实验三周期信号的频谱分析实验报告

实验三周期信号的频谱分析实验报告
实验三周期信号的频谱分析实验报告

信号与系统

实验报告

实验三周期信号得频谱分析

学院

专业班级

姓名?学号

指导教师

实验报告评分:_______

实验三周期信号得频谱分析

一、实验目得

1、掌握连续时间周期信号得傅里叶级数得物理意义与分析方法;

2、观察截短傅里叶级数而产生得“Gibbs现象”,了解其特点以及产生得原因;

3、掌握各种典型得连续时间非周期信号得频谱特征。

二、实验内容

实验前,必须首先阅读本实验原理,读懂所给出得全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到得信号得波形图。并结合范例程序应该完成得工作,进一步分析程序中各个语句得作用,从而真正理解这些程序。

实验前,一定要针对下面得实验项目做好相应得实验准备工作,包括事先编写好相应得实验程序等事项。

Q3-1编写程序Q3_1,绘制下面得信号得波形图:

其中,ω0= 0、5π,要求将一个图形窗口分割成四个子图,分别绘制cos(ω0t)、cos(3ω0t)、cos(5ω0t)与x(t) 得波形图,给图形加title,网格线与x坐标标签,并且程序能够接受从键盘输入得与式中得项数。

抄写程序Q3_1如下:

clear,%Clearall variables

close all,%Close allfigurewindows

dt= 0、00001; %Specify the step of timevariable t = -2:dt:4; %Specify the interval of time

w0=0、5*pi;

x1=cos(w0、*t);

x2=cos(3*w0、*t);

x3=cos(5*w0、*t);

N=input('Type in thenumber ofthe harmonic ponents N=');

x=0;

for q=1:N;

x=x+(sin(q*(pi/2))、*cos(q*w0*t))/q;

end

subplot(221)

plot(t,x1)%Plot x1

axis([-2 4 -2 2]);

grid on,

title('signalcos(w0、*t)')

subplot(222)

plot(t,x2)%Plot x2

axis([-2 4 -2 2]);

grid on,

title('signal cos(3*w0、*t))')

subplot(223)

plot(t,x3)%Plotx3

axis([-2 4-2 2])

grid on,

title('signal cos(5*w0、*t))')

执行程序Q3_1所得到得图形如下:

Q3-2给程序Program3_1增加适当得语句,并以Q3_2存盘,使之能够计算例题1中得周期方波信号得傅里叶级数得系数,并绘制出信号得幅度谱与相位谱得谱线

图。

通过增加适当得语句修改Program3_1而成得程序Q3_2抄写如下:

% Program3_1

clear, close all

T =2; dt = 0、00001;t = -2:dt:2;

x1=u(t) - u(t-1-dt); x = 0;

for m = -1:1%Periodically extend x1(t) to form a periodic signal

x = x + u(t-m*T) - u(t-1-m*T-dt);

end

w0= 2*pi/T;

N= 10; %Thenumber ofthe harmonicponents

L = 2*N+1;

fork = -N: N; % Evaluate theFourierseries c oefficients ak

ak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt;

end

phi= angle(ak); % Evaluate the phase of aksubplot(211)'

k =-10:10;

stem(k,abs(ak),'k');

axis([-10,10,0,0、6]);

grid on;

title('fudupu');

subplot(212);

k = -10:10

stem(k,angle(ak),'k');

axis([-10,10,-2,2]);

grid on;

titie('xiangweipu');

xlabel('Frequencyindex x');

执行程序Q3_2得到得图形

Q3-3反复执行程序Program3_2,每次执行该程序时,输入不同得N值,并观察所合成得周期方波信号。通过观察,您了解得吉伯斯现象得特点就是:

% Program3_3

% This program is usedtopute the Fourierseries coef ficients ak of a periodic square wave

clear,closeall

T = 2; dt =0、00001;t = -2:dt:2;

x1 =u(t)-u(t-1-dt); x =0;

for m = -1:1

x = x+ u(t-m*T) - u(t-1-m*T-dt); %Periodicallyextendx1(t)to form a periodicsignal

end

w0 = 2*pi/T;

N = input('Type in thenumber ofthe harmonicponentsN = :');

L=2*N+1;

fork =-N:1:N;

ak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt;

end

phi = angle(ak);

y=0;

forq = 1:L;% Synthesiz the periodicsignal y(t) from the finite Fourier series

y = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T);

end;

subplot(221),

plot(t,x), title('The original signal x(t)'), axis([-2,2,-0、2,1、

2]),

subplot(223),

plot(t,y),title('The synthesis signal y(t)'), axis([-2,2,-0、2,1、2]), xlabel('Time t'),

subplot(222)

k=-N:N;stem(k,abs(ak),'k、'),title('The amplitude |ak| ofx(t)'), axis([-N,N,-0、1,0、6])

subplot(224)

stem(k,phi,'r、'), title('The phasephi(k) of x(t)'), axis([-N,N,-2,2]), xlabel('Index k')

N=1

N=2

通过观察我们了解到:如果一个周期信号在一个周期有内断点存在,那么,引入得误差将除了产生纹波之外,还将在断点处产生幅度大约为9%得过冲(Overshot),这种现象被称为吉伯斯现象(Gibbs phenomenon)。即信号在不连续点附近存在一个幅度大约为9%得过冲,且所选谐波次数越多,过冲点越向不连续点靠近。

4、周期信号得傅里叶级数与GIBBS现象

给定如下两个周期信号:

Q3-4仿照程序Program3_1,编写程序Q3_4,以计算x1(t)得傅里叶级数得系数。

程序Q3_4如下:

clc,clear,close all

T=2;dt=0、00001;t=-3:dt:3;

x=(t+1)、*(u(t+1)-u(t))-(t-1)、*(u(t)-u(t-1));x1=0;

for m=-2:2

x1=x1+(t+1-m*T)、*(u(t+1-m*T)-u(t-m*T))-(t-1-m*T)、*(u(t-m*T)-u(t-1-m*T));

end

w0=2*pi/T;

N=10;

L=2*N+1;

for k=-N:N;

ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;

end

phi=angle(ak);

plot(t,x1);

axis([-4 4 01、2]);

grid on;

title('The signal x1(t)');

xlabel('Time t (sec)');

ylabel('signalx1(t)');

执行程序Q3_4所得到得x1(t)得傅里叶级数得ak从-10到10共21个系数如下:

Q3-5仿照程序Program3_1,编写程序Q3_5,以计算x2(t)得傅里叶级数得系数(不绘图)。

程序Q3_5如下:

clc,clear,close all

T=2;dt=0、00001;t=-3:dt:3;

x=u(t+0、2)-u(t-0、2-dt);x2=0;

form=-1:1

x2=x2+u(t+0、2-m*T)-u(t-0、2-m*T)-u(t-0、2-m*t-dt); end

w0=2*pi/T;

N=10;

L=2*N+1;

for k=-N:N;

ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;

end

phi=angle(ak);

plot(t,x2);

axis([-2、52、5 01、2]);

grid on;

title('The signal x2(t)');

xlabel('Time t (sec)');

ylabel('signal x2(t)');

执行程序Q3_5所得到得x2(t)得傅里叶级数得ak从-10到10共21个系数如下:

与您手工计算得ak相比较,就是否相同,如有不同,就是何原因造成得?

Q3-6仿照程序Program3_2,编写程序Q3_6,计算并绘制出原始信号x1(t) 得波形图,用有限项级数合成得y1(t) 得波形图,以及x1(t) 得幅度频谱与相位频谱得谱线图。

编写程序Q3_6如下:

%Program Q3_6

%This program is used to evaluatethe Fourierserier coeffic ients ak of a periodic square

clc,clear,closeall

T=2;dt=0、00001;t=-3:dt:3;

x=(t+1)、*(u(t+1)-u(t))-(t-1)、*(u(t)-u(t-1));x1=0;

form=-2:2 %Periodically extendx1(t) to form q periodic signal

x1=x1+(t+1-m*T)、*(u(t+1-m*T)-u(t-m*T))-(t-1-m*T)、*(u(t-m*t)-u(t-1-m*t));

end

w0=2*pi/T;

N=10; %thenumber of the harmonic ponents

L=2*N+1;

for k=-N:N;

ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;

end

phi=angle(ak); %Evaluate the phaseof sk

y=0;

for q=1:L; %Synthesiz the periodic signal y(t) fromthe finite Fourierseries

y=y+ak(q)*exp(j*(q-1-N)*w0*t); end;

subplot(221)

plot(t,x)%plotx

axis([-3 3-0、2 1、2]);

grid on;

title('The original signalx(t)');subplot(223)

plot(t,y)%Plot y

axis([-3 3-0、2 1、2]);

grid on;

title('The synthesis signal y(t)'); subplot(222);

xlabel('Time i (sec)');

subplot(222);

k=-N:N;

stem(k,abs(ak),'k');

axis([-NN -0、10、6]);

grid on;

title('The amplitudespectrum of x(t)'); subplot(224);

k=-N:N;

stem(k,phi,'k');

axis([-N N -2 2]);

grid on;

title('The phase spectrumof x(t)');

xlabel('Frequency indexk');

执行程序Q3_6,输入N =10所得到得图形如下:

反复执行程序Q3_6,输入不同得N值,观察合成得信号波形中,就是否会产生Gibbs现象?为什么?

假定输入N=10,得到图形如下:

所以不会产生Gibbs现象,即与N值无关。

给定两个时限信号:

实验体会与心得:

在实验得过程中,掌握连续时间周期信号得傅里叶级数得物理意义与分析方法,观察截短傅里叶级数而产生得“Gibbs现象”,了解其特点以及产生得原因,掌握各种典型得连续时间非周期信号得频谱特征。发现自己在上课时候完全就是一窍不通,可能就是因为自己练得不够所以在下来得学习中,我认为实练永远就是自己要去做得功课,即使自己现在还不会,但我坚信孰能生巧,自己一定能够学好这门科目。

应用FFT对信号进行频谱分析实验报告

实验 应用FFT 对信号进行频谱分析 一、实验目的 1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT 算法及其程序的编写。 2、熟悉应用FFT 对典型信号进行频谱分析的方法。 3、了解应用FFT 进行新红啊频谱分析过程中可呢个出现的问题,以便在实际中正确应用FFT 。 二、实验原理 一个连续信号()a x t 的频谱可以用它的傅里叶变换表示为: ()()j t a a X j x t e dt +∞ -Ω-∞Ω=? (2-1) 如果对信号进行理想采样,可以得到离散傅里叶变换: ()()j n X e x n z ω +∞ --∞=∑ (2-2) 在各种信号序列中,有限长序列在数字信号处理中占有很重要的。无限长的序列往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅里叶变换(DFT ),这一序列可以很好的反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N 时,我们定义离散傅里叶变换为: 1 0()[()]()N kn N n X k DFT x n x n W -===∑ (2-3) DFT 是对序列傅里叶变换的灯具采样,因此可以用于序列的频谱分析。在利用DFT 进行频谱分析的时候可能有三种误差: (1)混叠现象 序列的频谱是采样信号频谱的周期延拓,周期是2/T π,因此当采样频率不满足奈奎斯特定理,即采样频率1/s f T =小于两倍的信号频率时,经过采样就会发生频谱混叠。这导致采样后的信号序列不能真实的反映原信号的频谱。 (2)泄漏现象 泄漏是不能和混叠完全分开的,因为泄漏导致频谱的扩展,从而造成混淆。为了减小混淆的影响,可以选择适当的窗函数使频谱的扩散减到最小。 (3)栅栏效应 因为DFT 是对单位圆上Z 变换的均匀采样,所以它不可能将频谱视为一个连续的函数。这样就产生了栅栏效应。减小栅栏效应的一个方法是在源序列的末端补一些零值,从而变动DFT 的点数。 三、实验内容和结果 1、观察高斯序列的时域和频域特性 (1)固定高斯序列()a x n 中的参数p=8,当q 为2,4,8时其时域和幅频特性分别如图 2.1,图2.2所示:

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(m od ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10 N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)31 16 N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

广东工业大学《测试技术与信号分析》测试实验报告

测试技术与信号处理实验报告 机械转子底座的振动测量和分析 一、实验目的 1.掌握磁电式速度传感器的工作原理、特点和应用。

2.掌握振动的测量和数据分析。 二、实验内容和要求 先利用光电式转速传感器测量出电机的转速;然后利用磁电式速度传感器测量机械转子底座在该电机转速下的振动速度;对测量出的振动速度信号进行频谱分析;找出振动信号的主频与电机转速之间的关系。 三、实验步骤 1.启动实验程序“机械转子系统的振动测量.exe”; 输入个人信息,也可以启动之后通过单击“修改”按钮修改个人信息。 2.单击“采样设置”按钮,输入采集卡连接磁电速度传感器的采样通道号,批量采样频率(建议设为10KHz)、批量采样点数(建议设为10000)。 3.打开转子电机的电源,单击“单点采样”。 4.旋转调节旋钮改变转子的转速,观察图形区显示的磁电速度传感器采集到的转子底座振动信号;如果振动信号比较小,可适当提高转子的转速。 5.转子转速的测量: (1) 单击“采样设置”按钮,输入采集卡连接光电转速传感器的 采样通道号、批量采样频率(建议值为10KHz)、批量采样点 数(建议值为10000)。 (2) 单击“批量采样”按钮,开始采样;采样完成之后,采集到 的波形信号会显示在图形窗口,系统会自动计算出转子的速度

并显示出来。记录下此时的转子的转速(单位:r/s)。 (3) 再重复步骤(2)测量2次。以三次测量的平均值作为此时转子 的转速。 转速的测量结果 单点采样采集通道6,测量3组数据 6.振动信号的测量和频谱分析: (1) 单击“采样设置”按钮,输入采集卡连接磁电速度传感器的 采样通道号、批量采样频率(建议设为10KHz)、批量采样点 数(建议设为10000)。 (2) 单击“批量采样”按钮,开始采样;采样完成之后,采集到 的波形信号会显示在图形窗口。如果信号不正常,重复点击“批 量采样”按钮 (3) 单击“保存”按钮,将采集到的磁电传感器的信号数据保存 为文本文件。文件必须保存到“C:\ExperiData\”目录下。可单 击“保存设置”更改文件名。 (4) 打开刚保存的文本文件,文件前面几行保存了个人信息、采 样频率、采样通道、保存的数据个数等信息。文件中共有四列 数据,第一列为数据的序号,第二列为磁电传感器检测到的数 据。

用频谱分析仪测量通信信号

用频谱分析仪测量通信信号 一、GSM信号的测量 现代高度发达的通信技术可以让人们在地球的任意地点控制频谱分析仪,因此就更要懂得不同参数设置和不同信号条件对显示结果的影响。 典型的全球移动通信系统(GSM)的信号测量如图1所示,它清楚地标明了重要的控制参数设置和测量结果。IFR2399型频谱分析仪利用彩色游标来加亮测量区域,此例中,被加亮的测量区域是占用信道和上下两个相邻信道的中心50kHz频带。 显示的水平轴(频率轴)中心频率为900MHz,扫频频宽为1MHz,而每一小格代表l00kHz。顶部水平线表示0dBm,垂直方向每一格代表10dB。信号已经被衰减了10dB,测量显示的功率电平已考虑了此衰减。 图1 GSM信道带宽显示和功率测量 GSM是以两个25MHz带宽来传送的:从移动发射机到基站采用890MHz到915MHz,从基站到移动接收机采用935MHz到960MHz。这个频带被细分为多个200kHz信道,而第50个移动发送信道的中心频率为900MHz,如图1所示。该信号很明显是未调制载波,因为它的频谱很窄。实际运用中,一个GSM脉冲串只占用200kHz稍多一点的信道带宽。 按照GSM标准,在发送单个信道脉冲串时,时隙持续0.58ms,而信道频率以每秒217次的变化速率进行慢跳变,再加上扫频仪1.3s的扫描时间,根据这些条件可以判定这是一个没有时间和频率跳变的静态测试,没有迹象表明900阳z的信号是间断信号。 为了保证良好的清晰度,选用1kHz的分辨带宽(RBW)滤波器。较新的频谱分析仪中的模拟滤波器的形状系数(3dB:60dB)为11,意思是60dB时滤波器带宽(从峰值衰减60dB)是3dB时滤波器带宽(从峰值衰减3dB)的11倍,即11kHz比1kHz。 与此相比,数字滤波器的形状系数还不到5。例如一个3dB带宽为50kHz的带通滤波器,其60dB带宽只有60kHz,这几乎是矩形通带。它保证在计算平均功率时只含有50kHz以外区域很小一点的功率。作为对比,如果分辨带宽RBW50kHz,使用前面提及的模拟滤波器而不是数字滤波器,其60dB带宽将为550kHz。 标记1处的信号电平是4.97dBm。为了使噪声背景出现在屏幕上,显示轨迹线已向上偏移了10dB(在图中不易察觉),这是由于信号峰值被预先衰减10dB使其不超过顶部水平线,这也是信号峰值读数比参考电平高的原因。 图中,主信道功率(CHP)读数为7.55dBm,与峰值(标记1处)的读数4.978m不一致,其原因就是主信道功率是在50kHz测量带宽内计算的,而标记1的读数是峰值。公式1定义了在整个带宽内计算主信道功率的方法。 其中, CHPwr:信道功率,单位dBm CHBW:信道带宽 Kn:噪声带宽与分辨带宽之比 N:信道内象素的数目 Pi:以1mW为基准的电平分贝数(dBm)

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

随机信号通过线性和非线性系统后地特性分析报告 实验报告材料

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

频谱分析仪和信号分析仪的区别

在实验室和车间最常用的信号测试仪器是电子示波器。人的思维对时间概念比较敏感,每时每刻都与时域事件发生联系,但是信号往往以频率形式出现,用示波器观察最简单的调幅载波信号也不方便,往往显示载波时看不清调制仪,屏幕上获得的是三条谱线,即载频和在载频左右的调制频。调制方式越复杂,电子示波器越难显示,频谱分析器的表达能力强,频谱分析仪是名副其实的频域仪器的代表。沟通时间一频率的数字表达方法就是傅里叶变换,它把时间信号分解成正弦和余弦曲线的叠加,完成信号由时间域转换到频率域的过程。 早期的频谱分析仪实质上是一台扫频接收机,输入信号与本地振荡信号在混频器变频后,经过一组并联的不同中心频率的带通滤波器,使输入信号显示在一组带通滤波器限定的频率轴上。显然,由于带通滤波器由无源元件构成,频谱分析器整体上显得很笨重,而且频率分辨率不高。既然傅里叶变换可把输入信号分解成分立的频率分量,同样可起着滤波器类似的作用,借助快速傅里叶变换电路代替低通滤波器,使频谱分析仪的构成简化,分辨率增高,测量时间缩短,扫频范围扩大,这就是现代频谱分析仪的优点了。 矢量信号分析仪是在预定,频率范围内自动测量电路增益与相应的仪器,它有内部的扫频频率源或可控制的外部信号源。其功能是测量对输入该扫频信号的被测电路的增益与相位,因而它的电路结构与频谱分析仪相似。频谱分析仪需要测量未知的和任意的输入频率,矢量信号分析仪则只测量自身的或受控的已知频率;频谱分析仪只测量输入信号的幅度(标量仪器),矢量信号分析仪则测量输入信号的幅度和相位(矢量仪器)。由此可见,矢量信号分析仪的电路结构比频谱分析仪复杂,价位也较高。现代的矢量信号分析仪也采用快速傅里叶变换,以下介绍它们的异同。 频谱分析议和FFT颁谱分析议 传统的频谱分析仪的电路是在一定带宽内可调谐的接收机,输入信号经下变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。 但是,传统的频谱分析仪也有明显的缺点,首先,它只适于测量稳态信号,不适宜测量瞬态事件;第二,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器;第三,它需要多种低频带通滤波器,获得的测量结果要花费较长的时间,因此被视为非实时仪器。 既然通过傅里叶运算可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,出现基于快速傅里叶变换(F盯)的频谱分析仪。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。据此可知,这种频谱分析仪亦称为实时频谱分析仪,它的频率范围受到ADC采集速率和FFT运算速度的限制。

频域分析实验报告

频域分析实验报告 班级: 学号: 姓名:

一、实验内容: 1利用计算机作出开环系统的波特图; 2、观察记录控制系统的开环频率特性; 3、控制系统的开环频率特性分析。 二、仿真原理: 对数频率特性图(波特图): 对数频率特性图包括了对数幅频特性图和对数相频特性图。横坐标为频率w,采用对数分度,单位为弧度/秒;纵坐标均匀分度,分别为幅值函数20lgA(w),以dB表示;相角,以度表示。MATLAB提供了函数bode()来绘制系统的波特图,其用法如下: (1)bode(num,den):可绘制出以连续时间多项式传递函数表示的系统的波特图。 (2)当带输出变量[mag,pha,w]或[mag,pha]引用函数时,可得到系统波特图相应的幅值mag、相角pha及角频率点w矢量或只是返回幅值与相角。相角以度为单位,幅值可转换为分贝单位:magdb=20×log10(mag) 二、实验验证 1、用Matlab作Bode图。要求:画出对应Bode图。 (1)G(S)=25/S2+4s+25 (7)G(S)=9(s2+0.2s+1)/s(s2+1.2s+9);

图 1 图 2 (1)G(S)=25/S2+4s+25 可以看成是一个比例环节和一个振荡环节组成,所以k=1,T1=0.04,因为v=0,所以在转折频率之前都为20lgk,因为k=1所以斜率为0,经过转折频率,分段直线斜率的变化量为-40db/dec。

(7)G(S)=9(s2+0.2s+1)/s(s2+1.2s+9); 可以看成是一个二阶微分环节和一个积分环节和一个振荡环节组成,化常数为1后,v=1,t1=1,t2=1/3,所以我们可以看到,在起始阶段是-20*vdb/dec,所以一开始斜率为-20db/dec。当经过1/3的转折频率之后分段直线的改变量为40db/dec,当经过1的转折频率之后分段直线的改变量为-40db/dec。故图像如图所示。 第二题: 典型二阶系统Gs=Wn2/s2+2ζWns+Wn2,试绘制取不同值时的Bode图。取Wn=8,ζ=0.1,0.2,0.3,,0.5,0.6; 图 3 如图所示。

随机信号实验报告

随机信号分析 实验报告 目录 随机信号分析 (1) 实验报告 (1) 理想白噪声和带限白噪声的产生与测试 (2) 一、摘要 (2) 二、实验的背景与目的 (2) 背景: (2) 实验目的: (2) 三、实验原理 (3) 四、实验的设计与结果 (4) 实验设计: (4) 实验结果: (5) 五、实验结论 (12) 六、参考文献 (13) 七、附件 (13) 1

理想白噪声和带限白噪声的产生与测试一、摘要 本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。 关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度 二、实验的背景与目的 背景: 在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。 实验目的: 了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

《测试信号分析与处理》实验报告

测控1005班齐伟0121004931725 (18号)实验一差分方程、卷积、z变换 一、实验目的 通过该实验熟悉 matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。 二、实验设备 1、微型计算机1台; 2、matlab软件1套 三、实验原理 Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。 差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。用x表示滤波器的输入,用y表示滤波器的输出。 a0y[n]+a1y[n-1]+…+a N y[n-N]=b0x[n]+b1x[n-1]+…+b M x[n-M] (1) ak,bk 为权系数,称为滤波器系数。 N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。 y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2) 等式定义了数字卷积,*是卷积运算符。输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。 传输函数H(z)是滤波器的第三种实现方法。 H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。 序列x[n]的z变换定义为 X (z)=∑x[n]z-n (4) 把序列x[n] 的z 变换记为Z{x[n]} = X(z)。

matlab频谱分析仪

频谱分析仪 摘要频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,是一种多用途的电子测量仪器。随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。本文介绍了一种使用GUI工具箱用matlab实现的简易虚拟频谱分析仪的设计方法。 关键词matlab,频谱分析仪,时域分析,频域分析

目录 1概述 (3) 2技术路线 (4) 3实现方法 (5) 3.1搭建GUI界面 (5) 3.2信号输入 (6) 3.2.1选择信号输入 (6) 3.2.2声卡输入 (7) 3.2.3读取wav文件 (7) 3.2.4信号发生器输入 (7) 3.3时域分析 (8) 3.4频域分析 (9) 3.5仿真 (10) 3.5.1声卡输入 (10) 3.5.2读取wav文件 (10) 3.5.3信号发生器 (11) 4存在的问题 (15) 5致谢...................................................................................................... 错误!未定义书签。参考文献 (15)

1概述 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件。可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。图形用户界面(Graphical User Interface,简称GUI,又称图形用户接口)是指采用图形方式显示的计算机操作用户界面。与早期计算机使用的命令行界面相比,图形界面对于用户来说在视觉上更易于接受。MATLAB自带了强大的GUl工具[1]。在本文中,将利用MATLAB的GUI工具,设计出数字频谱分析仪。 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫兹以下的甚低频到亚毫米波段的全部无线电频段的电信号[2]。目前已经有许多较成熟的频谱分析软件,如SpectraLAB、RSAVu、dBFA等[3]。本文将给出的则是通过MATLAB软件实现的基于FFT的数字频谱分析仪。 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步[4]。 通过此次设计,能进一步掌握MATLAB软件开发过程的基本理论、基本知识和基本技能,熟悉基于MATLAB平台的若干信号处理系统开发及调试方法,且成本低,易于实现,容易修改,并可以进行仿真。该设计的进行可以为我们以后的学习工作奠定一定的基础。

控制系统的频域分析实验报告

实验名称: 控制系统的频域分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。 二、实验内容和原理 (一)实验原理 1.Bode(波特)图 设已知系统的传递函数模型: 1 1211121)(+-+-+???+++???++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出: 1 1211121)()()()()(+-+-+???+++???++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。 2.Nyquist(奈奎斯特)曲线 Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。 反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。在MATLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。 3.Nicho1s(尼柯尔斯)图 根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。在 MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。 (二)实验内容 1.一系统开环传递函数为 ) 2)(5)(1(50)(-++=s s s s H 绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。 2.一多环系统 ) 10625.0)(125.0)(185.0(7.16)(+++=s s s s s G 其结构如图所示 试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。 (三)实验要求

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告 ——基于MATLAB语言 姓名: _ 班级: _ 学号: 专业:

目录 实验一随机序列的产生及数字特征估计 (2) 实验目的 (2) 实验原理 (2) 实验内容及实验结果 (3) 实验小结 (6) 实验二随机过程的模拟与数字特征 (7) 实验目的 (7) 实验原理 (7) 实验内容及实验结果 (8) 实验小结 (11) 实验三随机过程通过线性系统的分析 (12) 实验目的 (12) 实验原理 (12) 实验内容及实验结果 (13) 实验小结 (17) 实验四窄带随机过程的产生及其性能测试 (18) 实验目的 (18) 实验原理 (18) 实验内容及实验结果 (18) 实验小结 (23) 实验总结 (23)

实验一随机序列的产生及数字特征估计 实验目的 1.学习和掌握随机数的产生方法。 2.实现随机序列的数字特征估计。 实验原理 1.随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n(mod N) ? x n=y n N 序列{x n}为产生的(0,1)均匀分布随机数。 定理1.1若随机变量X 具有连续分布函数F x(x),而R 为(0,1)均匀分布随机变量,则有 X=F x?1(R) 2.MATLAB中产生随机序列的函数 (1)(0,1)均匀分布的随机序列函数:rand 用法:x = rand(m,n) 功能:产生m×n 的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。 (3)其他分布的随机序列 分布函数分布函数 二项分布binornd 指数分布exprnd 泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd X2分布chi2rnd 3.随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。那么,

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

信号检测实验报告

Harbin Institute of Technology 匹配滤波器实验报告 课程名称:信号检测理论 院系:电子与信息工程学院 姓名:高亚豪 学号:14SD05003 授课教师:郑薇 哈尔滨工业大学

1. 实验目的 通过Matlab 编程实现对白噪声条件下的匹配滤波器的仿真,从而加深对匹配滤波器及其实现过程的理解。通过观察输入输出信号波形及频谱图,对匹配处理有一个更加直观的理解,同时验证匹配滤波器具有时间上的适应性。 2. 实验原理 对于一个观测信号()r t ,已知它或是干扰与噪声之和,或是单纯的干扰, 即 0()()()()a u t n t r t n t +?=?? 这里()r t ,()u t ,()n t 都是复包络,其中0a 是信号的复幅度,()u t 是确知的归一化信号的复包络,它们满足如下条件。 2|()|d 1u t t +∞ -∞=? 201||2 a E = 其中E 为信号的能量。()n t 是干扰的均值为0,方差为0N 的白噪声干扰。 使该信号通过一个线性滤波系统,有效地滤除干扰,使输出信号的信噪比在某一时刻0t 达到最大,以便判断信号的有无。该线性系统即为匹配滤波器。 以()h t 代表系统的脉冲响应,则在信号存在的条件下,滤波器的输出为 0000()()()d ()()d ()()d y t r t h a u t h n t h τττττττττ+∞+∞+∞ =-=-+-???

右边的第一项和第二项分别为滤波器输出的信号成分和噪声成分,即 00()()()d x t a u t h τττ+∞ =-? 0 ()()()d t n t h ?τττ+∞ =-? 则输出噪声成分的平均功率(统计平均)为 2 20E[|()|]=E[|()()d |]t n t h ?τττ+∞ -? **00*000200 =E[()(')]()(')d d '=2()(')(')d d ' 2|()|d n t n t h h N h h N h ττττττδττττττττ+∞+∞+∞+∞+∞ ---=?? ?? ? 而信号成分在0t 时刻的峰值功率为 22 20000|()||||()()d |x t a u t h τττ+∞ =-? 输出信号在0t 时刻的总功率为 22000E[|()|]E[|()()|]y t x t t ?=+ 22**0000002200E[|()||()|()()()()] |()|E[|()|] x t t x t t t x t x t t ????=+++=+ 上式中输出噪声成分的期望值为0,即0E[()]0t ?=,因此输出信号的功率 成分中只包含信号功率和噪声功率。 则该滤波器的输出信噪比为 222000022000|||()()d ||()|E[|()|]2|()|d a u t h x t t N h τττρ?ττ+∞ +∞-==?? 根据Schwartz 不等式有

信号与系统实验报告实验三 连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3

由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。在研究系统的频率响应时,更多的是把它表示成极坐标形式: ) ()()(ω?ωωj e j H j H = 3.4 上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ω?称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。)(ωj H 和)(ω?都是频率ω的函数。 对于一个系统,其频率响应为H(j ω),其幅度响应和相位响应分别为)(ωj H 和)(ω?,如果作用于系统的信号为t j e t x 0)(ω=,则其响应信号为 t j e j H t y 0)()(0ωω= t j j e e j H 00)(0)(ωω?ω=))((000)(ω?ωω+=t j e j H 3.5 若输入信号为正弦信号,即x(t) = sin(ω0t ),则系统响应为 ))(sin(|)(|)sin()()(00000ω?ωωωω+==t j H t j H t y 3.6 可见,系统对某一频率分量的影响表现为两个方面,一是信号的幅度要被)(ωj H 加权,二是信号的相位要被)(ω?移相。 由于)(ωj H 和)(ω?都是频率ω的函数,所以,系统对不同频率的频率分量造成的幅度和相位上的影响是不同的。 2 LTI 系统的群延时 从信号频谱的观点看,信号是由无穷多个不同频率的正弦信号的加权和(Weighted sum )所组成。正如刚才所述,信号经过LTI 系统传输与处理时,系统将会对信号中的所有频率分量造成幅度和相位上的不同影响。从相位上来看,系统对各个频率分量造成一定的相位移(Phase shifting ),相位移实际上就是延时(Time delay )。群延时(Group delay )的概念能够较好地反

用FFT对信号作频谱分析实验报告

实验一报告、用FFT 对信号作频谱分析 一、实验目的 学习用FFT 对连续信号和时域离散信号进行频谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、实验内容 1.对以下序列进行频谱分析: ()() ()()4231038470n 4033 470n x n R n n n x n n n n n x n n n =+≤≤?? =-≤≤???-≤≤?? =-≤≤??? 其它其它 选择FFT 的变换区间N 为8和16两种情况进行频谱分析。分别打印其幅频特性曲线,并进行对比,分析和讨论。 2.对以下周期序列进行频谱分析: ()()45cos 4 cos cos 4 8 x n n x n n n π π π ==+ 选择FFT 的变换区间N 为8和16两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线,并进行对比、分析和讨论。 3.对模拟信号进行频谱分析: ()8cos8cos16cos20x t t t t πππ=++ 选择采样频率64s F Hz =,对变换区间N=16,32,64 三种情况进行频谱分析。分别 打印其幅频特性,并进行分析和讨论。

三、实验程序 1.对非周期序列进行频谱分析代码: close all;clear all; x1n=[ones(1,4)]; M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb]; x3n=[xb,xa]; X1k8=fft(x1n,8);X1k16=fft(x1n,16); X2k8=fft(x2n,8);X2k16=fft(x2n,16); X3k8=fft(x3n,8);X3k16=fft(x3n,16); subplot(3,2,1);mstem=(X1k8);title('(1a)8点DFT[x_1(n)]'); subplot(3,2,2);mstem=(X1k16);title('(1b)16点DFT[x_1(n)]'); subplot(3,2,3);mstem=(X2k8);title('(2a)8点DFT[x_2(n)]'); subplot(3,2,4);mstem=(X2k16);title('(2b)16点DFT[x_2(n)]'); subplot(3,2,5);mstem=(X3k8);title('(3a)8点DFT[x_3(n)]'); subplot(3,2,6);mstem=(X3k16);title('(3b)16点DFT[x_3(n)]'); 2.对周期序列进行频谱分析代码: N=8;n=0:N-1; x4n=cos(pi*n/4); x5n=cos(pi*n/4)+cos(pi*n/8); X4k8=fft(x4n); X5k8=fft(x5n); N=16;n=0:N-1; x4n=cos(pi*n/4); x5n=cos(pi*n/4)+cos(pi*n/8); X4k16=fft(x4n); X5k16=fft(x5n); figure(2) subplot(2,2,1);mstem(X4k8);title('(4a)8点 DFT[x_4(n)]'); subplot(2,2,2);mstem(X4k16);title('(4b)16点DFT[x_4(n)]'); subplot(2,2,3);mstem(X5k8);title('(5a)8点DFT[x_5(n)]'); subplot(2,2,4);mstem(X5k16);title('(5a)16点DFT[x_5(n)]') 3.模拟周期信号谱分析 figure(3) Fs=64;T=1/Fs; N=16;n=0:N-1; x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); X6k16=fft(x6nT); X6k16=fftshift(X6k16);

相关文档
最新文档