铁路线路的平面和纵断面

铁路线路的平面和纵断面
铁路线路的平面和纵断面

第二节铁路线路的平面和纵断面(于本章最后讲)

铁路线路在空间的位置是用它的中心线来表示的。线路中心线是指距外轨半个轨距的铅垂线 AB 与两路肩边缘水平连线 CD 交点 O 的纵向连线。如下图所示:

线路横断面

线路中心线在水平面上的投影,叫做铁路线路的平面,表明线路的直、曲变化状态;线路中心线展直后在铅垂面上的投影,叫铁路线路的纵断面,表明线路的坡度变化。

一、铁路线路的平面及平面图

线路的平面由直线、圆曲线以及连接直线与圆曲线的缓和曲线组成。

(一)曲线

铁路线路在转向处所设的曲线为圆曲线,其基本组成要素有:曲线半径 R ,曲线转角α,曲线长 L ,切线长度 T ,如下图所示:

圆曲线要素

在线路设计时,一般是先设计出α和 R,在按下式计算出T及L:

曲线半径愈大,行车速度愈高,但工程量愈大,工程费用愈高。

(二)缓和曲线

为保证列车安全,使线路平顺地由直线过渡到圆曲线或由圆曲线过渡到直线,以避免离心力的突然产生和消除,常需要在直线与圆曲线之间设置一个曲率半径变化的曲线,这个曲线称为缓和曲线,如下图所示为设有缓和曲线的铁路曲线。

铁路曲线

缓和曲线的特征为:从缓和曲线所衔接的直线一端起,它的曲率半径ρ由无穷大逐渐减小到它所衔接的圆曲线半径 R 。它可以使离心力逐渐增加或减小,不致造成列车强烈的横向摇摆,如图所示。

离心力变化示意图

(三)夹直线

两相邻曲线,转向相同,称为同向曲线;转向相反,称为反向曲线。两条相邻曲线间应设置一定长度的直线,以保证列车运行的平稳,如下图所示。车辆运行在同向曲线上,因相邻曲线半径不同,超高高度不同,车体内倾斜度不同;车辆运行在反向曲线上,因两曲线超高方向不同,车体时而向左倾斜,时而向右倾斜。这两种情况都会造成车体摇晃震动。夹直线愈短,摇晃振动愈大。

相邻曲线间的夹直线

根据运营实践,为保证旅客舒适,夹直线长度应保持 2 ~ 3 辆客车长度,困难条件下,也不应短于 1 辆客车长度。因此《铁路线路设计规范》规定各级铁路线路两相邻曲线间夹直线最小长度,如下表所示。

表各级铁路线路两相邻曲线夹直线最小长度

在行车速度较高的线路上,为保证列车运行平稳,夹直线相应要求较长,我国目前规定在最高行车速度 140krnA 的区段,两相邻曲线间的夹直线最小长度,一般地段宜为 90m ,困难地段为60m 。

(四)曲线附加阻力

基本阻力:列车在空旷地段沿平、直轨道运行时所受到的阻力。包括车轴与轴承之间、轮轨之间以及钢轨接头对车轮的撞击阻力等。基本阻力在列车运行时总是存在的。

附加阻力:列车在线路上运行时,受到的额外阻力,如坡道阻力、曲线阻力、起动阻力等。附加阻力随列车运行条件或线路平、纵断面情况而定,阻力方向与列车运行方向相反。

曲线附加阻力:当列车通过曲线时,由于惯性力的作用,外侧车轮轮缘紧压外轨,使其磨耗增大。又由于曲线外轨长于内轨,外轮在外轨上的滑行等原因,运行中的列车所受阻力比在直线上所受阻力大,两者之差称为曲线附加阻力。

列车位于曲线上

曲线附加阻力与列车重量之比,叫单位曲线附加阻力,用( N / KN )来表示,它的大小

通常用试验公式求得:

当曲线长度≥列车长度,列车整列运行在曲线上时

当曲线长度<列车长度,列车只有一部分运行在曲线上时

式中 600 ——实验常数;

R ——曲线半径, m ;

——曲线长度, m ;

l ——列车长度, m 。

同理,列车同时运行在几个曲线上时:

从式中可知,曲线阻力与曲线半径成反比。曲线半径越小,曲线阻力越大,运营条件就越差,说明采用大半径曲线对列车运行的影响较小。而小半径曲线亦具有容易适应地形困难的优点,对工程条件有利。因此,在设计铁路线时必须根据铁路所允许的旅客列车的最高运行速度,由大到小合理地选用曲线半径。为了测设、施工和养护的方便,曲线半径一般应取 50 、 100 米的整倍数,即 10000 、 8000 、 6000 、 50O0 、 4000 、 3000 、 2500 、 2000 、 1800 、 160o 、1400 、 1200 、 1000 、 800 、 700 、 600 、 550 、 500 、 450 、 400 、 350 ;特殊困难条件下,可采用上列半径间 10 米整倍数的曲线半径。

根据可知曲线半径愈小,曲线附加阻力愈大,还会给运营工作带来以下不利影响:

( 1 )限制行车速度。从列车通过曲线的最大允许速度可知,列车通过曲线的最大允许速度与曲线半径的平方根成正比。曲线半径愈小,列车通过曲线的速度受到的限制也愈大。为了保证线路的通过能力,并有一个良好的运营条件,还对区间线路的最小曲线半径做了具体规定,如下表所列。

区间线路最小曲线半径

( 2 )增加轮轨磨耗。列车运行在曲线上时,由于内侧与外侧钢轨长度不等,使车辆的内轮与外轮在钢轨土产生相对纵向滑行,钢轨与轮缘磨耗增加。曲线半径愈小,这种磨耗愈严重。

( 3 )增加轨道设备。列车运行在曲线上时,为防止外轮对外轨挤压而引起的轨距扩大,以及钢轨带动轨枕在道床上的横向移动,对小半径曲线地段的轨道应增加轨枕根数,加设轨距杆、轨撑。

( 4 )增加轨道养护维修费用。小半径曲线地段的轨距、水平、方向都极易发生变位,因此养护维修工作量较大,增加了养护维修费用。

(五)铁路线路平面图

用一定的比例尺,把线路中心线及其两侧的地面情况投影到水平面上,就是铁路线路平面图。

线路平面图和纵断面图是铁路勘测设计、施工和运营的重要文件。

线路平面图

1 、线路平面。图中的粗实线为线路中心线,由图可看出线路的走向及直、曲线情况。该段线路范围包括三段直线、两段曲线,虚线为隧道。

2 、线路里程标和百米标。线路自起点开始每整公里处,注有线路里程标,如 K10 为设计的里程 10km 处。在整百米处,注有百米标数。

3 、曲线要素及起、终点里程。在各曲线内侧平行于线路注有曲线要素。曲线起点 ZH (直缓点)和终点 HZ (缓直点), HY (缓圆点)和 YH (圆缓点)的里程数应垂直于线路标注在曲线内侧。

4 、各种主要建筑物。铁路沿线的桥梁、涵洞、隧道、车站等建筑物,应以规定的图例符号表示,并注明其所在位置的中心里程、类型及有关尺寸等。

5 、地形。图中用等高线来表示铁路线经过地的地面起伏形状。

二、铁路线路的纵断面及纵断面图

线路纵断面由平道、坡道及设于变坡点处的竖曲线组成。

(一)坡道的坡度及竖曲线

坡度是一段坡道两端点的高差 h 与水平距离 L 之比,用i ‰表示,如下图所示。

坡道坡度及坡道附加阻力示意图

i ——坡度值;

——坡道段线路中心线与水平线夹角。

铁路线路根据地形的变化,有上坡、下坡和平道。上、下坡是按列车运行方向来区分的,通常用“+”号表示上坡,用“ ̄”号表示下坡,平道用“ 0 ”表示。例如,十 4 ‰是表示线路每 1000m 的水平距离升高 4m ;- 4 ‰则表示线路每 1000m 的水平距离降低 4m 。

线路纵断面上坡度的变化点,叫变坡点。相邻变坡点间的距离,叫坡段长度。从运营角度来看,纵断面坡段应尽量长些,以利行车平顺和减少变坡点。但也应考虑地形条件及工程量的大小。一般情况下,纵断面坡段长度不短于远期列车长度的一半,使一个列车长度范围内不超过两个变坡点,以减少变坡点附加力的叠加影响所引起列车运行的不平稳。

车辆经过变坡点时,将产生振动和竖向加速度,引起旅客不舒适,同时由于坡度变化,车钩会产生一种附加应力,车辆经过凸凹地点时,相邻车辆处在不同坡道上,易产生车钩上下错移。当相邻坡段坡度代数差过大,附加应力过大,两车钩上下错移量过大,可能发生断钩、脱钩等事故,因此当相邻坡段的坡度代数差超过一定数值,为保证列车运行平稳,防止脱钩、断钩,应在相邻坡段间用一圆顺曲线连接,使列车顺利地由一个坡段过渡到另一个坡段,这个纵断面上变坡点处所设的曲线,叫做竖曲线。

车辆经过变坡点的状态

《铁路线路设计规范》规定:线路相邻坡段坡度代数差的绝对值 I 、Ⅱ级铁路大于 3 ‰,Ⅲ级铁路大于 4 ‰时,应以竖曲线连接。其竖曲线半径 I 、Ⅱ级铁路 R = 10000m ,Ⅲ级铁路 R =5000m 。

圆曲线形竖曲线

由上图可知,竖曲线切线长 Ts 为:

式中——相邻坡段坡度代数差的绝对值。

竖曲线曲线长( Ls ):Ls ≈ 2Ts ( m )

(二)坡道附加阻力

列车在坡道上行驶时其重置 Q 可以分解为 F1 和 F2 两个分力, F2 平行于坡面即为坡道的坡度引起的坡道附加阻力,用 Wi 来表示。

( N )

坡道附加阻力与列车重量之比,叫做单位坡道附加阻力,用来表示。当列车整列位于坡道上

时:

当列车一部分位于坡道上,而另一部分位于平道上时:

列车在线路上运行,有时上坡,有时下坡,所以坡道附加阻力也有正、负。上坡时,坡道附加阻力与列车运行方向相反,坡道附加阻力为正;下坡时,坡道附加阻力与列车运行方向相同,坡道附加阻力为负,负阻力也就是加速力。

(三)换算坡度

如果在坡道上有曲线,列车在坡道上运行时所遇到的单位附加阻力应为单位曲线附加阻力与单位坡道附加阻力之和。由于曲线附加阻力无负值,而坡道附加阻力有正、负之分,所以总单位附加阻力:

( N / KN )

根据前述的( N / kN )的对应关系,将总的单位附加阻力换算为坡度,则有

如此求得的坡度,称为换算坡度,又称加算坡度。由此可知,当坡道上有曲线时,列车上坡运行时坡道就显得更陡;而下坡运行时,坡道则显得更缓了。

【例题】试按下图所示资料(列车长 800m ),求列车运行在 BC 段的换算坡度?

解:列车上坡运行时的列车下坡运行时的

答: BC 段的换算坡度上坡时为 6.30 ‰,下坡时为 5.70 ‰。

【例题】《技规》规定:进站信号机外、制动距离内,进站方向为超过 6 ‰的下坡道,而接车线末端无隔开设备时,禁止办理相对方向同时接车和同方向同时发接列车。试按下图所示,检算该站能否办理相对方向同时接车和同方向同时发接列车作业?

某站线路平面图

解:制动距离按 800m 考虑时制动距离内进站方向的单位坡道附加阻力为:

制动距离内的单位曲线附加阻力为:

制动距离内的换算坡度为:

答:该站进站信号机外制动距离内,进站方向的换算坡度为 5.711 ‰的下坡道,没超过 6 ‰的规定,可以办理相对方向同时接车和同方向同时发接列车作业。

(四)限制坡度

限制坡度()是指在一个区段上,用一台机车牵引规定重量的货物列车,以规定的计算速度作等速运行时所能爬上的最大坡度。它是铁路主要技术标准之一。

如果在坡道上又有曲线那么这一坡道的坡道阻力值和曲线阻力值之和,不能大于该区段规定的限

制坡度的阻力值,即:

一条铁路线路的限制坡度愈小,机车牵引重量将愈大,运营效率亦愈高。但采用过小的限坡,又可能造成土石方工程量的过大,提高线路造价。因此,按我国《铁路技术管理规程》,线路的限制坡度应根据铁路等级、地形类别和牵引种类比选确定,并应与其衔接铁路的限制坡度、牵引定数相协调,且其数值不应大于下表的规定。

区间线路最大限制坡度(‰)

在个别越岭地段,采用限制坡度会引起巨大工程时,经过比选,也可以采用比限制坡度更陡的坡度,在牵引重量不变的条件下,采用两台或多台机车牵引,这种坡度称为加力牵引坡度。加力牵引坡度值应根据限制坡度、采用的机车类型和加力牵引方式计算确定。根据我国铁路运营经验:加力牵引坡度最大值,内燃机车牵引不超过25 ‰,电力机车牵引不超过30 ‰。

(五)铁路线路纵断面图

线路纵断面图是用一定的比例尺(水平方向为 1:10000 、垂直方向为 1:1000 )和规定的符号,把平面图上的线路中心线展直后投影到铅垂面上,并注有线路平面和纵断面有关资料的图,如下图所示:

线路纵断面图

线路纵断面图由图和资料两部分内容组成。

图的部分表示线路纵断面概貌和沿线主要建筑物特征。图中细实线为地面线,粗实线为设计线。设计线上方数字为路基填方高度,下方数字为路基挖方深度( m )。路基填挖高度等于地面标高与路肩设计标高之差。图上还用符号和数字注明各主要建筑的位置、类型和有关尺寸。

1 、连续里程:一般以线路起点车站的旅客站房中心为零起算,在每一整公里处注明里程。

2 、线路平面。线路平面是表示线路直、曲变化的示意图。凸起部分表示右偏角曲线,凹下部分表示左偏角的曲线,凸起与凹下的斜线转折点依次为 ZH 、 HY 、 YH 、 HZ 点。在 ZH 和 HZ 点处注有距前百米标的距离。曲线要素应注于曲线内侧。两相邻曲线间的水平线为直线段。从纵断面上可看出曲线所在处的坡度的情况。

3 、百米标及加标。在两公里标之间的整百米处注百米标数。在百米标之间地形突变点应标注加标其数字为距前百米标的距离。

4 、地面标高。在百米标和加标处标注地面标高。

5 、设计坡度。竖直线表示变坡点,两竖线间向上或向下的斜线、水平线分别表示上坡或下坡和平道。线上所注数字为坡度值(‰),线下所注数字为坡段长度( m )。

6 、路肩设计标高。在各变坡点、百米标、加标处标注上路肩设计标高,精度为 0.01m 。

7 、工程地质特征。扼要填写沿线各路段重大不良地质现象、主要地层构造等情况。

三、线路标志

为满足行车和线路养护维修的需要,在铁路沿线设有许多用来表明铁路建筑物及设备位置和技术状态的标志。线路标志应设在线路里程增加方向的左侧机车车辆限界以外,距钢轨头部外侧不小于 2 m 处。曲线标等不超过钢轨顶面的标志,为不妨碍某些特种车辆(如除雪车、底开门车等)在工作状态时顺利通过,可设在距钢轨头部外侧不小于 1.35m 处。

铁路线路平面图和纵面图

铁路线路的平面和纵断面 一、铁路线路的平面及平面图 一条铁路线路在空间的位置是用它的线路中心线表示的。中心线点的位置是在路肩连线CD的中点O,如图2-1-2所示。 图2-1-2铁路线路中心线点的位置 (一)铁路线路平面的组成要素 线路中心线在水平面上的投影,叫做铁路线路的平面;线路中心线(展直后)在垂直面上的投影,叫做铁路线路的纵断面。 从运营的观点来看,最理想的线路是既直又平的线路。但是天然地面情况复杂多变(有山、水、沙漠、森林、矿区、城镇等障碍物和建筑物),如果把铁路修得过于平直,就会造成工程数量和工程费用大,且工期长,这样既不经济,又不合理,有时也不现实。从工程的角度来看,铁路线路最好是随自然地形起伏变化,这样,既可以减少工程数量、降低造价,甚至可以缩短工期。但是这会给列车运营造成很大困难,甚至影响铁路行车的安全与平稳。 选定铁路线路的空间位置,应该综合考虑工程和运营的要求,通过方案比较,在满足运营基本要求的前提下,尽量减少工程量,降低造价。如某条铁路经过A、B、C三点(图2-1-3),如果把AB和BC分别用直线连接起来,那么在AB之间要建筑两座桥梁,在BC 之间要开凿一座隧道。在工程上是不合理、不经济的,而应分别用折线ADB和BEC来代替。在折线的转角处,则用曲线来连接。因此,直线和曲线就成为线路平面的组成要素。

图2-1-3铁路线路绕避地形障碍示意图 (二)曲线附加阻力与曲线半径 列车在线路上运行,总会受到各种阻力。阻力方向与列车运行方向相反。归纳起来,阻力主要有两大类。 1.基本阻力 基本阻力是指列车在空旷地段沿平、直轨道运行时所受到的阻力。包括车轴与轴承之间的摩擦阻力、轮轨之间的摩擦阻力,以及钢轨接头对车轮的撞击阻力等。基本阻力在列车运行时总是存在的。 2.附加阻力 附加阻力是列车在线路上运行时,除基本阻力外所受到的额外阻力。如坡道阻力、曲线阻力、起动阻力等。附加阻力随列车运行条件或线路平、纵断面情况而定。 线路平面上有了曲线(弯道)后,给列车运行造成阻力增大和限制列车速度等不良影响。列车通过曲线时,由于离心力的作用,使外侧车轮轮缘和外轨内侧的挤压摩擦增大;同时还由于曲线外轨长于内轨,内侧车轮在轨面上滚动时产生相对滑动,从而给运行中的列车造成一种附加阻力,称为曲线阻力。曲线阻力的大小,我国通常用下面的试验公式来计算,即: 式中ω r——单位曲线阻力(牛/千牛),即列车每一吨重量所摊曲线附加阻力值; R——曲线半径(米); 600——根据试验数据得出的常数。 这一公式适用于曲线长度大于或等于列车长度的情况。从式中可知,曲线阻力与曲线半径成反比。曲线半径越小,曲线阻力越大,运营条件就越差,说明采用大半径曲线对列车运行的影响较小。而小半径曲线亦具有容易适应困难地形的优点,对工程条件有利。因此,在设计铁路线时必须根据铁路所允许的旅客列车的最高运行速度,由大到小合理的选用曲线

城市道路设计规范平面与纵断面设计

城市道路设计规范平面与纵断面设计热★★★ 浏览: 809 更新时间:2010-5-26 10:04:21 平面设计应符合下列原则: 一、道路平面位置应按城市总体规划道路网布设。 二、道路平面线形应与地形、地质、水文等结合,并符合各级道路的技术指标。 三、道路平面设计应处理好直线与平曲线的衔接,合理地设置缓和曲线、超高、加宽等。 四、道路平面设计应根据道路等级合理地设置交叉口、沿线建筑物出入口、停车场出入口、分隔带断口、公共交通停靠站位置等。 五、平面线形标准需分期实施时,应满足近期使用要求,兼顾远期发展,减少废弃工程。 第5.1.2条直线、平曲线的布设与连接宜符合下列规定: 一、计算行车速度大于或等于60km/h时,直线长度宜满足下列要求: 1.同向曲线间的最小直线长度(m)宜大于或等于计算行车速度(km/h)数值的六倍。 2.反向曲线间的最小直线长度(m)宜大于或等于计算行车速度(km/h)数值的二倍。 当计算行车速度小于60km/h,地形条件困难时,直线段长度可不受上述限制,但应满足设置缓和曲线最小长度的要求。 二、计算行车速度大于或等于40km/h时,半径不同的同向圆曲线连接处应设置缓和曲线。受地形限制并符合下述条件之一时,可采用复曲线。 1.小圆半径大于或等于不设缓和曲线的最小圆曲线半径; 2.小圆半径小于不设缓和曲线的最小圆曲线半径,但大圆与小圆的内移值之差小于或等于0.1m; 3.大圆半径与小圆半径之比值小于或等于1.5。 三、计算行车速度大于或等于40km/h时,长直线下坡尽头的平曲线半径应大于或等于不设超高的最小半径。在难以实施地段,应采取防护措施。

铁路线路平面图和纵面图

铁路线路的平面与纵断面 一、铁路线路的平面及平面图 一条铁路线路在空间的位置就是用它的线路中心线表示的。中心线点的位置就是在路肩连线CD的中点O,如图2-1-2所示。 图2-1-2铁路线路中心线点的位置 (一)铁路线路平面的组成要素 线路中心线在水平面上的投影,叫做铁路线路的平面;线路中心线(展直后)在垂直面上的投影,叫做铁路线路的纵断面。 从运营的观点来瞧,最理想的线路就是既直又平的线路。但就是天然地面情况复杂多变(有山、水、沙漠、森林、矿区、城镇等障碍物与建筑物),如果把铁路修得过于平直,就会造成工程数量与工程费用大,且工期长,这样既不经济,又不合理,有时也不现实。从工程的角度来瞧,铁路线路最好就是随自然地形起伏变化,这样,既可以减少工程数量、降低造价,甚至可以缩短工期。但就是这会给列车运营造成很大困难,甚至影响铁路行车的安全与平稳。 选定铁路线路的空间位置,应该综合考虑工程与运营的要求,通过方案比较,在满足运营基本要求的前提下,尽量减少工程量,降低造价。如某条铁路经过A、B、C三点(图2-1-3),如果把AB与BC分别用直线连接起来,那么在AB之间要建筑两座桥梁,在BC之间要开凿一座隧道。在工程上就是不合理、不经济的,而应分别用折线ADB与BEC来代替。在折线的转角处,则用曲线来连接。因此,直线与曲线就成为线路平面的组成要素。

图2-1-3铁路线路绕避地形障碍示意图 (二)曲线附加阻力与曲线半径 列车在线路上运行,总会受到各种阻力。阻力方向与列车运行方向相反。归纳起来,阻力主要有两大类。 1、基本阻力 基本阻力就是指列车在空旷地段沿平、直轨道运行时所受到的阻力。包括车轴与轴承之间的摩擦阻力、轮轨之间的摩擦阻力,以及钢轨接头对车轮的撞击阻力等。基本阻力在列车运行时总就是存在的。 2、附加阻力 附加阻力就是列车在线路上运行时,除基本阻力外所受到的额外阻力。如坡道阻力、曲线阻力、起动阻力等。附加阻力随列车运行条件或线路平、纵断面情况而定。 线路平面上有了曲线(弯道)后,给列车运行造成阻力增大与限制列车速度等不良影响。列车通过曲线时,由于离心力的作用,使外侧车轮轮缘与外轨内侧的挤压摩擦增大;同时还由于曲线外轨长于内轨,内侧车轮在轨面上滚动时产生相对滑动,从而给运行中的列车造成一种附加阻力,称为曲线阻力。曲线阻力的大小,我国通常用下面的试验公式来计算,即: 式中ω r——单位曲线阻力(牛/千牛),即列车每一吨重量所摊曲线附加阻力值; R——曲线半径(米); 600——根据试验数据得出的常数。 这一公式适用于曲线长度大于或等于列车长度的情况。从式中可知,曲线阻力与曲线半径成反比。曲线半径越小,曲线阻力越大,运营条件就越差,说明采用大半径曲线对列车运行的影响较小。而小半径曲线亦具有容易适应困难地形的优点,对工程条件有利。因此,在设计铁路线时必须根据铁路所允许的旅客列车的最高运行速度,由大到小合理的选用曲线半径。为了测设、施工与养护的方便,曲线半径一般应取50米、100米的整数倍,即12000米、10000

铁路线路及站场习题库

铁路线路及站场题库 第一章路基及桥隧建筑物 1、路基是由()和为确保路基本体能正常使用而必须修建的路基防护加固,排水建筑物等组成。 路基本体 2、铁道路基断面形式包括路堤式,路堑式,(),半堤式,半堑式,半堤半堑式。 不填不挖式 3、常见的路基病害有(),路基冻胀,滑坡和边坡塌方。 翻浆冒泥 4、铁道线路由路基,轨道及()所组成。 桥隧建筑物 5、铁道线路在跨越江河、深谷、公路或其他铁道线路时都要修建()。 桥梁 6、隧道一般由()、衬砌、洞门、避人洞和避车洞几部分组成。 洞身 7、()是埋设在路堤下部的填土中,用以通过水流和行人的建筑物。 涵洞 8、路堤式路基是指线路设计标高高于天然地面,经挖方修筑而成的路基。() 错 9、路基冻胀的整治方法关键是排除地表水和降低地下水位。() 对 10、桥梁所承受的荷载是固定的。()

错 11、桥梁中,每个桥跨两支点间的距离,叫()。 A、桥跨 B、跨度 C、桥长 D、净空 C 12、铁路桥梁按长度分类,若桥长是180米,则该桥是()。 C 13 A B 14 15 16 17 的是涵洞,孔径大于6m的是桥梁。 18、隧道内避人洞和避车洞的作用是什么?如何设置? 避人洞和避车洞指设于隧道内两侧边墙上交错排列的附属建筑物,是为列车通过时便于工作人员、行人及运料小车躲避而修建的。避车洞每隔300m设一个,避人洞在相邻避车洞之间每隔60m设一个。

第二章轨道 1、轨道由钢轨,轨枕,联结零件,道床,道岔和()组成。 防爬设备 2、在线路同一断面处左,右两股钢轨顶面的高差简称()。 水平 3、钢轨工作边纵向的()叫轨道的方向,简称轨向。 平顺程度 ## 4、轨距分为直线轨距和()。 曲线轨距 5、轨道上一般钢轨顶面纵向()的现象叫前后高低,简称高低。 凹凸不平 6、钢轨的类型或强度以()的大致重量来表示。 每米 7、轨枕按用途分主要有普通轨枕,()和岔枕三种。 桥枕 8、曲线轨距加宽时应保持外轨不动,将内轨向曲线中心方向移动。() 对 9、轨距是指两股钢轨头部之间的距离。() 错 10、同一车轴上两车轮之间的距离叫做游间。() 错 11、将钢轨固定在轨枕上,并保持其稳固位置,防止钢轨作相对于轨枕的纵向移动得是()。

铁路线路的平面和纵断面

第二节铁路线路的平面和纵断面(于本章最后讲) 铁路线路在空间的位置是用它的中心线来表示的。线路中心线是指距外轨半个轨距的铅垂线 AB 与两路肩边缘水平连线 CD 交点 O 的纵向连线。如下图所示: 线路横断面 线路中心线在水平面上的投影,叫做铁路线路的平面,表明线路的直、曲变化状态;线路中心线展直后在铅垂面上的投影,叫铁路线路的纵断面,表明线路的坡度变化。 一、铁路线路的平面及平面图 线路的平面由直线、圆曲线以及连接直线与圆曲线的缓和曲线组成。 (一)曲线 铁路线路在转向处所设的曲线为圆曲线,其基本组成要素有:曲线半径 R ,曲线转角α,曲线长 L ,切线长度 T ,如下图所示: 圆曲线要素 在线路设计时,一般是先设计出α和 R,在按下式计算出T及L:

曲线半径愈大,行车速度愈高,但工程量愈大,工程费用愈高。 (二)缓和曲线 为保证列车安全,使线路平顺地由直线过渡到圆曲线或由圆曲线过渡到直线,以避免离心力的突然产生和消除,常需要在直线与圆曲线之间设置一个曲率半径变化的曲线,这个曲线称为缓和曲线,如下图所示为设有缓和曲线的铁路曲线。 铁路曲线 缓和曲线的特征为:从缓和曲线所衔接的直线一端起,它的曲率半径ρ由无穷大逐渐减小到它所衔接的圆曲线半径 R 。它可以使离心力逐渐增加或减小,不致造成列车强烈的横向摇摆,如图所示。 离心力变化示意图 (三)夹直线 两相邻曲线,转向相同,称为同向曲线;转向相反,称为反向曲线。两条相邻曲线间应设置一定长度的直线,以保证列车运行的平稳,如下图所示。车辆运行在同向曲线上,因相邻曲线半径不同,超高高度不同,车体内倾斜度不同;车辆运行在反向曲线上,因两曲线超高方向不同,车体时而向左倾斜,时而向右倾斜。这两种情况都会造成车体摇晃震动。夹直线愈短,摇晃振动愈大。

铁路选线设计线路平面和纵断面设计试题解读

一、单项选择题 1.线路中心线是O 在纵向的连线,该O 点是 [D] A 铁路路基横断面上距内轨半个轨距的铅垂线与路肩水平线的交点 B 铁路道床横断面上距外轨半个轨距的铅垂线与道床顶肩水平线的交点 C 铁路道床横断面上距内轨半个轨距的铅垂线与道床顶肩水平线的交点 D 铁路路基横断面上距外轨半个轨距的铅垂线与路肩水平线的交点 √2.我国铁路基本上多是客货共线铁路,行车速度又不高,缓和曲线线型一般采用 [B] A 曲线型超高顺坡的三次抛物线 B 直线型超高顺坡的三次抛物线 C 曲线型超高顺坡的正弦曲线 D 曲线型超高顺坡七次方曲线 3.在客货共线I 级铁路线路纵断面的变坡点处需考虑设置竖曲线,下列说法正确的是 [C] A. 均需设置竖曲线 B. 当≥?i 3?时需设竖曲线 C. 当 >?i 3?时需设竖曲线 D. 当>?i 4?时需设竖曲线 √4.在I 级铁路的线路纵断面变坡点处,设置竖曲线的条件是 [C] A. 所有变坡点 B. 当 ≥?i 3?时 C. 当>?i 3?时 D. 当>?i 4? 5.某设计线的近、远期货物列车长度分别为 )(LJ L 和)(LY L ;紧坡地段上有一转角为α和半径为R 的圆曲线长Kr ,其所在的坡段长度Li ,若曲线长度小于列车长度,则该坡段的坡度折减值应按下 式计算 [A] A LJ L α5.10 B LY L α5.10 C r K α105 D R 600 √6.已知相邻两坡段的坡度分别为 1i 和2i ,则对应变坡点处的坡度差=?i [C] A 21i i - B 12i i - C ||21i i - D ||||21i i - 7.《线规》中规定的坡度代数差允许值是以下列那种参数作为拟定的参数 [A] A 远期到发线有效长 B 近期到发线有效长 C 铁路等级 D 重车方向的限制坡度 8.新线纵断面设计时,确定一般路段的最小坡段长度应依据 [D] A. 近期货物列车长度 B. 远期货物列车长度 C. 近期到发线有效长 D. 远期到发线有效长 √√9.线路平面上两相邻曲线间的夹直线长度是指 [B] A. ZY1到ZY2之间的距离 B. HZ1到ZH2之间的距离 C. HZ1到ZY2之间的距离 D.YZ1到ZH2之间的距离 √10.曲线最大坡度折减时,要判断圆曲线长度K R 是否大于列车长度L L ,此处的L L 是指[A]。 A 近期货物列车长度 B 远期货物列车长度 C 近期到发线有效长 D 远期到发线有效长 11.曲线地段最大坡度折减范围应是 [B] A. 缓和曲线加圆曲线范围 B. 未加设缓和曲线前的圆曲线范围 C. 圆曲线加两端半个缓和曲线长度范围 D. 圆曲线加前端半个列车长度范围 √12.为了便于排水,线路上长大路堑段的纵断面设计坡度不宜小于 [C] A. 5? B. 3? C. 2? D. 4? √13.线路上的长大路堑内和隧道内的设计坡度分别不宜小于 [B]。 A 4?,3? B 2?,3? C 3?,2? D 3?,4? 14.需要进行隧道最大坡度折减的地段是:位于长大坡道上且隧道长度大于 [B] A 300m B 400m C 500m D 1000m

选线设计教案-3.线路平面和纵断面设计解读

选线设计课程教案单元标题线路平面和纵断面设计单元学时10 教学目标: 了解铁路线路平面、纵断面设计的基本内容;通过平面纵断面略图了解线路各个组成部分,培养全局观念。熟悉线路平面、纵断面设计的基本原则。掌握线路平面和纵断面设计的基本方法,学会灵活运用《铁路线路设计规范》中的相关标准。 教学重点: 线路平面、纵断面设计的基本原则,线路平面、纵断面技术条件取值标准与确定原理,包括圆曲线最小标准、最小缓和曲线、夹直线和夹圆曲线最小长度、最小缓和曲线长度、平面线间距、最大坡度、最小竖曲线半径、最小坡段长度等。最大坡度折减方法等。车站线路技术条件 教学难点: 最小曲线半径、最小缓和曲线、最大坡度、最小竖曲线半径、最小坡段长度等技术参数的确定原理;最大坡度折减方法;车站平面纵断面技术条件等。教学方式方法: 传授与示例相结合,配合习题作业对概念、计算原理与方法加以巩固。 教学手段: 讲课使用传统方式和多媒体手段相结合的模式。根据章节的内容,教师可选用电子教案、投影图片;PPT与绘示意图相结合,随讲解过程在黑板上绘制

相关线路几何关系的示意图。 教学过程: 1)循序渐进的教学理念:讲清线路平纵面设计概念产生的背景与思路、逐步深入循序渐进的教学观点。在内容取舍上,侧重于平纵面设计理论的应用、着力培养学生的选线决策素质和解决实际问题的能力的教学模式。 2)精讲多练,以“疑”为主导的教学方法:注重启发式、克服注入式。对理论性内容,侧重探究式教学法的运用;对应用性内容,着眼于讨论式教学法的运用。此外,贯穿整个学期的开发性课程大作业,使学生通过实际设计巩固所学线路平纵面技术参数的概念和平纵面设计方法。 讲课内容备课札记

有关铁路线路的知识

有关铁路线路的知识 2009-03-10 22:36:12| 分类: 默认分类 | 标签: |字号大中小 订阅 铁路线路 第一节 概述 一、铁路勘测设计 二、铁路等级和技术标准 1 、铁路等级 注: ( 1 )远期:指交付运营后第 10 年; ( 2 )年客货运量为重车方向的货运量与客车对数折算的货运量之和。每天 1 对旅客列车按 1.0Mt ( Mt :百万吨)货 运量折算。 2 、铁路主要技术标准 铁路主要技术标准包括:正线数目、限制坡度、最小曲线半径、牵引种类、机车类型、机车交路、车站分布、到发线有效长 度和闭塞类型等。这些标准是确定铁路能力大小的决定因素,一条铁路选用不同的标准对设计线的工程造价和运营质量有重大影响,同时又是确定设计线的工程标准和设备类型的依据。 OP asoya 管理员 ? 个人空间 ? 发短消 第二节 铁路线路的平面和纵断面铁路线路在空间的位置是用它的中心线来表示的。线路中心线是指距外轨 半个轨距的铅垂线 AB 与两路肩边缘水平连线 CD 交点 O 的纵向连线。 如下图所示: 线路横断面 线路中心线在水平面上的投影,叫做铁路线路的平面 ,表明线路的直、曲变化状态 ;线路中心线展直后在 铅垂面上的投影,叫铁路线路的纵断面, 表明线路的坡度变化 。

息 ? 加为好友 ? 当前在线 一、铁路线路的平面及平面图 线路的平面由直线、圆曲线以及连接直线与圆曲线的缓和曲线组成。 (一)曲线 铁路线路在转向处所设的曲线为圆曲线,其基本组成要素有:曲线半径 R ,曲线转角 α ,曲线长 L ,切 线长度 T ,如下图所示: 圆曲线要素 在线路设计时,一般是先设计出 α和 R ,在按下式计算出T 及L : 曲线半径愈大,行车速度愈高,但工 程量愈大,工程费用愈高。 (二)缓和曲线 为保证列车安全,使线路平顺地由直线过渡到圆曲线或由圆曲线过渡到直线,以避免离心力的突然产生和消 除,常需要在直线与圆曲线之间设置一个曲率半径变化的曲线,这个曲线称为缓和曲线,如下图所示为设有缓和曲线的铁路曲线。 铁路曲线 缓和曲线的特征为:从缓和曲线所衔接的直线一端起,它的曲率半径 ρ 由无穷大逐渐减小到它所衔接的圆

第3章 线路平面和纵断面设计

第三章线路平面和纵断面设计 §1 概述 铁路线路平面的定义:线路中心线在水平面上的投影。组成要素:直线和曲线。 铁路线路纵断面的定义:线路中心线(曲线部分展直后)在垂直面上的投影。组成要素:平道和坡道。 区间线路平面设计 ⒉设计内容区间线路纵断面设计 车站、桥梁、隧道 地段平、纵面设计 线路的平面组成和曲线要素 平面设计 直线、圆曲线、缓和曲线的设计 最大坡度 坡段长度 纵断面设计坡段连接 坡度折减 线路平面图 ⒊设计成果 线路纵断面图 满足《铁路线路设计规范》要求 ⒋设计要求桥、隧、站和建筑物与线路的协调配合 工程造价省 优化设计 有利于运营 §2 区间线路平面设计 2.1平面组成和曲线要素 直线 线路平面 圆曲线 曲线 缓和曲线

⒈曲线要素(看课件) 2.2直线 设计直线应遵循的原则: ⒈直线与曲线相互协调 ⒉争设置较长的直线段 ⒊求减小交点偏角度数 ⒋夹直线长度不应短于规定长度 2.3圆曲线 设置目的:改变线路方向 2.3.1曲线半径对工程和运营的影响 ⒈曲线限制速度 ⒉曲线半径对工程的影响 小半径曲线的优点: 更好地适应地形变化,减少路基、桥涵、隧道、挡墙的工程数量小半径曲线的缺点: ⑴增加线路长度 ⑵降低粘着系数 ⑶轨道需要加强 ⑷增加接触导线的支柱数量 ⒊曲线半径对运营的影响 ⑴增加轮轨磨耗 ⑵维修工作量加大 ⑶行车费用增加 2.3.2最小曲线半径的选定(公式见课件) 意义: ⑴铁路主要技术标准之一 ⑵对工程量和运营条件有重大影响 ⒉选定最小曲线半径的影响因素 ⑴路段设计速度 ⑵货车通过速度 ⑶地形条件

2.3.3曲线半径的选用 ⒈曲线半径系列 一般为50或100米的整倍数 特殊为10米的整倍数 ⒉选用原则 ⑴因地制宜,由小到大合理选用 ⑵结合纵断面特点合理选用 2.3.4缓和曲线——保证行车平顺 ⒈作用 ⑴缓和曲线地段,半径由无穷大变到一个定值,离心力逐渐增加 ⑵缓和曲线地段,外轨超高由零变动到园曲线上的超高,向心力逐渐增加 ⑶半径小于350米时,轨距由标准轨距变动到加宽后的轨距 ⒉线型——直线型超高顺坡的三次抛物线 ⒊长度 ⑴保证超高顺坡不致使车轮脱轨 ⑵保证超高时变率不致影响旅客舒适 ⑶保证欠超高时变率不致影响旅客舒适 取三个计算值中的较大者 4.用——结合半径、设计速度、地形选用,尽量选用较长的。 ⒌两缓和曲线间圆曲线的最小长度——与夹直线相同 2.3.5线间距离 ㈠限界 种类:机车车辆限界、直线建筑接近限界、隧道建筑限界和桥梁建筑限界。㈡区间直线地段的线距 ㈢区间曲线地段线距加宽

第6章-铁路线路工程图

第6章铁路线路工程图 小知识中国高速铁路总体规划及展望 根据《中国铁路中长期发展规划》,到2020年,为满足快速增长的旅客运输需 求,建立省会城市及大中城市间的快速客运通道,规划“四纵四横”铁路快速客运 通道以及三个城际快速客运系统。建设客运专线1.2万公里以上,客车速度目标值 达到每小时200公里及以上。 “四纵”客运专线:北京—上海(京沪高速铁路)、北京—武汉—广州—深圳—香港(京港高速铁路)、北京—沈阳—哈尔滨、杭州—宁波—福州—深圳(沿海高速铁路)。 “四横”客运专线:徐州—郑州—兰州、杭州—南昌—长沙—昆明(沪昆高速铁路)、青岛—石家庄— 太原、上海—南京—武汉—重庆—成都(沪汉蓉高速铁路)。 三大城际客运系统:①环渤海地区:北京—天津;②长江三角洲地区:南京—上海—杭州;③珠江三角洲地区:广州—深圳、广州—珠海、广州—佛山。 几个重要路段客运专线:向莆铁路自南昌枢纽引出,经江西抚州、福建沙县至莆田(福州),全长约560公里。这条铁路将构成我国中西部地区至东南沿海新的、路程更短的通道。还有九江南昌、海南东环、南京杭州、南京安庆、成棉峨、长春吉林等客运专线铁路。 中投顾问认为:中国高速铁路建设进程正在不断加快。目前,武汉及周边城际圈、郑州及周边城际圈、长沙—株州—湘谭地区、长春—吉林等经济集中带或经济据点,均将规划修建城际铁路。除此之外,广州至南宁、广州至贵阳、成都至兰州等重要省会之间或重大城市之间,将来随着经济规模的扩大和客运需求的增加,都将陆续修建200公里及以上的客运专线或城际铁路。预计到2020年,中国200公里及以上时速的高速铁路建设里程将超过1.8万公里,将占世界高速铁路总里程的一半以上。 知识目标: 1、了解《铁路工程制图标准》(TB/T 10058—98)、《铁路工程制图图形符号标准》(TB/T 10059—98)对铁路线路工程图的相关规定; 2、掌握铁路线路工程图的表达方式。 能力目标: 1、能掌握《铁路工程制图标准》(TB/T 10058—98)、《铁路工程制图图形符号标准》(TB/T 10059—98)在铁路线路工程图中的应用; 2、能正确识读线路平面图、纵断面图和路基横断面图。 新课导入 铁路线路是机车车辆和列车运行的基础。它的基本组成包括车站、路基、桥梁、隧道、涵洞、防护工程、排水设施和轨道组成的一个整体工程结构。本章主要介绍了线路平面图、纵断面图和路基横断面图,并着重强调其识读方法。 铁路线路在空间的位置是用它的线路中心线表示的。一条铁路是以横断面上距外轨半个轨距

相关文档
最新文档