料工艺性试验 (33) 8.3加强砂石骨料生产质量的控制 (34) 8.4 认真做好成品砂石骨料的储存防护工作 (34) 9.安全文明生产与环境保护 (35) 9.1 安全文明生产 (35) 9.2环境保护 (36)

砂石骨料项目可行性计划

砂石骨料项目 可行性计划 规划设计/投资分析/产业运营

砂石骨料项目可行性计划 近些年,我国相继出台了促进砂石骨料产业发展的相关文件和法规。如:《关于促进建材工业稳增长调结构增效益的指导意见》、《绿色建材 生产与应用行动方案》、《关于办理非法采矿、破坏性采矿刑事案件适用 法律若干问题的解释》、《关于加强生态修复城市修补工作的指导意见》、《关于全面推行河长制的意见》等。这些政策和文件的相继出台,为砂石 骨料产业的健康发展提供了强有力的支撑。 该砂石骨料项目计划总投资16191.87万元,其中:固定资产投资12010.50万元,占项目总投资的74.18%;流动资金4181.37万元,占项目 总投资的25.82%。 达产年营业收入41488.00万元,总成本费用32912.45万元,税金及 附加311.06万元,利润总额8575.55万元,利税总额10069.44万元,税 后净利润6431.66万元,达产年纳税总额3637.78万元;达产年投资利润 率52.96%,投资利税率62.19%,投资回报率39.72%,全部投资回收期 4.02年,提供就业职位864个。 本文件内容所承托的权益全部为项目承办单位所有,本文件仅提供给 项目承办单位并按项目承办单位的意愿提供给有关审查机构为投资项目的 审批和建设而使用,持有人对文件中的技术信息、商务信息等应做出保密

性承诺,未经项目承办单位书面允诺和许可,不得复制、披露或提供给第三方,对发现非合法持有本文件者,项目承办单位有权保留追偿的权利。 ......

砂石骨料项目可行性计划目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

砂石加工系统方案

1.1砂石加工系统 1.1.1概述 本工程总混凝土量为33.6万m3,共需成品砂石料47.1万m3,其中中骨料(40~80mm)8.3万m3,小骨料(20~40mm)12.5万m3,细骨料(5~20mm)12.5,砂13.8万m3。大坝填筑需要填层料,小区料及反滤料共计28.1万m3,其中填层料25.9万m3,小区料0.76万m3,反滤料1.47万m3。 由于本工程附近没有天然石料场,本工程所需的成品砂石料全部采用人工轧制,轧制所需原料在尖尖山石料场开采。 1.1.2系统设计依据 根据施工进度安排,混凝土浇筑的最大强度为2.0万m3/月,填筑料、小区料及反滤料填筑的最大强度为 2.2m3/月。考虑到加工损耗,加工系统生产能力的富余度,系统按二班制即每天工作14小时计算,系统的混凝土骨料生产能力按180t/h考虑,垫层料生产能力按90t/h考虑。 1.1.3砂石料开挖 粗碎车间要求开挖的砂石料最大粒径控制在50cm之内,因此,按过渡料开挖的方法爆取,采用深孔梯段毫秒微差爆破,梯段高度为15m。钻孔机具选用1台液压露天钻ROC742钻机,能满足2000m3/d的开挖强,具体开挖要求参见第10章的有关内容。 1.1.4破碎工艺 为保证工程在不同施工时期对骨料的不同需求,生产工艺考虑具有较强的调节骨料生产与耗用平衡,在保证产品质量及工程用耗量的前提下,加工设备选用国内领先且具有成熟使用经验的国产设备,以降低建厂投入,本系统将设置粗碎车间、中碎车间、细碎车间、一级筛分车间、二级筛分车间、细骨料分级、成品料堆存、运输等设施。 一、粗碎车间

粗碎车间与受料斗结合布置,车间设置二个容量各为15 m3的喂料斗及二台PE600×900鄂式破碎机、二台1000×700槽式振动给料机。原料由自卸车直接卸入料斗,由槽式振动给料机喂入粗碎设备PE600×900鄂式破碎机,加工成混合料落入皮带机送至调节料堆。 粗碎车间所能接受的原料最大粒度≤500mm,>500mm的蛮石将被二次解小再利用。 二、中碎及一次筛分 堆存于调节料堆的混合料由底部的二台槽式给料机卸料,由皮带机送往一级筛分车间,一级筛分设1台3KY1836型振动筛,对混合料进行筛分,将需破碎的物料由皮带机送往中碎车间破碎,中碎车间安装一台φ1600×1400反击式破碎机,通过改变该机的排料口宽度可有效地调整排料级配,一级筛分车间同时分出中石、小石成品料,由相应的皮带机送往成品料堆,<20mm的混合料由皮带机送往二级筛分车间继续筛分,>80mm的混合料由皮带机送往中碎车间破碎。 三、二级筛分及细碎车间 细碎车间安装1台PL—1000立轴式破碎机,对多余部分的细石进行进一步的破碎,该破碎机出料粒度小于5mm的占大部分,但是砂子细度模数粗,属粗砂范围,需要用检查筛将2-5mm的粒径通过闭合回路反送到PL-1000立轴式破碎机进行破碎,加工成小于2mm的粒径来调整成品砂细度模数。 二级筛分车间安装一台2YIC1836振动筛,一台FG1500螺旋分级机,用振动筛分离出5-20mm,2-5mm及<2mm的成品料,2-5mm由皮带机送到PL-1000立轴式破碎机进行再破碎,<2mm的砂通过螺旋分级机脱水后由皮带机送到成品料堆。用作垫层料的砂不经螺旋分级机直接由皮带机送到成品料堆。 5-20mm骨料在堆存的同时将多余的料通过皮带机送到PL-1000立轴式破碎机进行制砂。

(完整版)砂石料开采与加工方案

编号:NN5-ZSSJ-022 引水发电系统的土建和相关金结工程 砂石料开采与加工方案 中国水电建设集团十五工程局有限公司 2009年12月20日

老挝南俄5水电站BOT项目施工技术方案 文件名称砂石料开采与加工方案 编写朱书成 审核李成强 审查李彦成 版次 1 修改次0 编写日期2009年12月17日报审日期2009年12月20日 目录 一、工程简况 (2) 二、砂石料开采方案 (2) 三、采运设备选择、开采强度分析及骨料加工生产规模 (4) 四、砂石料场规划 (7) 五、砂石料场建设及生产计划安排 (9)

南俄5水电站引水发电系统 砂石料开采与加工方案 一、工程简况 南俄5水电站引水发电系统工程主要包括进水口、引水洞、调压井、压力管道、发电厂房和尾水洞工程,目前各工程均处于开挖和支护阶段(其中进水口开挖还剩4m至设计高程;隧洞(包括尾水洞)开挖及支护完成45%;调压井上室开挖支护完成,井筒反井钻导孔完成),除已完成部分开挖支护工程外,上述工程剩余砼111581m3,浆砌石工程7520m3(详见表1),需要砂石料约17.3万m3(其中砂子89844m3,碎石83838m3,具体见《砂石料采购计划》承包[2009]报告048号文件),块石9200 m3。 根据我部上报的《关于再次报送牛棚河滩天然砂砾料品质检测结果及相关补充资料的报告》(编号:承包[2009]报告113号)文件及贵部对该文件的批复,我部也进行了相应的现场探坑取样,经计算,该料场储量满足工程需要。按施工总体安排,我部已于2009年11月29日开始砂石料加工设备基础砼浇筑,12月4日砂石料加工设备进场。 表1 砼及浆砌石工程量统计表 工程项目砼(含喷砼)(m3)浆砌石(m3)备注 进水口16000 380 施工支洞、交通洞10071 主要是封堵砼引水洞42160 压力管道(含支洞)15942 调压井4103 2590 厂房(含进厂道路)15705 2900 升压站400 1650 尾水洞7200 合计111581 7520 二、砂石料开采方案 料场开采按照先主河道后河漫滩顺序分区,依次从下游向上游、从右至左次序依次开采,开采深度为3m。开采前先将河水改道,并对表层杂物及覆盖层进行清理。料场布置详见《牛棚砂石料场平面布置示意图》,砂石料场开采特性详见表2。

砂石骨料加工系统

4.5 砂石料加工系统 4.5.1 砂石料需用量 本工程砼总量为115.30 万m3,其中左岸72.35 万m3,需成品砂石料108.53 万 m3,考虑损耗约需砂石毛料 135.10 万 m3;右岸混凝土总量 42.95 万m3(含临时工程),需成品砂石料 64.43 万 m3,约需砂石毛料 80.20 万 m3,其他零星工程需要成品砂石料 9.07 万 m3,合计需要砂石成品料 182.03 万 m3,约需要砂石毛料215.30 万 m3骨料所需级配见下表: 4.5.2 系统规模 根据本工程施工总进度安排,本工程右岸混凝土高峰月浇筑强度 3.52 万 m3,考虑混凝土浇筑月不均匀系数 1.5,砂石系统按混凝土高峰月浇筑强度为 5.28 万 m3设计,砂石料生产每立方混凝土需用砂石骨料 2.3t,按每月 25 天、每天二班、每班工作 6 小时工作制进行加工。则砂石生产系统毛料处理能力为405t/h。 左岸混凝土高峰月浇筑强度 3.72 万 m3,考虑混凝土浇筑月不均匀系数 1.5,砂石系统按混凝土月最高浇筑强度为 5.58 万 m3设计,砂石料生产每立方砼需用砂石骨料 2.3t,按每月 25 天、每天二班、每班工作 6 小时工作制进行加工。则砂石生产系统毛料处理能力为 430t/h。 综上左、右岸砂石加工系统均按系统毛料处理能力为 430t/h。 4.5.3 工艺流程设计 砂石料加工系统设计产出成品分别为大石(80~40mm)、中石(40~20mm)、小石(20~5mm)、砂(<5mm)4种料,设计主要采用粗碎、中碎、细碎三段破碎和制砂及三段筛分来完成整个生产过程。根据破碎筛分的流程计算,确定工艺流程如图:《砂石骨料加工系统工艺流程图》所示。

砂石料开采与加工方案

Num ngum5水电站砂石料开采与加工方案编号:NN5-ZSSJ-022 引水发电系统的土建和相关金结工程 砂石料开采与加工方案 中国水电建设集团十五工程局有限公司 2009年12月20日

. 老挝南俄5水电站BOT项目施工技术方案 目录 一、工程简况 (2) 二、砂石料开采方案 (2) 三、采运设备选择、开采强度分析及骨料加工生产规模 (4) 四、砂石料场规划 (7) 五、砂石料场建设及生产计划安排 (9)

南俄5水电站引水发电系统 砂石料开采与加工方案 一、工程简况 南俄5水电站引水发电系统工程主要包括进水口、引水洞、调压井、压力管道、发电厂房和尾水洞工程,目前各工程均处于开挖和支护阶段(其中进水口开挖还剩4m至设计高程;隧洞(包括尾水洞)开挖及支护完成45%;调压井上室开挖支护完成,井筒反井钻导孔完成),除已完成部分开挖支护工程外,上述工程剩余砼111581m3,浆砌石工程7520m3(详见表1),需要砂石料约17.3万m3(其中砂子89844m3,碎石83838m3,具体见《砂石料采购计划》承包[2009]报告048号文件),块石9200 m3。 根据我部上报的《关于再次报送牛棚河滩天然砂砾料品质检测结果及相关补充资料的报告》(编号:承包[2009]报告113号)文件及贵部对该文件的批复,我部也进行了相应的现场探坑取样,经计算,该料场储量满足工程需要。按施工总体安排,我部已于2009年11月29日开始砂石料加工设备基础砼浇筑,12月4日砂石料加工设备进场。 表1 砼及浆砌石工程量统计表 二、砂石料开采方案 料场开采按照先主河道后河漫滩顺序分区,依次从下游向上游、从右至左次序依次开采,开采深度为3m。开采前先将河水改道,并对表层杂物及覆盖层进行清理。料场布置详见《牛棚砂石料场平面布置示意图》,砂石料场开采特性详见表2。

砂石加工系统施工方案

1.工程概况河头上水库位于赫章县白果镇河头上村,所在河流为长江流域乌江水系六冲河上源右支后河支流前河的小支流上。水库工程主要任务是承担赫章县城白果片区3.8万居民生活用水。本工程为水库大坝枢纽工程,水库规模属小(1)型,坝体为碾压混凝土重力坝,大坝坝高6 2.5m。 本工程原定砂石料场因地方政策变化、移民征地等问题不能按约定提供招标阶段所规划指定的砂石料场,在此情况下经综合考虑利用左坝肩修建管理房其场平开挖出的有用料进行加工砂石料,用于河头上水库工程施工。 2.砂石骨料需求情况 根据招投标文件,本工程混凝土总量为12.24万m3,混凝土高峰浇筑强度约2.6万m3/月,平均强度为2万m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80~40mm,中石为40~20mm,小石为20~5mm,砂为≤5mm,粗骨料同级别内要求粒径分布均匀,不得断挡,需满足DL/T5151-2014《水工混凝土砂石骨料试验规程》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据毕节市勘测设计研究院提供的碾压混凝土施工技术要求配合比计算,总计需生产成品砂石骨料18.36万m3。 3.砂石系统组成情况 3.1系统组成 根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、1条平筛、胶带机(2条)及两台制砂设备。本工程砂石加工系统机械设备情况见下表3-1。 3.2 系统生产工艺流程说明

由于砂石加工系统布置在左岸1#渣场,距离料场350m,毛料运输采用15t自卸汽车倒运至进料口,再用装载机端运至进料口。在进料口上方安装一个喂料斗,经喂料斗进行箱式破碎机破碎生产。为保证生产骨料含泥量不超标,对所采毛料进行分选或冲洗。 3.3 系统规模 系统设计规模以满足混凝土高峰时段的月平均浇筑强度的生产为设计依据。由此系统设计处理规模为:粗碎40t/h、筛洗35t/h、制砂25t/h。各车间处理能力见表3-2。 根据现场实际情况,由于细骨料石粉含量不足,增设两台制砂机。所增设型制砂机摆放在锤式制砂机输送皮带出口处,进行二次加工。VSI5X76153.4 系统参数系统各部分用电总功率约为500千瓦。本工程砂石加工设备及系统各项技术参数分别见表3-3、3-4、3-5、3-6、3-7。

砂石料场开采专项方案

一、工程简况 二、料场复查 在工程开工后,根据规范要求对料场进行全面复查,并根据施工实际情况进一步调整各料源开采量,及时上报监理人审批。 三、石料场复查 1、复查内容 石料场在开采前,首先进行石料场复查,复查根据本工程所需各种石料的使用要求,对本合同指定的石料场进行复勘核查,其复查内容包括: (1)各类填筑料的数量和开采范围; (2)料场的剥离层厚度、有效开采层厚度和软弱夹层分布情况; (3)根据设计文件要求,对各种材料进行物理力学性能(如比重、容重、含水量、压缩系数、渗透系数、抗剪强度等)取样试验; (4)料场的开采、加工、储存和装运条件; (5)料场的工程地质和水文地质条件。 在料场复查完成后,及时将复查结果和报告提交监理人审核。 2、复查目的 (1)通过进行料场原始断面的测量,为复核料场总储量提供开采依据; (2)进一步探明料场地质及分布情况,为规划不同品质料的开采分区、优化开采爆破参数、布置规划料源平衡及对开采、装运设备等的资源配置提供依据; (3)对所需各品种的开采料和不同高程段的岩石进行物理力学性能的取样复核试验,进一步确定岩石界面,复核分布情况,指导施工; 3、复查方法料场复查采用地质钻机进行钻孔,取岩芯的方式进行复。地质钻孔孔径90mm,孔深30~40米,孔位按100m×100m 的方格网控制,对重点部位,可加密地质钻孔进行勘查。 通过料场复查,确定石料场开采范围、储量、开采深度等参数,并在开采时适时调整开采爆破参数,力求在开采石料满足上坝填筑要求的前提下,工程造价最低。 四、土料场复查 1、复查工作内容土料场在开采前,首先进行料场复查,其复查内容包括: (1)坝体填筑采用的防渗土料的开采范围和数量;

砂石加工系统施工方案

1.工程概况 河头上水库位于赫章县白果镇河头上村,所在河流为长江流域乌江水系六冲河上源右支后河支流前河的小支流上。水库工程主要任务是承担赫章县城白果片区3.8万居民生活用水。本工程为水库大坝枢纽工程,水库规模属小(1)型,坝体为碾压混凝土重力坝,大坝坝高62.5m。 本工程原定砂石料场因地方政策变化、移民征地等问题不能按约定提供招标阶段所规划指定的砂石料场,在此情况下经综合考虑利用左坝肩修建管理房其场平开挖出的有用料进行加工砂石料,用于河头上水库工程施工。 2.砂石骨料需求情况 根据招投标文件,本工程混凝土总量为12.24万m3,混凝土高峰浇筑强度约2.6万m3/月,平均强度为2万m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80~40mm,中石为40~20mm,小石为20~5mm,砂为≤5mm,粗骨料同级别内要求粒径分布均匀,不得断挡,需满足DL/T5151-2014《水工混凝土砂石骨料试验规程》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据毕节市勘测设计研究院提供的碾压混凝土施工技术要求配合比计算,总计需生产成品砂石骨料18.36万m3。 3.砂石系统组成情况

3.1系统组成 根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、1条平筛、胶带机(2条)及两台制砂设备。本工程砂石加工系统机械设备情况见下表3-1。 表3-1 砂石加工系统机械设备情况表

人工砂石料加工系统

人工砂石料加工系统 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第6章砂石料加工系统 工程概况 本标段只承担电源电站厂房及引水系统土建和金属结构与机电设备安装工程的施工。该标段主体及临建工程的混凝土总量约为万m3,浆砌石万m3。其中三级配混凝土万m3、二级配混凝土万m3、一级配混凝土万m3,砂浆万m3。 根据招标文件要求,用于主体工程和重要部位的混凝土的骨料,采用经监理人批准后可利用的合格洞挖料,如人工砂产量不足可开采其培河口与恩梅开江左岸交汇处的天然砂砾石料场补充。恩梅开江沿江两岸分布有砂料场,调查砂料储量约15万m3,主要是细骨料。试验资料见表-1。 表-1 细骨料筛分试验成果表 砂石骨料加工工作范围 本工程砂石骨料加工分人工砂石骨料加工及天然砂石骨料加工。根据标书要求我公司要负责人工砂石料加工系统及天然砂骨料系统的全部施工详图设计、所有土建施工及机电设备采购、运输、安装、调试及试运行、人工砂石料采石毛料运输、天然砂骨料料源开采、人工砂石骨料加工系统及天然砂骨料系统的运行管理。 砂石骨料加工工作项目 6.3.1砂石骨料加工主要工程项目包括(但不限于): (1) 原材料采集 本工程人工砂石骨料加工系统不需要另外开挖石料,只是利用合格洞挖料进行毛料运输。天然砂石骨料只是对其培河口与恩梅开江左岸交汇处的天然砂砾石料场进行骨料开采。 (2) 人工机制砂石料加工系统 1) 土建 主要包括:场平、半成品料堆和成品料堆、各车间、办公室、带式输送机基础及廊道、供水管敷设、废水处理厂、排水沟、场内道路等。 2) 设备及部分材料的采购、运输、保管。 3) 安装 主要包括:各车间所有设备、汽车受料仓及廊道内的给料机、带式输送机、配电、电器设备、钢桁架及管道的安装。 4) 调试、试运行 调试车间各种设备、带式输送机、电器设备、管道的试压等;试运行(包括空载试运行和负载试运行)。 5) 砂石系统运行维护 砂石加工系统运行期的砂石料生产。主要工作内容包括:毛料开采运输、砂石加工、给排水、废水处理、成品骨料质量检测、成品骨料计量等所有生产环节。 (3) 天然砂石料加工系统

相关文档
最新文档