频率解调(相位鉴频器)电路实验

实验九频率解调(相位鉴频器)电路实验

一、实验目的:

1. 掌握乘积型相位鉴频器电路的基本工作原理和电路结构;;

2. 熟悉相位鉴频器的和其特性曲线的测量方法;

3. 观察移相网络参数变化对鉴频特性的影响;

4. 通过将变容二极管调频器与相位鉴频器进行联机实验,了解调频和解调的全过程。

二、预习要求:

1. 复习相位鉴频的基本工作原理和电路组成;

2. 认真阅读实验内容,了解实验电路中各元件的作用

三、实验电路说明:

本实验电路如图9-1所示。

图9-1

四、实验仪器:

1. 双踪示波器

2. 万用表

3. 实验箱及频率调制、解调模块

五、实验内容及步骤:

1.用逐点描绘法测绘乘积型相位鉴频器的静态鉴频特性:

1)用高频信号源从P1端输入一幅度适中、6.5MHz的的正弦信号;

2)将开关K1拨至R5档;

3)用万用表测鉴频器的输出电压:在5—8MHz的范围内(以6.5MHz为基准),以每格0.02 MHz的间隔测量相应的输出电压,记录下来并绘制出静态鉴频特性曲线(注意:当6.5MHz 相位鉴频时,应使输出电压为零;如果不为零,可以调可变电容C5,归零后再进行实验);

4)将开关K1拨至R6档,重复第2)步的工作,并与之比较;

2.观察调频信号解调的电压波形:

1)将调频电路中心频率调为6.5MHz;

2)将鉴频电路的中心频率也调谐为6.5MHz;

3)将调频输出信号(调频电路中的TP1端)送入相位鉴频器的输入端P1,将F=2KHz 的调制信号加至调频电路的输入端进行调频;

4)用双踪示波器同时观测调制信号和解调信号,比较二者的异同。将调制信号的幅度改变,观察波形变化,分析原因。

六、实验报告要求:

1、整理各项实验所得的数据和波形,绘制出曲线;

2、分析回路参数对鉴频特性的影响;

3、分析讨论各项实验结果。

高频小信号调谐放大器的电路设计与仿真

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目:1.高频小信号调谐放大器的电路设计与仿真 2. 乘积型相位鉴频设计与仿真 3. 高频谐振功率放大器设计与制作 初始条件: 对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.谐振频率:o f =10.7MHz ;谐振电压放大倍数:dB A VO 20≥,;通频带:MHz B w 17.0=;矩形系数:101.0≤r K 。要求:放大器电路工作稳定,采用自耦变压器谐振输出回路 2.电路的主要技术指标:输出功率Po ≥125mW ,工作中心频率fo=6MHz , >65%, 已知:电源供电为12V ,负载电阻,RL=51Ω,晶体管用3DA1,其主要参数:Pcm=1W,Icm=750mA,VCES=1.5V,fT=70MHz,hfe ≥10,功率增益Ap ≥13dB (20倍)。 时间安排: 第15周,安排任务(鉴3-204) 第16周,仿真、实物设计(鉴主实验室) 第17周,完成(答辩,提交报告,演示) 指导教师签名: 年 月 日

系主任(或责任教师)签名:年月日 高频小信号谐振放大器 (3) 1.设计任务 (3) 2 .总体电路方框图 (3) 3 单元电路设计 (4) 3.1小信号放大电路 (4) 3.2 选频网络 (5) 4仿真结果 (6) 5 实物制作与测试 (7) 乘积型相位鉴频设计与仿真 (8) 1.鉴频器概述 (8) 2.鉴频器的主要参数 (8) 2.1鉴频特性(曲线) (8) 2.2鉴频器的主要参数 (9) 3.鉴频方法 (9) 3.1直接鉴频法 (9) 3.2间接鉴频法 (10) 3.2乘积型相位鉴频器原理说明 (10) 4.乘积型相位鉴频器实验电路说明及仿真设计 (11) 4.1乘积型相位鉴频器电路 (11) 4.2仿真电路设计及结果分析 (12) 5.MC1496鉴频电路的鉴频实物实验 (14) 5.1鉴频电路的鉴频操作过程 (14) 5.2鉴频特性曲线(S曲线)的测量方法 (14) 高频功率放大器 (15) 1.放大器电路分析 (15) 2 谐振功率放大器的动态特性 (16) 2.1谐振功放的三种工作状态 (16) 2.2 谐振功率放大器的外部特性 (17) 3单元电路的设计 (19) 3.1确定功放的工作状态 (19) 3.2基极偏置电路计算 (20) 3.3计算谐振回路与耦合线圈的参数 (21) 3.4电源去耦滤波元件选择 (21) 4电路的安装与调试 (22) 总结 (23) 参考文献 (24)

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

乘积型相位鉴频器的设计

一、电路原理 1.电路原理 (1)乘积型相位鉴频由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。如图所示。 图1 正交鉴频原理图 (2)用LM1596构成的乘积型相位鉴频器电路如图所示。 图2 LM1596构成的相位鉴频器 其中C 1与并联谐振回路C 2L 共同组成线性移相网络,将调频波的瞬时频率的变化转变成瞬时相位的变化。分析表明,该网络的传输函数的相频特性)(ωφ的表 达式为: )]1(arctan[2)(20 2 --=w w Q w π φ 当 <

或 )2arctan(2 )(0 f f Q f ?-= ?π φ 式中f 0—回路的谐振频率,与调频的中心频率相等。Q —回路品质因数。△ f —瞬时频率偏移。相移φ与频偏△f 的特性曲线如图所示。 图3 相移φ与频偏△f 的特性曲线 2.主要技术指标 相位鉴频法的原理框图如下图所示。图中的变换电路具有线性的频率—相位转换特性,它可以将等幅的调频信号变成相位也随瞬时频率变化的、既调频又调相的FM-PM 波。把此FM-PM 波和原来输入的调频信号一起加到鉴相器上,就可以通过鉴相器解调此调频信号。相位鉴频法的关键是相位检波器,相位检波器或鉴相器就是用来检出两个信号之间的相位差,完成相位差—电压变换作用的部件或电路。设输入鉴相器的两个信号分别为: 把它们同时加于鉴相器,鉴相器的输出电压o u 是瞬时相位差的函数,即: 在线性鉴相时,o u 与输入位相差21()()()e t t t ???=-成正比。信号2u 中引入/2π固 定相移的目的在于当输入相位差21()()()e t t t ???=-在零附近正负变化时,鉴相器输出电压也相应地在零附近正负变化。 图4 相位鉴频器的框图 11122222cos ()cos ()sin ()2c c c u U t t u U t t U t t ω?πω?ω?=+???? ?? =-+=+???????? 21()()o u f t t ??=-????

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波

相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。

正交鉴频器实验报告

正交鉴相鉴频器 实验报告 一. 设计方案: 1. 实验原理: 先将调频波经过一个移相网络变换成调相调频波,然后再与原调频波一起加到一个相位检波器进行鉴频。 利用模拟乘法器的相乘原理可以实现乘积型相位检波: 输入信号 ()cos(sin )s sm c f v t V t m t ω=+Ω 移相后的信号为: ''' ()cos{sin [ ()]} 2 sin[sin ()] s sm c f sm c f v t V t m t V t m t π ω?ωω?ω=+Ω++=+Ω+ 得到的输出信号 '' 1()KV sin[2(sin )()] 2 1 V sin () 2 o sm sm c F sm sm v t V t m t K V ω?ω?ω=+Ω++ 其中第一项为高频分量,可以用滤波器滤掉,第二项是所需的频率分量。只要线性移相网络的相频特性()?ω在调频波的频率变化范围内是线性的,当 ()0.4rad ?ω≤时,sin ()()?ω?ω≈。因此,鉴频器的输出电压()o v t 的变化规 律与调频波瞬时频率的变化规律相同,从而实现了相位鉴频。 2. 各部分电路具体实现: 鉴相鉴频器主要由三部分组成:移相网络,模拟相乘器和低频放大器。具体电路实现如下: (1) 移相网络: v D (t)

用LC 谐振回路实现移相网络,使输入信号移相90°。谐振回路的谐振频率为中频频率2.455MHz 。 (2) 模拟相乘器 用MC1496构成相乘器,使输入的两路正交信号相乘。1,4管脚和8,10管脚间分别接有电位器R2和R5用来调节输入直流平衡。电源处C7,C8和L2构成 型滤波网络,R12和C9起级间去耦作用。 (3) 低频放大器: 用LM741运放来放大输入调制信号,同时运放还能起到低通滤波以及隔离的作用。通过调节相应的电阻值可以改变放大的倍数。在运放的两个输入端2脚和3脚加上两个隔直电容,可以滤去直流分量,以保证运放的工作点正确。R21和C15构成低通滤波器。 L2 R13R12

PSK(DPSK)及QPSK-调制解调实验报告

实验4 PSK(DPSK)及QPSK 调制解调实验 配置一:PSK(DPSK)模块 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一) PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输出π相载波,两个模拟开关输出通过载波输出开关37K02 合路叠加后输出为二相PSK 调制信号。另外,DPSK 调制是采用码型变换加绝对调相来实现,即把数据信息源(伪随机码序列)作为绝对码序列{a n},通过码型变换器变成相对码序列{b n},然后再用相对码序列{b n},进行绝

高频课程2设计

目录 摘要............................................................... I Abstract........................................................... I I 1绪论. (1) 2 鉴频及方法原理 (2) 2.1 鉴频 (2) 2.2 鉴频方法 (3) 2.3 乘积型相位鉴频器 (4) 2.3.1 移相网络 (5) 2.3.2 低通滤波器 (5) 3 MC1496芯片的介绍 (7) 3.1 内部结构 (7) 3.2 静态工作点设置 (8) 3.2.1 静态偏置电压的设置 (8) 3.2.3 静态偏置电流的确定 (8) 4 设计内容 (9) 4.1总体设计电路 (9) 4.2电路图 (12) 4.3鉴频特性曲线的测量方法 (13) 4.3静态工作点测量 (13) 5心得体会 (16) 参考文献 (17)

摘要 鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频。其鉴频原理是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。因此实现鉴频的核心部件是相位检波器。相位检波器又分为叠加型相位检波和乘积型相位检波,利用模拟乘法器的相乘原理可实现乘积型相位检波。 乘积型相位鉴频器实际上是一种正交鉴频器,它由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。这个设计采用乘积型相位鉴频器 MC1496芯片完成一个相位鉴频器的设计。 关键词:鉴频、调频、乘积型相位鉴频器、MC1496芯片

振幅调制电路实验报告(DOC)

西南科技大学 课程设计报告 课程名称:高频电路课程设计 设计名称:振幅调制电路 姓名:李光伟 学号: 20105315 班级:电子1001 指导教师:魏冬梅 起止日期:2012.12.24-2013.1.6 西南科技大学信息工程学院制

课程设计任务书 学生班级:电子1001 学生姓名:李光伟学号:20105315 设计名称:振幅调制电路 起止日期:2012.12.24-2013.1.6指导教师:魏冬梅 设计要求:波信号为1MHz,低频调制信号为1kHz,两个信号均为正弦波信号。这两个输入信号可以采用实验室的信号源产生,也可以自行设计产生,采用乘法器1496设计调幅电路。 产生DSB信号,输出信号幅度>200mV。

课程设计学生日志时间设计内容

课程设计考勤表 周星期一星期二星期三星期四星期五 课程设计评语表指导教师评语: 成绩:指导教师: 年月日

振幅调制电路 一、 设计目的和意义 目的:实现抑制载波的双边带调幅。产生DSB 信号,输出信号幅度>200mV 。 意义:实现抑制载波的双边带调幅。 二、 设计原理 由集成模拟乘法器MC1496构成的振幅调制电路,可以实现普通调幅、抑制载波的双边带调幅以及单边带调幅。本次实验采用MC1496模拟乘法器是对两个模拟信号(电压或电流)实现相乘功能的有源非线性器件。主要功能是实现两个互不相关信号相乘.即输出信号与两输入信号相乘输出,总电路图如图1所示。 [1] 振幅调制就是使载波信号的振幅随调制信号的变化规律而变化的技术。通常载波信号为高频信号,调制信号为低频信号。设载波信号的表达式为: ()t U u c cm c ωcos =, 调制信号的表达式为t V t u cm Ω=Ωcos )(则调制信号的表达式 为:t t m V u c cm ωcos )cos 1(0Ω+= =t mV t t mV t V c cm c cm c cm )cos(21)cos(21cos Ω-+Ω++ ωωω错误!未找到 引用源。

实验12 斜率鉴频与相位鉴频器

实验12 斜率鉴频与相位鉴频器 —、实验准备 1.做本实验时应具备的知识点: FM波的解调 斜率鉴频与相位鉴频器 2.做本实验时所用到的仪器: 变容二极管调频模块 斜率鉴频与相位鉴频器模块 双踪示波器 万用表 二、实验目的 1.了解调频波产生和解调的全过程以及整机调试方法,建立起调频系统的初步概念; 2.了解斜率鉴频与相位鉴频器的工作原理; 3.熟悉初、次级回路电容、耦合电容对于电容耦合回路相位鉴频器工作的影响。 三、实验内容 1.调频-鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2.观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 四、基本原理 从FM信号中恢复出原基带调制信号的技术称为FM波的解调,也称为频率检波技术,简称鉴频。鉴频器的解调输出电压幅度应与输入FM波的瞬时频率成正比,因此鉴频器实际上是一个频率—电压幅度转换电路。实现鉴频的方法有很多种,本实验介绍斜率鉴频和电容耦合回路相位鉴

频。 1.斜率鉴频电路 斜率鉴频技术是先将FM波通过线性频率振幅转换网络,使输出FM波的振幅按照瞬时频率的规律变化,而后通过包络检波器检出反映振幅变化的解调信号。实践中频率振幅转换网络常常采用LC并联谐振回路,为了获得线性的频率幅度转换特性,总是使输入FM波的载频处在LC并联回路幅频特性曲线斜坡的近似直线段中点,即处于回路失谐曲线中点。这样,单失谐回路就可以将输入的等幅FM波转变为幅度反映瞬时频率变化的FM波,而后通过二极管包络检波器进行包络检波,解调出原调制信号以完成鉴频功能。 图12-1为斜率鉴频与相位鉴频实验电路,图中13K02开关打 向“3”时为斜率鉴频。13Q01用来对FM波进行放大,13C2、13L02为频率振幅转换网络,其中心频率为9MHZ左右。13D03为包络检波二极管。13TP01、13TP02为输入、输出测量点。 2.相位鉴频器 本实验采用平衡叠加型电容耦合回路相位鉴频器,实验电路如图12-1所示,开关13K02拨向“1”时为相位鉴频。 相位鉴频器由频相转换电路和鉴相器两部分组成。输入的调频信号加到放大器13Q01的基极上。放大管的负载是频相转换电路,该电路是通过电容13C3耦合的双调谐回路。初级和次级都调谐在中心频率上。初级回路电压直接加到次级回路中的串联电容13C04、13C05的中心点上,作为鉴相器的参考电压;同时,又经电容13C3耦合到次级回路,作为鉴相器的输入电压,即加在13L02两端用表示。鉴相器采用两个并联二极管检波电路。检波后的低频信号经RC滤波器输出。

实验报告simulink

班级:姓名:学号:

实验一:AM 信号的调制与解调 实验目的:1.了解模拟通信系统的仿真原理。 2.AM 信号是如何进行调制与解调的。 实验原理: 1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。 + m(t) S AM (t)A 0 cos ωc t AM 信号的时域和频域的表达式分别为: ()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+= 式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++ -++=2 1 0 式(4-2) 在式中,为外加的直流分量;可以是确知信号也可以是 随机信号,但通常认为其平均值为0,即。其频谱是DSB SC-AM 信号的频谱加上离散大载波的频谱。 2.解调原理:AM 信号的解调是把接收到的已调信号还 原为调制信号。 AM 信号的解调方法有两种:相干解调和包 络检波解调。 AM 相干解调原理框图如图。相干解调(同步解调):利用

相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。 LPF m0(t) S AM(t) cosωc t AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成: (1)整流:只保留信号中幅度大于0的部分。(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。实验内容: 1.AM相干解调框图。

(相位鉴频器)电子测量实验指导书(科)

Xb08610209 陆斌 08电子信息(2)班 相位鉴频器 一、实验目的 1、熟悉相位鉴频电路的基本原理。 2、了解鉴频特性曲线(S 曲线)的正确调整方法。 3、将变容二极管调频器与相位鉴频器两实验板进行联机调试,进一步了解调频和解调全过程及整机调试方法。 二、实验原理 相位鉴频器是模拟调频信号解调的一种最基本的解调电路,它具有鉴频灵敏度高,解调线性好等优点。 1、鉴频概述 调频波的解调称为频率解调,简称鉴频;调相波的解调称为相位检波,简称 鉴相。它们的作用都是从已调波中检出反映在频率或相位变化上的调制信号。但是采用的方法不尽相同。由于在调频接收机中,当等幅调频信号通过鉴频前各级电路时,因电路频率特性不均匀而导致调频信号频谱结构的变化,从而造成调频信号的振幅发生变化。如果存在着干扰,还会进一步加剧这种振幅的变化。鉴频器解调这种信号时,上述寄生调幅就会反映在输出解调电压上,产生解调失真。因此,一般必须在鉴频前加一限幅器以消除寄生调幅,保证加到鉴频器上的调频电压是等幅的。限幅与鉴频一般是连用的,统称为限幅鉴频器。 鉴频器输出电压u 0随输入频率f (或频偏 )变化的特性称为鉴 频特性。在线性解调的理想情况下,鉴频特性为一直线,实际上会弯曲,呈“S”型,称为“S”曲线。 2、鉴频器指标 1)鉴频跨导(效率、灵敏度)S D :鉴频特性在f c 处的斜率,用它来评价鉴频能力。 单位为V/Hz 。S D 越大,表明鉴频器将输入瞬时频偏变换为输出解调电压的能力越强。 c f f f -=?

一般情况下,S D 为调制角频率的复值函数,即()D S j Ω,要求它的通频带大于调制信号的最高频率 m ax Ω 2)峰值带宽max B :鉴频器输出电压两峰值点所对应的频率差,即 max 21B f f =-,它近似表明鉴频器鉴频线性区的宽度。为了减小鉴频器的非线性 失真,要求鉴频特性近似线性的范围 m ax 2f ?大于2m f ?。 ③ 最大输出电压0m ax U :鉴频器输出的最大电压。 ④ 线性度要好与失真要小。 3.电容耦合双调谐回路相位鉴频器: 相位鉴频器的组成方框图如3-3示。图中的线性移相网络就是频—相变换网络,它将输入调频信号u1 的瞬时频率变化转换 为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。 图3-4的耦合回路相位鉴频器是常用的一种鉴频器。这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。 图3-4 耦合回路相位鉴频器 图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调 o

乘积型相位鉴频器的设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:乘积型相位鉴频器的设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式有一定的了解;具备晶体管电路的基本设计及基本调试能力;能够正确使用实验仪器进行电路的调试与检测;使用适当的软件进行仿真和制作PCB板图。 主要内容: 本题目为集成模拟乘法器应用设计之一,即设计一个乘积型相位鉴频器。通过本次电路设计,掌握集成模拟乘法器的基本原理及其所构成的相位鉴频电路的设计方法、电路调整及测试技术。加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 基本要求: (1) 采用集成模拟乘法器设计乘积型相位鉴频器,电路的工作中心频率 为f=6.5MHz。 (2) 绘制电路原理图,并给出鉴频特性曲线。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1 原理说明与电路分析 (3) 1.1电路原理及用途.........................................................................................错误!未 定义书签。 2.2 模拟乘法器MC1496 (4) 2.3 低通滤波器 (5) 2.4主要技术指标 (5) 3 乘积型相位鉴频器 (8) 3.1 乘积型相位鉴频器的原理图....................................................................错误!未 定义书签。 3.2电路工作状态或元件参数的确定 (9) 3.3仿真结果 (11) 3.4 调试及静态工作点的测量 (14) 4 元件清单 (16) 5 心得体会 (17) 6参考文献 (18)

PSK调制解调实验报告标准范本

报告编号:LX-FS-A22577 PSK调制解调实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

PSK调制解调实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控

高频实验九 电容耦合相位鉴频器实验报告

实验九 电容耦合相位鉴频器实验 一.实验目的 1. 进一步学习掌握频率解调相关理论。 1. 了解电容耦合回路相位鉴频器的工作原理。 3. 了解鉴频特性(S 形曲线的调试与测试方法)。 二、实验使用仪器 1.电容耦合相位鉴频器实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源 三、实验基本原理与电路 1. 实验基本原理 从调频波中取出原来的调制信号,称为频率检波,又称鉴频。完成鉴频功能的电路,称为鉴频器。在调频波中,调制信息包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 本实验采用的是相位鉴频器。相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间的相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度的变化。 鉴相器采用两个并联二极管检波电路。假设二极管D3的检波电路和二极管D4的检波电路完全对称,两个检波电路的电压传输系数完全相等,检波后的输出信号为两个检波电路的输出电压差。即034D D U U U =- 当瞬时频率0f f =时, 2U 比1U 滞后90°,但|3D U |=|4D U |,这时,鉴频器输出为零。当0f f >时, 2U 滞后于1U 的相角小于90°,|3D U |>|4D U |,鉴频器的输出大于零。当0f f <时,2U 滞后于1U 的相角大于90°,

|3D U |<|4D U |,鉴频器的输出小于零。相位鉴频器鉴频特性的线性较好,鉴频灵敏度也较高。 图9-1频率电压转换原理图。 (ω<ω0)U 2(ω=ω0) (ω>ω0) . U 1.. U 2 .2U 2. 2 .. U 1 .U 2 .2 U 2. 2 . . U 2 .2 U 2. 2 (a) (b)(ω=ω0)(c)(ω>ω0) (d)(ω<ω0) 图9-1频率电压转换原理图。 鉴频器的主要参数: (1) 鉴频跨导 鉴频器的输出电压与输入调频波的瞬时频率偏移成正比,其比例系数称为鉴频跨导。图9-3为鉴频器输出电压V 与调频波的瞬时频偏f ?之间的关系曲线,称为鉴频特性曲线。它的中部接近直线部分的斜率即为鉴频跨导。它代表每单位频偏所产生的输出电压的大小,希望鉴频器的鉴频跨导应该尽可能的大。 (2)鉴频灵敏度 指鉴频器正常工作时,所需要输入调频波的最小幅度。其值越小,鉴频器灵敏度越高。 (3)鉴频器频带宽度 从上图的鉴频特性曲线中可以看出,只有特性曲线中间一部分的线性度较好,我们称2m f ?为频带宽度。一般,要求2m f ?大于输入调频波频偏的两倍,并

相位鉴频器

课程名称通信电子线路 实验项目相位鉴频器成绩 学院信息专业通信工程学号20141060149姓名李越 实验时间2016.06.04实验室3501指导教师谢汝生 1.实验目的 1.熟悉变容二级管调频器和相位鉴频器电路原理及构成。 2.了解调频器调制特性和相位鉴频器的鉴相特性及测量方法。 3.将变容二极管调频器与相位鉴频器两实验板进行联机试验,进一步了解调 频和解调全过程及整机调试方法。 2.实验设备 1.双踪示波器(RIGOL DS5062CA数字存储示波器) 2.频率计(AT-F1000-C数字频率计) 3.万用表(DT9205数字万用表) 4.扫频仪(BT3C宽带扫频仪)

5.清华科教TPE-GP2型高频电路实验箱及G4实验板 6.高频信号发生器(前锋QF1055A/1056A信号发生器) 3.实验电路及基本原理分析 从调频波中取出原来的调制信号,称为频率检波,又称为鉴频。在调频波中,调制信号包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 鉴频器电路是先借助谐振电路将等幅的调频波转换为幅度随瞬时频率变化的调幅调频波,再用二极管检波器进行幅度检波,以还原出调制信号。由于信号的最后检出还是利用高频振幅的变化,为了避免寄生调幅干扰检出的调制信号,一般都将输入鉴频器的调频波进行限幅去干扰,使其幅度恒定后再进行鉴频。

相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度变化。 本实验所用电路如图,该电路为电容耦合回路叠加型相位鉴频器。电路中V1/V2构成差分对振幅限幅电路,对输入信号进行去干扰限幅。同时在V2的集电极负载回路中设置了由CT1、C6、L1组成的并联谐振回路,与由CT2、C10、i 为调幅调频波。再通过后面两只检波二极管D1、D2组成的对称幅度检波器分别对上下两个调幅包络进行检波,最后得到调制信号。 4.实验步骤及内容记录(包括数据、图表、波形、程序设计等) 1.用扫频仪调整相位鉴频器的S型鉴频特性。 将实验电路中E、F、G三个接点分别与半可调电容C T1、C T2、C T3连接。

实验十二 斜率鉴频与相位鉴频器

实验十二斜率鉴频与相位鉴频器 一、实验目的 1. 了解调频波产生和解调的全过程以及整机调试方式,建立起调频系统的初步概念; 2. 了解斜率鉴频与相位鉴频器的工作原理 3. 熟悉初、次级回路电容、耦合电容变化对FM波解调的影响。 二、实验项目 1. 调频—鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2. 观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 三、实验步骤 1.模块上电 插装好斜率鉴频与相位鉴频、变容二极管调频器模块,接通电源,即可开始实验。 2.相位鉴频实验(该实验与实验11的内容有部分重复) (1)以实验10中的方法产生FM波,即音频调制信号频率为1KHZ,电压峰—峰值500mv,加到1P01音频输入端,并将调频输出中心频率调至8.2MHZ左右,然后将其输出连接到鉴频单元的输入端1P01,将鉴频器单元开关1K01拨向相位鉴频。 用示波器观察鉴频输出1TP02波形,此时可观察到频率为1KHZ的正弦波。如果没有波形或波形不好,应调整调频单元1W01和鉴频单元1W01。建议采用示波器作双线观察:CH1接调频器输入端1TP01,CH2接鉴频器输出端1TP02,并作比较。 (2)若改变调制信号幅度,则鉴频器输出信号幅度,则鉴频器输出信号幅度亦会随之变大,但信号幅度过大时,输出将会出现失真。 (3)改变调制信号的频率,鉴频器输出频率应随之变化,将调制信号改成三角波和方波,再观察鉴频输出。 3.斜率鉴频实验 (1)将鉴频单元开关1K01拨向斜率鉴频。 (2)信号连接和测试方法与相位鉴频完全相同。 四、实验报告要求 1.画出调频—鉴频系统正常工作时的调频器输入、输出波形和鉴频器输入、输出波形。

磁光调制实验报告

磁光调制实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

磁光调制实验报告 一、实验目的 1 观察磁光调制现象 2 测量调制深度与调制角幅度 3测定旋光角与外加磁场的关系 4 测量直流磁场对磁光介质的影响 5 磁光调制与光通讯实验演示 二、实验原理 1 磁光效应 当平面偏振光穿透某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表明其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即: θ (1) = vlB 式中l为光波在介质中的路径,ν为表征磁致旋光效应特征的比例系数,称为维尔德(Verdet)常数。由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏转等功能性磁光器件,其中磁光调制为其最典型的一种。 图1 磁光效应示意图 如图1所示,在磁光介质的外围加一个励磁线圈就构成基本的磁光调制器件。 2 直流磁光调制 当线偏振光平行于外磁场入射磁光介质的表面时,偏振光的光强I可以分解成如图2所示的左旋圆偏振光I L和右旋圆偏振光I R(两者旋转方向相反)。由于介质对两者具有不同的折射率n L和n R,当它们穿过厚度为l的介质后分别产生不同的相位差,体现在角位移上有:

l n L L λπ θ2= l n R R λ πθ2= 式中λ为光波波长 因θθθθ+=-R L ()()l n n R L R L ?-=-= λ πθθθ221 ( 2 ) 如折射率差()R L n n -正比于磁场强度B ,即可得(1)式,并由θ值与测得的B 与l 求出威德尔常数υ。 图2 入射光偏振面的旋转运动 3 交流磁光调制 用一交流电信号对励磁线圈进行激励,使其对介质产生一交变磁场,就组成了交流(信号)磁光调制器(此时的励磁线圈称为调制线圈),在线圈未通电流并且不计光损耗的情况下,设起偏器P 的线偏振光振幅为A 0,则A 0可分解为 A 0 cos α及A 0 sin α两垂直分量,其中只有平行于P 平面的A 0 cos α分量才能通过检偏器,故有输出光强 αα2020cos )cos (I A I == (马吕斯定律) 其中200A I =为其振幅。 式中α为起偏器P 与检偏器A 主截面之间的夹角,I 0为光强的幅值,当线圈通以交流电信号i=i 0 sin ωt 时,设调制线圈产生的磁场为B=B 0 sin ωt ,则介质相应地会产生旋转角θ=θ0 sin ωt ,则从检偏器输出的光强为: [][])sin (2cos 12 )(2cos 12)(cos 000 20t I I I I ωθαθαθα++=++= += (3)

基于MC1496的相位鉴频器电路设计与仿真

课程设计报告 题目:基于MC1496的相位鉴频器电路 设计与仿真 学生姓名:薛瑞 学生学号: 1008030313 系别:电气信息工程学院 专业:电子信息工程 届别: 2014届 指导教师:马立宪 电气信息工程学院制 2013年5月

基于MC1496的相位鉴频器电路设计与仿真 学生:薛瑞 指导教师:马立宪 电气信息工程学院电子信息工程专业

1 设计任务及要求 1.1设计任务 本设计是通过模拟乘法器MC1496和低通滤波器组成的乘积型相位鉴频器,通过电路设计,能够实现仿真波形,将仿真波形与理论比较,分析出设计中的误差。 1.2 设计要求 (1)乘积性的相位鉴频器中心频率10.7MHz。 (2)调制信号频率500kHz,用MC1496设计频相转换网络和低通滤波器。 (3)输出波形无显著失真。 1.3设计研究基础 1.3.1鉴频器概述 鉴频器使输出电压和输入信号频率相对应的电路。按用途可以分为两类:第一类用于调频信号的解调。常见的有斜率鉴频器、相位鉴频器、比例鉴频器等。对这类电路的要求主要是非线性失真小,噪声门限低。第二类用于频率误差测量,如用在自动频率控制环路中产生误差信号的鉴频器。对于这类电路的零点漂移限制较严,对非线性失真和噪声门限则要求不高。 实现调频信号解调的鉴频电路可分为三类,第一类是调频——调幅变换型。第二类是相依乘法鉴频型,这种类型是将调频波经过移相电路变成调相调频波,其相位的变化正好与调频波瞬时频率的变化呈线性关系,然后将调相调频波与原调频波进行相位比较,通过低通滤波器取出解调信号,因为相位比较器通常用乘法器组成,所以称为相移乘法鉴频;第三类是脉冲均值型。 1.3.2鉴频器的主要参数 1.3. 2.1鉴频特性(曲线) 鉴频特性曲线指鉴频器的输出电压u0与输入电压瞬时频率f 或频偏Δf 之间的关系曲线。 理想鉴频特性曲线应是一条直线,但实际上往往有弯曲,呈S形,如下图所示。

13.鉴频器实验

鉴频器实验 学号:200800120228 姓名:辛义磊 仪器编号:30 一、 实验目的 1、 进一步理解鉴频的基本原理及实现方法 2、 掌握乘积型相位鉴频器的工作原理、实现电路与测量方法 3、 进一步掌握频率特性测量仪的使用方法 二、 实验器材 高频电路试验箱 数字示波器 直流稳压电源 数字万用表 三、 实验原理 能够完成对调频信号解调的电路称为鉴频器,它是从频率已调波中不失真地还原出原调制信号的过程,它们的任务是把载波频率的变化变换成电压的变化。其基本方法是将调频波进行特定的波形变换,使变换后的波形中包含有反映调频波瞬时频率变化规律的某种参量,如幅度、相位或平均分量,然后设法检测出这个参量,即得到原始调制信号。 就其功能而言,尽管鉴频器的输出V o (t)是在输入信号V i (t)作用下产生的,但二者却是截然不同的两种信号。显然,鉴频器将输入调频波的瞬时频率)(t f (或频偏)(t f )的变化变换成了输出电压)(t V o 的变化,这种变换特性称为鉴频特性,它是鉴

频器的主要特性。输出电压与瞬时频率)(t f (或频偏)(t f ?)之间的关系曲线,称为鉴频特性曲线。在线性解调的理想情况下,此曲线为直线,但实际上往往有弯曲,呈S 形,简称S 曲线。 鉴频器的主要指标有鉴频特性范围2max f ?和鉴频灵敏度 d S 。 鉴频线性范围是指鉴频特性曲线中近似直线段的频率范 围,用2max f ?表示。它表明了鉴频器不失真的解调时所允许的频率变化范围,因此要求2max f ?应大于输入调频波最大频偏的两倍,即m f ?>?2f 2max 。2max f ?也称为鉴频器的带宽。鉴频灵敏 度d S 是指在中心频率c f t f =)((0 ) (=?t f )附近曲线的斜率, 即c f t f d f v S =???=)(0|。 显然,鉴频灵敏度越高,意味着鉴频特性曲线越陡峭,鉴频能力越强。 鉴频器的类型和电路很多,如斜率鉴频器、相位鉴频器、脉冲计数式鉴频器、锁相鉴频器。 乘积型相位鉴频器的框图如图所示,相移网络一般采用单谐振回路或耦合回路,乘法器一般采用模拟乘法器,低通滤波

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

相关文档
最新文档