(完整版)中考数学复习圆专题复习教案

(完整版)中考数学复习圆专题复习教案
(完整版)中考数学复习圆专题复习教案

中考数学专题复习六 几何(圆)

【教学笔记】

一、与圆有关的计算问题(重点)

1、扇形面积的计算

扇形:扇形面积公式 21

3602

n R S lR π=

= n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积

圆锥侧面展开图:

(1)S S S =+侧表底=2

Rr r ππ+

(2)圆锥的体积:2

13

V r h π=

2、弧长的计算:弧长公式 180

n R

l π=; 3、角度的计算

二、圆的基本性质(重点)

1、切线的性质:圆的切线垂直于经过切点的半径.

2、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半;

推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;

(2)相等的圆周角所对的弧也相等。 (3)半圆(直径)所对的圆周角是直角。 (4)90°的圆周角所对的弦是直径。

注意:在圆中,同一条弦所对的圆周角有无数个。

3、垂径定理定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧

推论:(1)平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧

(2)弦的垂直平分线经过圆心,并且平分这条弦所对的弧

(3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 (4)在同圆或者等圆中,两条平行弦所夹的弧相等

三、圆与函数图象的综合

一、与圆有关的计算问题

【例1】(2016?资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()

A.2﹣π B.4﹣π C.2﹣π D.π

【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,

∴BC=AC?tan30°=2?=2,∴S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.

【例2】(2014?资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()

A.﹣2B.﹣2C.﹣D.﹣

解答:连接OC,

∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2,

∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2,

∴△AOC的边AC上的高是=,△BOC边BC上的高为,

∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2,

故选A.

【例3】(2013?资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()A.πB.πC.πD.π

解答:从9点到9点30分分针扫过的扇形的圆心角是180°,

则分针在钟面上扫过的面积是:=π.故选:A.

【例4】(2015成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( ) A .2,3

π

B .23,π

C .3,

23π D .23,43π

【课后练习】

1、(2015南充)如图,P A 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P =40°,则∠ACB 的大小是( B )

A .40°

B .60°

C .70°

D .80°

2、(2015达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影部分的面积是( B )

A .12π

B .24π

C .6π

D .36π

3、(2015内江)如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD =120°,过D 点的切线PD 与直线AB 交于点P ,则∠ADP 的度数为( ) A .40° B .35° C .30° D .45°

解析:连接BD ,∵∠DAB=180°-∠C=50°,AB 是直径,∴∠ADB =90°,∠ABD =90°-∠DAB=40°,∵PD 是切线,∴∠ADP =∠B=40°.故选A .

4、(2015自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为 A .2π B .π C .3π D .32π

解析:∠BOD =60°

5、(2015凉山州)如图,△ABC 内接于⊙O ,∠OBC=40°,则∠A 的度数为( ) A .80° B .100° C .110° D .130°

6、(2015凉山州)将圆心角为90°,面积为4πcm 2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径 ( )

A .1cm

B .2cm

C .3cm

D .4cm

7、(2015泸州)如图,P A 、PB 分别与⊙O 相切于A 、B 两点,若∠C =65°,则∠P 的度数为( ) A .65° B .130° C .50° D .100°

8、(2015眉山)如图,⊙O 是△ABC 的外接圆,∠ACO =450,则∠B 的度数为( ) A .300 B .350 C .400 D 450

9、(2015巴中)如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为( ) A .25° B .50° C .60° D .30°

10、(2015攀枝花)如图,已知⊙O 的一条直径AB 与弦CD 相交于点E ,且AC =2,AE 3CE =1,则图中阴影部分的面积为( ) A .

239π B .439π C .29π D .49

π

11、(2015甘孜州)如图,已知扇形AOB 的半径为2,圆心角为90°,连接AB ,则图中阴影部分的面积是 ( )

A.π﹣2B.π﹣4C.4π﹣2D.4π﹣4

12、(2015达州)已知正六边形ABCDEF的边心距为3cm,则正六边形的半径为cm.

13、(2015自贡)如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=3,则劣弧AD的长为.

14、(2015遂宁)在半径为5cm的⊙O中,45°的圆心角所对的弧长为cm.

?CF的15、(2015宜宾)如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是

中点,弦CF交AB于点E.若⊙O的半径为2,则CF= .

16、(2015泸州)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.

17、(2015眉山)已知⊙O的内接正六边形周长为12cm,则这个圆的半经是_________cm.

18、(2015广安)如图,A.B.C三点在⊙O上,且∠AOB=70°,则∠C= 度.

19、24.(2015巴中)圆心角为60°,半径为4cm的扇形的弧长为cm.

20、(2015甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度.

二、圆的基本性质

【例1】(2016?资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.

(1)求证:∠A=∠BDC;

(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.

【解答】解:(1)如图,连接OD,

∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,

又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,

∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;

(2)∵CM平分∠ACD,∴∠DCM=∠ACM,

又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即

∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.

【例2】(2015?资阳)如图11,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E 为BC的中点,连接DE.

(1)求证:DE是⊙O的切线;

(2)连接AE,若∠C=45°,求sin∠CAE的值.

解答:解:(1)连接OD,BD,∴OD=OB ∴∠ODB=∠OBD.

∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.

∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,

∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.

∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,

∴DE是⊙O的切线;

(2)作EF⊥CD于F,设EF=x

∵∠C=45°,∴△CEF、△ABC都是等腰直角三角形,∴CF=EF=x,

∴BE=CE=x,∴AB=BC=2x,在RT△ABE中,AE==x,

∴sin∠CAE==.

【例3】(2014?资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.

(1)求证:△CDE∽△CAD;

(2)若AB=2,AC=2,求AE的长.

解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,

∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,

∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,

而∠ECD=∠DCA,∴△CDE∽△CAD;

(2)解:∵AB=2,∴OA=1,

在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,

∵△CDE∽△CAD,∴=,即=,∴CE=.

【例4】(2013?资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.

(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;

(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.

解答:(1)如图,过点O作OE⊥AC于E,则AE=AC=×2=1,

∵翻折后点D与圆心O重合,∴OE=r,

在Rt△AOE中,AO2=AE2+OE2,即r2=12+(r)

2,解得r=;

(2)连接BC ,∵AB 是直径,∴∠ACB=90°, ∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°, 根据翻折的性质,

所对的圆周角等于

所对的圆周角,

∴∠DCA=∠B ﹣∠A=65°﹣25°=40°.

【课后练习】

1、(2015达州)如图,AB 为半圆O 的在直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连

接OD 、OC ,下列结论:①∠DOC =90°,②AD +BC =CD ,③22

ΔAOD ΔBOC ::S S AD AO =,④OD :OC =DE :

EC ,⑤2

OD DE CD =?,正确的有( ) A .2个 B .3个 C .4个 D .5个 解析:如图,连接OE ,

∵AD 与圆O 相切,DC 与圆O 相切,BC 与圆O 相切, ∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE ,CE=CB ,AD ∥BC 。 ∴CD=DE+EC=AD+BC 。结论②正确。

在Rt △ADO 和Rt △EDO 中,OD=OD ,DA=DE ,∴Rt △ADO ≌Rt △EDO (HL )

∴∠AOD=∠EOD 。同理Rt △CEO ≌Rt △CBO ,∴∠EOC=∠BOC 。又∠AOD+∠DOE+∠EOC+∠COB=180°, ∴2(∠DOE+∠EOC )=180°,即∠DOC=90°。结论⑤正确。 ∴∠DOC=∠DEO=90°。又∠EDO=∠ODC ,∴△EDO ∽△ODC 。∴,即OD 2=DC ?DE 。结论①正确。

,结论④错误。由OD 不一定等于OC ,结论③错

误。∴正确的选项有①②⑤。故选A 。

2、(2015遂宁)如图,在半径为5cm 的⊙O 中,弦AB =6cm ,OC ⊥AB 于点C ,则OC =( ) A .3cm B .4cm C .5cm D .6cm

【解析】连接OA ,∵AB=6cm ,OC ⊥AB 于点C ,∴AC=AB=×6=3cm , ∵⊙O 的半径为5cm ,∴OC==

=4cm ,

故选B .

3、(2015广元)如图,已知⊙O 的直径AB ⊥CD 于点E .则下列结论一定错误的是( )

A .CE =DE

B .AE =OE

C .??BC

BD D .△OCE ≌△ODE

4、(2015广元)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是?

AD 的中点,弦CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF 、BC 于点P 、Q ,连接AC .给出下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心. 其中正确结论是_②③④_ (只需填写序号).

5、(2015成都)如图,在Rt △ABC 中,∠ABC =90°,AC 的垂直平分线分别与AC ,BC 及A B 的延长线相交于点D ,E ,F ,且BF =BC .⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交于点H ,连接BD 、FH .(1)求证:△ABC ≌△EBF ;(2)试判断BD 与⊙O 的位置关系,并说明理由; (3)若AB =1,求HG ?HB 的值.

6、(2015遂宁)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)

求证:∠ADC=∠ABD;(2)求证:AD2=AM?AB;(3)若AM=18

5

,sin∠ABD=

3

5

,求线段BN的长.

解答:(1)证明:连接OD,∵直线CD切⊙O于点D,∴∠CDO=90°,

∵AB为⊙O的直径,∴∠ADB=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,

∵OB=OD,∴∠3=∠4,∴∠ADC=∠ABD;

(2)证明:∵AM⊥CD,∴∠AMD=∠ADB=90°,∵∠1=∠4,∴△ADM∽△ABD,

∴,∴AD2=AMAB;

(3)解:

∵sin∠ABD=,∴sin∠1=,∵AM=,∴AD=6,∴AB=10,∴BD=

=8,

∵BN⊥CD,∴∠BND=90°,∴∠DBN+∠BDN=∠1+∠BDN=90°,∴∠DBN=∠1,∴

sin∠NBD=,∴DN=,∴BN==.

7、(2015宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO=2,求AO的长.

8、(2015泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.

解答:(1)证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,

∵AB=AC,∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,

∵AB∥CD,∴四边形ABCE是平行四边形;

(2)解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD

与点N,M,∵AE是⊙O的切线,

由切割线定理得,AE2=EC?DE,∵AE=6,CD=5,

∴62=CE(CE+5),解得:CE=4,(已舍去负数),

由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,

又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,

设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF=BC﹣FH=3

﹣z,DF=CF=BC+FH=3+z,

易得△OFH∽△DMF∽△BFN,∴,,

即,①②,①+②得:,①÷②得:,

解得,∵x2=y2+z2,∴,∴x=,∴OF=.

9、(2015绵阳)如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于点D,连接DC,DA,OA,OC,四边形OADC为平行四边形.(1)求证:△BOC≌△CDA;(2)若AB=2,求阴影部分的面积.【解析】

(1)证明:∵O是△ABC的内心,∴∠2=∠3,∠5=∠6,

∵∠1=∠2,∴∠1=∠3,由AD∥CO,AD=CO,∴∠4=∠5,∴∠4=∠6,

∴△BOC≌△CDA(AAS)

由(1)得,BC=AC,∠3=∠4=∠6,∴∠ABC=∠ACB,∴AB=AC

∴△ABC是等边三角形,∴O是△ABC的内心也是外心,∴OA=OB=OC

设E为BD与AC的交点,BE垂直平分AC.在Rt△OCE中,CE=AC=AB=1,∠OCE=30o,

∴OA=OB=OC=.∵∠AOC=120o,∴.

10、(2015广元)如图,AB是⊙O的弦,D为半径OA的中点.过D作CD⊥OA交弦AB于点E,交⊙O于点F.且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,

BE=10,sinA=

5

13

.求⊙O的半径.

解:(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC 又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90 °∴∠OBA+∠ABC=90 °

∴OB⊥BC∴BC是⊙O的切线.

(2)连接OF,AF,BF,∵DA=DO,CD⊥OA,

∴△OAF是等边三角形,∴∠AOF=60 °∴∠ABF=∠AOF=30 °

(3)过点C作CG⊥BE于点G,由CE=CB,∴EG=BE=5

又Rt△ADE∽Rt△CGE,∴sin∠ECG=sin∠A=,∴CE==13

∴CG==12,

又CD=15,CE=13,∴DE=2,

由Rt△ADE∽Rt△CGE得=,∴AD=

CG=,∴⊙O的半径为2AD=.

11、(2015广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接P A、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:P A是⊙O的切线;(2)

2

3

OC

AC

,且OC=4,求P A的长和tanD的值.

解:(1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,

∴OP是AB的垂直平分线,∴PA=PB,

在△PAO和△PBO中,

∵PA=PBPO=POOA=OB,∴△PAO≌△PBO(SSS)

∴∠PBO=∠PAO,PB=PA,

∵2+OC2=213,∴AE=2OA=413,OB=OA=213,在Rt△APO中,

∵AC⊥OP,∴AC2=OC?PC,

解得:PC=9,∴OP=PC+OC=13,

在Rt△APO中,由勾股定理得:AP=OP2-OA2=313,∴PB=PA=∵PB为⊙O的切线,B为切点,∴∠PBO=90°,

∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;

(2)连接BE,∵OCAC=23,且OC=4,∴AC=6,∴AB=12,

在Rt△ACO中,由勾股定理得:AO=AC13,∵AC=BC,OA=OE,

∴OC=12BE,OC∥BE,∴BE=2OC=8,BE∥OP,∴△DBE∽△DPO,∴BDPD=BEOP,

即BD313+BD=813,解得:BD=24135,在Rt△OBD中, tanD=OBBD=21324135=512.

12、(2015巴中)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.

解:(1)证明:连接OC,

∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,

又∵∠CFD=∠BFO,∴∠DCB=∠BOF,

∵CO=BO,∴∠OCF=∠B,

∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;

(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,

又∵∠D=∠B,∴△OCD∽△ACB,

∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.

三、圆与函数图象的综合

【例1】(2015?资阳)如图4,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O

的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()

解答:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,

∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;

(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;

(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.

【例2】(2013年四川巴中)如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆心,AB为直径作⊙P交y轴的正半轴于点C.

(1)求经过A,B,C三点的抛物线所对应的函数解析式;

(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;

(3)试说明直线MC与⊙P的位置关系,并证明你的结论.

解:(1)∵A(4,0),B(-1,0),

∴AB=5,半径是PC=PB=PA=。∴OP=。

在△CPO中,由勾股定理得:。∴C

(0,2)。

设经过A、B、C三点抛物线解析式是,

把C(0,2)代入得:,∴。∴。

∴经过A、B、C三点抛物线解析式是,

(2)∵,∴M。

设直线MC对应函数表达式是y=kx+b,

把C(0,2),M代入得:,解得。

∴直线MC对应函数表达式是。

(3)MC与⊙P的位置关系是相切。证明如下:设直线MC交x轴于D,

当y=0时,,∴,OD=。∴D(,0)。

在△COD中,由勾股定理得:,

又,,∴CD 2 +PC 2 =PD2 。∴∠PCD=90 0 ,即PC⊥DC。∵PC为半径,∴MC与⊙P的位置关系是相切。

【课后作业】

一、选择题(每小题3分,共24分)

1.如图,已知A,B,C在⊙O上,下列选项中与∠AOB相等的是()

A. 2∠C B. 4∠B

C. 4∠A D.∠B+∠C

2.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()

A.35° B. 45°

C.55° D.65°

3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()

A.CM=DM B.CB=DB

C.∠ACD=∠ADC D.OM=MD

4.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()

A. 6 B.5

C. 4 D.3

第1题图第2题图第3题图第4题图

5. 已知⊙O的半径为6,圆心到直线l的距离为8,则直线l与⊙O的位置关系是( )

A.相交 B.相切

C.相离 D.无法确定

6.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()

A.3cm B.6cm

C.9cm D.12cm

7.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD的长为()

A. 2.5 B. 1.6

C. 1.5 D. 1

8. 如图,直线

3

3

y x

=+与x轴、y分别相交与A、B两点,圆心P的坐标为(1,0),圆P与y轴相

切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P′的个数是()A.2 B.3

C.4 D.5

第7题图第8题图

二、填空题:(每小题3分,共24分)

9.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o

∠,则BAD ∠的度数为 . 10.如图,在△ABC 中∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则

的度数为 .

11.如图,ABC ?的一边AB 是⊙O 的直径,请你添加一个条件,使BC 是⊙O 的切线,你所添加的条件为 .

O

第9题图 第10题图 第11题图

12. 如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是 .

13.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为 .

14. 如图,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为 . 15. 如图,⊙A 、⊙B 、⊙C 两两外切,它们的半径都是a ,顺次连接三个圆心得到△ABC,则图中阴影部分的面积之和是 .

16.如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连接PA .设PA =x ,PB =y ,则(x -y )的最大值是 .

第14题图 第15题图 第16题图

三、解答题(本大题共8个小题,满分52分):

17. (本题4分)如图,圆弧形桥拱的跨度12AB =米,拱高4CD =米,试求拱桥的半径.

18.(本题4分)如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.

19.(满分6分)如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D . ⑴.求证:AC =BD ;

⑵.若大圆的半径R =10,小圆的半径r =8,且圆O 到直线AB 的距离为6,求AC 的长.

20.(本题6分)如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点恰好为BC 的中点D ,过点D 作⊙O 的切线交AC 于点E . ⑴.求证:DE ⊥AC ;

⑵.若AB =3DE ,求tan ∠ACB 的值.

21. (本题6分) 如图,AB 是⊙O 的直径,点E 是上的一点,

∠DBC =∠BED .

⑴.求证:BC 是⊙O 的切线; ⑵.已知AD =3,CD =2,求BC 的长.

22. (本题8分)已知:如图,⊙O 的直径AB 垂直于弦CD ,过点C 的切线与直径AB 的延长线相交于点P ,连结PD .

⑴.求证:PD 是⊙O 的切线. ⑵.求证:2

PD PB PA =?

⑶.若PD=4,

1

tan

2

CDB

∠=,求直径AB的长.

23. (本题8分)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.

⑴.求证:△ACB∽△CDB;

⑵.若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.

24. (本题10分)如图,在平面直角坐标系中,已知A(8,0),B(0,6),圆M经过原点O及点A、B.

⑴.求圆M的半径及圆心M的坐标;

⑵.过点B作圆M的切线l,求直线l的解析式;

⑶.∠BOA的平分线交AB于点N,交圆M于点E,求点N的坐标和线段OE的长.

A

B E

M

N ?

O x

y

中考数学-圆的切线证明方法

专题-------圆的切线证明 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M,求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. D ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC,

∴∠1=∠2. ∵DM ⊥AC , ∴∠2+∠4=900 ∵OA=OD , ∴∠1=∠3. ∴∠3+∠4=900. 即OD ⊥DM. ∴DM 是⊙O 的切线 例2 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上. 求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD , ∴OB=BC=BD. ∴OC ⊥CD. ∴DC 是⊙O 的切线. 例3 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP . 求证:PC 是⊙O 的切线. C D

证明:连结OC ∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP , OC OP OD OC . 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线. 二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例4 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 证明一:连结DE ,作DF ⊥AC ,F 是垂足.

中考数学专题训练圆专题复习

——圆 ◆知识讲解 一.圆的定义 1、在一个平面内,线段OA绕着它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。 2、圆是到定点的距离等于定长的所有点的集合。 3、确定一个圆需要两个要素:一是位置二是大小,圆心确定其位置,半径确定其大小。 4、连接圆上任意两点的线段叫弦,经过圆心的弦叫直径。圆上任意两点间的部分叫做圆弧,简称弧。以A、B为端点的弦记作“圆弧AB”,或者“弧AB”。大于半圆的弧叫作优弧(用三个字母表示,如ABC)叫优弧;小于半圆的弧(如AB)叫做劣弧。 二、垂直于弦的直径、弧、弦、圆心角 1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弦。 2、垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 3、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 在同圆或等圆中,等弧所对的圆心角相等。 在等圆中,弦心距相等的弦相等。 三、圆周角 1、定义:顶点在圆上,并且角的两边和圆相交的角。 2、定理:一条弧所以的圆周角等于这条弧所对的圆心角的一半。 3、推论:(1)在同圆或等圆中,同弧或等弧所以的圆周角相等。 (2)直径所对的圆周角是直角,90°的圆周角所对的弦是直径。 四、点和圆的位置关系 1、设⊙O的半径为r,点到圆心的距离为d。 则d>r ?点在圆外,d=r ?点在圆上,d

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

2019年中考数学圆专题复习试卷含详解

2018-2019学年初三数学专题复习圆 一、单选题 1.下列说法,正确的是( ) A. 半径相等的两个圆大小相等 B. 长度相等的两条弧是等弧 C. 直径不一定是圆中最长的弦 D. 圆上两点之间的部分叫做弦 2.如图,在⊙O中,∠ABC=50°,则∠AOC等于() A. 50° B. 80° C. 90° D. 100° 3.已知⊙O的半径为5,A为线段OP的中点,当OP=6时,点A与⊙O的位置关系是( ) A. 点A在⊙O内 B. 点A在⊙O上 C. 点A在⊙O外 D. 不能确定 4.如果两圆半径分别为5和8,圆心距为3,那么这两个圆的位置关系是() A. 外离 B. 外切 C. 相交 D. 内切 5. 两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是() A. 内含 B. 内切 C. 相交 D. 外切 6.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为()。 A. B. C. D. 7.钝角三角形的外心在() A. 三角形的内部 B. 三角形的外部 C. 三角形的钝角所对的边上 D. 以上都有可能 8.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为() A. 5πcm B. 6πcm C. 8πcm D. 9πcm 9.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于( ) A. 6π B. 9π C. 12π D. 15π 10.直线a上有一点到圆心O的距离等于⊙O的半径,则直线a与⊙O的位置关系是() A. 相离 B. 相切 C. 相交 D. 相切或相交 11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠DAC等于()

深圳中考数学专题--圆

2017届深圳中考数学专题——圆 一.解答题(共30小题) 1.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长.

4.如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM. (1)求证:AD是⊙O的切线; (2)若sin∠ABM=,AM=6,求⊙O的半径. 5.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O 于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径.

6.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 8.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED. (1)若∠B+∠FED=90°,求证:BC是⊙O的切线; (2)若FC=6,DE=3,FD=2,求⊙O的直径. 9.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E. (1)判断DF与⊙O的位置关系,并证明你的结论; (2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).

6.中考数学圆的综合证明题

中考复习——圆的综合证明题 1.如图,在Rt△ABC中, ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O (1)求证:AB是⊙O的切线. (2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=1 2 ,求 AE AC 的值. (3)在(2)的条件下,设⊙O的半径为3,求AB的长. 4.如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点. (1)请直接写出∠COD的度数; (2)求AC?BD的值; 5.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B; (2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求tan∠CFE的值; 6.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.

(1)判断BD 与⊙O 的位置关系,并说明理由; (2)若CD =15,BE =10,tanA=512 ,求⊙O 的直径. 7.如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与OD 交于点F ,连接DF , DC .已知OA =OB ,CA =CB ,DE =10,DF =6. (1)求证:①直线AB 是⊙O 的切线;②∠FDC =∠EDC ; (2)求CD 的长. 8.如图,在Rt ABC 中,∠C =90°,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,与AC ,AB 分别相 交于点E ,F ,连接AD 与EF 相交于点G . (1)求证:AD 平分∠CAB (2)若OH ⊥AD 于点H ,FH 平分∠AFE ,DG =1. ①试判断DF 与DH 的数量关系,并说明理由; ②求⊙O 的半径. 10.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径, OD ⊥AB 于点O ,分别交AC 、CF 于点E 、 D ,且D E =DC . A B C D E F G H O

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 D C B A O C B

3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan F ,求DE 的长。 M N E D C B A O

5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

中考数学圆专题练习

中考数学圆 专题练习-- 一、选择题 1.(2010年 湖里区 二次适应性考试)已知半径分别为5 cm 和8 cm 的两圆相交,则它们的圆心距可能是( ) A .1 cm B .3 cm C .10 cm D .15 cm 答案:C 2.(2010年教育联合体)如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论 正确的个数是( ) ①AD ⊥BC ,②∠EDA =∠B ,③OA = 1 2AC ,④DE 是⊙O 的切线. A .1个 B .2个 C .3个 D .4个 答案:D 3.(2010安徽省模拟)如图,AB 是⊙O 的直径,点D 、E 是圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则 ⊙O 中阴影部分的面积是( ) A .433π- B .2 3π C .2 23 π- D .1 3 π 答案:A 4.(2010年重庆市綦江中学模拟1).在直角坐标系中,⊙A 、⊙B 的 位置如图所示.下列四个点中,在⊙A 外部且在⊙B 内部的是( ) A.(1,2) B.(2,1). C.(2,-1). D.(3,1) 答案C 5.(2010年聊城冠县实验中学二模)如下图,将半径为2cm 的圆形纸片 第4题图 O D B C E A 第3题 A O B C D E

折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cm C .32cm D .52cm 答案C 6.(2010年广州市中考六模)、如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( ) A. 2 9cm π B. 2 18cm π C. 2 27cm π D. 2 36cm π 答案:B 7.(2010年广州市中考六模)如图,已知⊙O 的弦AB 、CD 相交于点E , 的度数为60°, 的度数为100°,则∠AEC 等于( ) A. 60° B. 100° C. 80° D. 130° 答案:C 8.(2010年广西桂林适应训练)如图,圆弧形桥拱的跨度AB = 12米,拱高CD =4米,则拱桥的半径为( ). A.6.5米 B.9米 C.13米 D.15米 答案:A 9.(2010年广西桂林适应训练)如图,BD 是⊙O 的直径,∠CBD=30o , 则∠A 的度数为( ).[来 A.30o B.45o C.60o D.75o 答案:C 10.(2010山东新泰)已知⊙O 1的半径为5cm ,⊙O 2的半径为3cm ,圆心距O 1O 2=2,那么⊙O 1与⊙O 2的位置关系是( ) A .相离 B .外切 C .相交 D .内切 答案:D 11.(2010年济宁师专附中一模)如图,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路 7题图 8题图 9题图

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

中考数学专题:圆.(学生版)

中考数学试题专题复习:圆 【学生版】 一、选择题 1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切 2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 A 、相交 B 、外切 C 、外离 D 、内含 3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点, 过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于 A 、30° B 、60° C 、45° D 、50° 4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC∥AB,BC=1, AB=AC=AD=2.则BD 的长为 A. 14 B. 15 C. 32 D. 23 5.(内蒙古呼伦贝尔3分)⊙O 1的半径是cm 2,⊙2的半径是cm 5,圆心距是cm 4,则两圆的位置关系为 A. 相交 B. 外切 C.外离 D. 内切 6.(内蒙古呼伦贝尔3分)如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点, 则线段OM 长的最小值为. A. 5 B. 4 C. .3 D. 2 7.(内蒙古呼伦贝尔3分)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上 ,∠BOD=110°, AC∥OD,则∠AOC 的度数 A. 70° B. 60° C. 50° D. 40° 8.(内蒙古乌兰察布3分)如图, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD , 如果∠BOC = 700 ,那么∠A 的度数为 A 70 0 B. 350 C. 300 D . 200 17.填空题 1.(天津3分)如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.OB⊥AD,交AC 于点B .若OB=5,则BC 的长等于 ▲ 。

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单” 一.名称由来 在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。 正所谓:有“圆”千里来相会,无“圆”对面不相逢。“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。一旦“圆”形毕露,则答案手到擒来! 二.模型建立 【模型一:定弦定角】 【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】 【模型三:直角所对的是直径】 【模型四:四点共圆】 ` 三.模型基本类型图形解读 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 四.“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。五.“隐圆”题型知识储备

3 六.“隐圆”典型例题 【模型一:定弦定角】 1.(2017 威海)如图 1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足 ∠PAB=∠ACP,则线段P B 长度的最小值为_ 。 简答:因为∠PAB=∠PCA,∠PAB+∠PAC=60°,所以∠PAC+∠PCA=60°,即∠APC=120°。因为A C定长、∠APC=120°定角,故满足“定弦定角模型”,P在圆上,圆周角∠APC=120°,通过简单推导可知圆心角∠AOC=60°,故以AC 为边向下作等边△AOC,以O 为圆心,OA 为半径作⊙O,P在⊙O 上。当B、P、O三点共线时,BP最短(知识储备一:点圆距离), 此时B P=2 -2 2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。

中考数学圆的证明讲义

【2017】23.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时. (1)求弦AC的长; (2)求证:BC∥PA. 【2016】23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF ∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G. 求证: (1)FC=FG; (2)AB2=BC?BG.

【2014】23、(本题满分是8分) 如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C. (1)求证:AD平分∠BAC; (2)求AC的长。 A B D O C (第23题图)

【2013】23、(本题满分8分)如图,直线l 与⊙O 相切于点D ,过圆心O 作EF ∥l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF,并分别延长交直线l 于B 、C 两点, (1)求证:∠ABC+∠ACB=0 90 (2)当⊙O 得半径R=5,BD=12时,求tan ACB 的值. 【2012】23.(8分)如图,PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N . (1)求证:OM=AN ; (2)若⊙O 的半径R=3,PA=9,求OM 的长. (第23题图)

【2011】23.(本题满分8分)如图,在△ABC 中,0 60B =∠,⊙O 是△ABC 外接圆,过点A 作的切线,交CO 的延长线于P 点,CP 交⊙O 于D (1) 求证:AP=AC (2) 若AC=3,求PC 的长 【2010】23.如图,在RT △ABC 中∠ABC=90°,斜边AC 的垂直平分线交BC 与D 点,交AC 与E 点,连接BE (1)若BE 是△DEC 的外接圆的切线,求∠C 的大小? (2)当AB=1,BC=2是求△DEC 外界圆的半径

中考数学圆的综合-经典压轴题附答案解析

中考数学圆的综合-经典压轴题附答案解析 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD 是直径, ∴∠DBC=90°, ∵CD=4,B 为弧CD 中点, ∴BD=BC= , ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB , ∵∠DBE=∠DBA , ∴△DBE ∽△ABD , ∴ , ∴BE?AB=BD?BD= . 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重 合),且四边形BDCE 为菱形. (1)求证:AC=CE ; (2)求证:BC 2﹣AC 2=AB?AC ; (3)已知⊙O 的半径为3. ①若AB AC =5 3 ,求BC 的长; ②当 AB AC 为何值时,AB?AC 的值最大? 【答案】(1)证明见解析;(2)证明见解析;(3)2;② 32

中考数学 圆的证明及计算

圆的证明与计算 1、如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E. (1)求证:DE是⊙O的切线; (2)当DE=1,∠C=30°时,求图中阴影部分的面积. 2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC. (1)求证:PA是⊙O的切线; (2)若⊙O的半径为3,求阴影部分的面积. 3、如图,以AB为直径作半圆O,点C为半圆上与A,B不重合的一动点,过点C作CD⊥AB 于点D,点E与点D关于BC对称,BE与半圆交于点F,连CE. (1)判断CE与半圆O的位置关系,并给予证明. (2)点C在运动时,四边形OCFB的形状可变为菱形吗?若可以,猜想此时∠AOC的大小,并证明你的结论;若不可以,请说明理由.

4、已知:如图,△ABC中,内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE. (1)求证:BF与⊙O相切; (2)若BF=5,cosC=,求⊙O的半径. 5、如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B. (1)求证:DA是⊙O切线; (2)求证:△CED∽△ACD; (3)若OA=1,sinD=,求AE的长. 6、如图所示,AB为半圆O的直径,点D是半圆弧的中点,半径OC∥BD,过点C作AD 的平行线交BA延长线于点E. (1)判断CE与半圆OD的位置关系,并证明你的结论. (2)若BD=4,求阴影部分面积.

7、如图,△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F. (1)求证:AC是⊙O的切线. (2)若∠C=30°,连接EF,求证:EF∥AB; (3)在(2)的条件下,若AE=2,求图中阴影部分的面积. 8、如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D. (1)判断直线BC与⊙O的位置关系,并说明理由; (2)若AC=3,∠B=30°. ①求⊙O的半径; ②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

中考数学圆综合题(含答案)

一.圆地概念 集合形式地概念:1. 圆可以看作是到定点地距离等于定长地点地集合; 2.圆地外部:可以看作是到定点地距离大于定长地点地集合; 3.圆地内部:可以看作是到定点地距离小于定长地点地集合 轨迹形式地概念: 1.圆:到定点地距离等于定长地点地轨迹就是以定点为圆心,定长为半径地圆; (补充)2.垂直平分线:到线段两端距离相等地点地轨迹是这条线段地垂直平分线(也叫中垂线); 3.角地平分线:到角两边距离相等地点地轨迹是这个角地平分线; 4.到直线地距离相等地点地轨迹是:平行于这条直线且到这条直线地距离等于定长地两条直线; 5.到两条平行线距离相等地点地轨迹是:平行于这两条平行线且到两条直线距离都相等地一条直线. 二.点与圆地位置关系 1.点在圆内?d r?点A在圆外; 三.直线与圆地位置关系 1.直线与圆相离?d r>?无交点; 2.直线与圆相切?d r=?有一个交点; 3.直线与圆相交?d r+; A

外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 图1 五.垂径定理 垂径定理:垂直于弦地直径平分弦且平分弦所对地弧. 推论1:(1)平分弦(不是直径)地直径垂直于弦,并且平分弦所对地两条弧; (2)弦地垂直平分线经过圆心,并且平分弦所对地两条弧; (3)平分弦所对地一条弧地直径,垂直平分弦,并且平分弦所对地另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论. 推论2:圆地两条平行弦所夹地弧相等. 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六.圆心角定理 图2 图4 图5 B D

[全]中考数学有关圆的证明与计算题型解析

中考数学有关圆的证明与计算题型解析 有关圆的证明与计算涉及到的主要知识点有圆周角定理、垂径定理、解直角三角形、 特殊四边形的判定与性质、特殊三角形的性质、全等与相似三角形的判定与性质等. 本节主要对其相应的题型总结归纳如下: 类型一、切线的性质 【例题1】如图,已知AB 是⊙O 的直径,P 是AB 延长线上一点,PC 与⊙O 相切于点C, 过点C 作CE⊥AB,交⊙O 于点E,垂足为点D. (1) 求证:∠PCB=∠BAC; (2) 过点B 作BM∥PC 交⊙O 于点M,交CD 于点N,连接AM . ①求证:CN=BN; ②若cos P = 4/5 , CN = 5 , 求AM 的长 .

例题1图 【参考答案】 (1)证明:如解图1 所示,连接OC,交BM 于点F . 解图1 ∵PC 是⊙O 的切线, ∴OC⊥PC . ∴∠PCO=90°. ∴∠PCB+∠BCO=90°. ∵AB是⊙O的直径, ∴∠ACB=90°. ∴∠ACO+∠BCO=90°.

∴∠PCB=∠ACO. ∵OC=OA, ∴∠ACO=∠BAC. ∴∠PCB=∠BAC. (2) 例题1图①证明: ∵BM∥PC, ∴∠CBM=∠PCB. ∵CE⊥AB, ∴︵BC=︵BE . ∴∠BAC=∠BCE. ∵∠PCB=∠BAC, ∴∠BCE=∠PCB=∠CBM.

∴CN=BN. ②解: 例题1图∵BM∥PC, ∴∠MBA=∠P. ∴cos ∠MBA=cos P=4/5 . 在Rt △BDN 中, cos ∠MBA=BD / BN=4/5,BN=CN=5,∴BD=4. ∴CD=CN+ND=8. 在Rt △OCD 中,设OC=r, 则OD=OB-BD=r-4.

相关文档
最新文档