固体理论作业--超导体

固体理论作业--超导体
固体理论作业--超导体

超导体与超导电性

引言:

本学期在班老师的指导下共进行了六次固体理论课的学习和讨论,每次课的学习都受益匪浅。在这六次课的学习范围内,我对超导体与超导电性及其应用非常感兴趣,因此通过自己对这部分内容的理解和对文献的调查完成了本文。

本文主要对超导体的基本性质、分类进行了简要介绍,对超导电性的物理机制进行了简单讨论,并对超导体的应用前景进行了分析和展望。

一、超导体的发现和基本性质

1908年7月10日,荷兰莱顿大学的卡末林·昂内斯成功将“永久气体”氦气液化,获得了极低温度,液体氦在一个大气压下的沸点为 4.2K(约零下269℃)。接着他开始研究金属在极低温度下的导电性能,于1911年4月8日发现提纯的金属汞,在温度降低到约4.2K 时,导体的电阻突然消失,他还发现其他金属在低温中也表现出同样的性能。出现超导现象的温度称为临界温度T c,以后又发现存在临界磁场H c,外磁场在H c以上超导现象消失。这是人类第一次发现超导现象,昂内斯也因此获得了1913年的诺贝尔物理奖。

超导现象发现后相当长的一段时间内,人们不理解超导现象的本质。1933年,迈斯纳和奥科森菲尔德发现超导体具有完全抗磁的性质:磁场不能进人超导体内,而且处于正常态的超导体在磁场中冷却到临界温度T c以下,穿过样品的磁通也完全被排除到样品外。这一现象表明,完全抗磁性不能用完全导电性来解释,因为完全导电性将把磁通捕集在样品中,它是独立于完全导电性的另一个超导体的基本特性,称为迈斯纳效应。迈斯纳效应表明超导体的磁性质是可逆的,超导性是热力学稳定状态,与达到这一状态的过程无关。可逆迈斯纳效应的存在意味着临界场H c会破坏超导性,H c应与零场下正常态和超导态之间的自由能差有关。完全导电性(电阻为零)和完全抗磁性(磁感应强度为零)是超导体的两个最基本的特性。1935年H·伦敦和F·伦敦兄弟根据这两个特性提出了唯象的超导体电动力学方程,即伦敦方程,来解释超导体的电磁现象。从伦敦方程可以导出磁场在超导体表面是指数衰减的,对常规超导体穿透深度为几十个nm量级。但伦敦方程不能处理场强比较高时的非线性效应和超导电子密度的空间变化,更不能说明超导电性形成的微观机制。

二、超导体的分类

1950年京茨堡和朗道引人有序参数,用二级相变理论描述超导态,并且提出G-L方程。

有序参数可视为库珀对质心运动的波函数。在GL理论中引入了与温度有关的相干长度ξ(T),相干长度表征有序参数在空间发生变化的范围。1957年阿列克谢?阿布里科索夫在GL理论的基础上提出了第Ⅱ类超导体的理论。阿布里科索夫计算了穿透深度大于相干长度的情况,发现正常部分和超导部分之间的表面能为负值,在超导体的临界场H_c处不发生一级相变,而是在小于H_c的下临界场时,磁通开始进人超导体内,在可能远大于H_c的上临界场时磁场才完全穿透超导体。而在这之间超导体处于混合态,磁通以一系列规则排列的磁通管形式进入超导体,每个磁通管携带一个磁通量子。

对于相干长度大于穿透深度的超导体是第Ⅰ类超导体。第Ⅰ类超导体的热力学临界场H_c不高,磁场也不能进入体内,因此超导电流只能是表面电流,临界电流不高,没有多大的实际应用价值。由于磁通可以进入第Ⅱ类超导体的体内,超导电流是体电流,临界电流密度J_c可以在〖10〗^9 A/m^2以上。第Ⅱ类超导体发展成为超导电工技术的实用材料,大大地推动了超导磁体和超导电力技术的发展。

三、超导电性的物理机制

现在我们已经知道,超导体是一种宏观的量子态。人们用了将近半个世纪,等到量子力学体系基本完成,才找到了超导作为一种宏观量子现象的理论基础。1950年,实验上发现了超导临界温度的同位素效应,超导体的临界温度T c、临界场H c和同位素的质量M有关,T c、H c∝,表明超导电性是由电子一声子相互作用产生的。在此基础上科学家巴丁、库珀和施里弗于1957年建立了超导体的微观理论,以后用他们名字的首字母命名为BCS理论。若温度低于临界温度,电子在晶体中运动时会把周围的离子稍微极化一点,极化后的晶格又把第二个电子吸引过来,使两个电子之间存在着通过交换声子而发生的吸引作用,由于这种吸引作用,费密面附近两个自旋相反的电子两两结合形成电子对,称为“库珀对”。库珀对与原子核之间没有能量交换,因此库珀对在晶格之间传播的时候不会遇到阻碍,导体的电阻为零。BCS理论给出了超导电性清晰的物理机制,为超导科学和技术的发展奠定了坚实的基础。三位物理学家也因此获得了1972年的诺贝尔物理学奖。

BCS理论不仅是超导电性研究史上的一座重要里程碑,对其他物理学的发展也有重大的影响,给物理学家们很多灵感来解释之前难以理解的物理学现象。譬如:科学家们发现质子和中子都是费米子并各自形成独立的“粒子对”,使一些原子核有未曾预料到的稳定性。前苏联的理论物理学家米格达提出:中子星应该包含成对的中子,从而形成自由流动的“超流体”。科学家还借助BCS理论的思想预言了氦的同位素H e?3是超流体。

四、超导电性的应用

科学研究的最终目的在于应用,随着研究的进展,超导体在电力能源、超导磁体、生物、医疗科技、通信和微电子等领域有广泛的应用,大致可分为以下几类:

1. 抗磁性应用

超导材料的一重要特征是具有完全的抗磁性。若把超导材料放在一块永久磁体之上,由于磁体的磁力不能穿过超导体,磁体和超导体之间就会产生斥力,使超导体悬浮在磁体上方。超导磁悬浮列车利用超导磁石使车体上浮,通过周期性地变换磁极方向而获得推进动力。日本于1977年制成了ML500型超导磁浮列车的实验车,1979年宫崎县建成全长7000米的试验铁路线,达到了每小时517 公里的高速度,证明了用磁悬浮方式高速行驶的可能性。1987 年3月,日本完成了超导体磁悬浮列车的原型车,其外形呈流线形,车重17吨,可载44人,最高时速为420千米。车上装备的超导体电磁铁所产生的电磁力与地面槽形导轨上的线圈所产生的电磁力互相排斥,从而使车体上浮。槽形导轨两侧的线圈与车上电磁铁之间相互作用,从而产生牵引力使车体一边悬浮一边前进。我国从70年代开始进行磁悬浮列车的研制,首台小型磁悬浮原理样车在1989年春起来了。1995年5月,我国第一台载人磁悬浮列车在轨道上空平稳地运行起来。这台磁悬浮列车长3. 36米,宽3米,轨距2米,可乘坐20人,设计时速500千米。1996年7月,国防科技大学紧跟世界磁悬浮列车技术的最新进展,成功地进行了各电磁铁运动解耦的独立转向架模块的试验。目前,美国正在研制地下真空磁悬浮超音速列车。这种神奇的行星列设计最高时速2. 25万千米,是音速的20多倍。它横穿美国大陆只需21分钟,而喷气式客机则需5小时。高超导在运载上的其他应用可能还有用作轮船动力的超导电机、电磁空间发射工具及飞机悬浮跑道等。

利用超导体产生的巨大磁场,还可应用于受控制热核反应。核聚变反应时,内部温度高达1亿~ 2亿e,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为磁封闭体,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。

2. 医学上的应用

超导磁体在医学上的重要应用是核磁共振成像技术。核磁共振成像技术可测定生物体中氢原子核以及特定原子核构成的物质,通过核磁共振扫描检测生物体组织发生的种种变化,再经过计算机处理把变化显示出来, 从而发现生物体组织的病变。该仪器对于癌症的诊断极为有效。由于磁共振成像不使用放射线,又不接触人体,所以对人体组织无损害。另外,利用超导体介子发生器可以治疗癌症,利用超导磁体可以治疗脑血管肿瘤等。

3. 军事上的应用

超导技术在军事上有广泛的应用前景,主要体现在:超导计算机,超导计算机应用于C3I 指挥系统,可使作战指挥能力迅速改善提高;超导探测器,利用超导器件对磁场和电磁辐射进行测量,灵敏度非常高,可用于探测地雷、潜艇,还可制成十分敏感的磁性水雷。超导红外毫米波探测器不仅灵敏度高,而且频带宽,探测范围可覆盖整个电磁频谱,填补现有探测器不能探测亚毫米波段信号的空白。利用超导器件制造的大型红外焦平面阵列探测器,可以探测隐身武器,将大大提高军事侦察能力;大功率发动机,这种发动机具有能量大、损耗小、重量轻、体积小等优点,可用作飞机、舰艇等的动力装置;超导储能系统,利用超导材料的高载流和零电阻特性,可制成体积小、重量轻、容量大的储能系统,用作粒子束武器、自由电子激光器、电磁炮的能源;超导磁流体推进系统, 为水面舰艇和潜艇提供动力。

总之,在可以预见的将来超导电性的研究和应用必将有一个突飞猛进的发展。不久的将来,我国的能源、医疗卫生、电子技术和科学仪器等方面发展将会迫切需要超导技术的广泛应用。能否抓住超导技术发展提供的历史性的机会、争取在这一新兴高技术产业中占有一席之地,是我国超导技术发展面临的一个重要课题也是给中国科学家提出的一个挑战。

参考文献:

[1]李正中.固体理论[M].高等教育出版社.2002.

[2]赵继军陈岗.超导BCS理论的建立[J].大学物理.2007.09.

[3]王智甫.超导电性研究的历史与现状[J].新乡教育学院学报.2004.12.

[4]基泰尔[美]著.项金钟吴兴惠译.固体物理导论[M].化学工业出版社.2005.

超导体材料

超导体材料 超导体的定义 1911年,荷兰发明氦液化器的昂尼斯〔H.K.Onnes)偶然发现,在液氦温度(4.2K)下,汞的电阻突然消失,这种现象被称为超导。但是,象汞这样金属的超导状态在很弱的磁场中就会被破坏。进一步的研究表明,要成为超导状态,温度丁,磁场强度H和电流密度J都必须分别处于临界温度T c,临界磁场强度H c和临界电流密度J c以下。如图1所示,在T-H-J 坐标空间中有一个临界面,其内部就是超导状态。临界条件下具有超导性的物质称为超导材料或超导体。 图 1 超导状态的T-H-J临界面(区面内:超导状态;曲面外:正常状态) 【杨兴钰.材料化学导论[M].武汉:湖北科学技术出版社,2003.】 超导体的应用 50年代后期,发现超导状态的温度提高,而且发现丁能产生强磁场的银及钒的合金和化合物,促使超导现象的应用登上了科技舞台。由于电阻近于0Ω,在超导体内流动的电流将没有损耗.这样,很细的导线就可以通过很强的电流,可产生很强的磁场。问题是它必须在液氦温度下工作,液氮的价格、供应和使用方式使得它的普遍应用受到了严格的限制。即使如此,超导磁体仍大量被使用于加速器、聚变装置、核磁共振和磁分析等仪器上。例如美国费密实验室用了1000多个超导磁体,每年的被氮费用高达500万美元,但因此而节省的电力为18500万美元;美国于1990年建成的周长为83km的超级质子对撞机使用10000个超导磁体,每年可节省电力6亿美元。【唐小真,杨宏秀,丁马太.材料化学导论[M].高等教育出社,1997.】超导核磁共振层析仪能给出人体任一部位的剖面图.其分辨本领远远超过x射线或超声层祈仪.是现代高级医院重要的诊断设备之一。 超导技术在医疗上可用于外科手术。例如导管牵引术,将导管插入血管后,靠强磁体引导到脑部等血管瘤部位后,将磁性胶体注入血管,靠强磁体引导到肿瘤前提供血管定位,使给养阻塞,从而使肿瘤萎缩死亡。【杨兴钰.材料化学导论[M].武汉:湖北科学技术出版社,2003.】利用超导体送电的超导电缆已经出现,利用超导体储存电能的超导储能器可在瞬间释放出极强的电能。这种储能器为激光技术提供了储存条件。它可将强电流存储在超导线圈之中,然后启动开关,一瞬间便会释放出巨能,从而发出强大的激光。 用超导体做的超导磁体,可以得到极强的磁场。因为超导线圈没有电阻,超导磁体可以比普通电磁体轻得多:几千克超导磁体抵得上几十吨常规磁体产生的磁场这将给电力工业带来一系列的变革,发电机会因使用超导体而提高输出功率几十倍、上百倍;已试制出来的

高温超导储能系统

高温超导储能系统 一、什么是超导储能系统? 超导储能系统(Superconducting Magnetic Energy Storage, SMES)是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,一般由超导线圈、低温容器、制冷装置、变流装置和测控系统部件组成。 超导储能系统可用于调节电力系统峰谷(例如在电网运行处于其低谷时把多余的电能储存起来,而在电网运行处于高峰时,将储存的电能送回电网),也可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因素的调节以改善电力系统的稳定性。超导储能系统具有一系列其它储能技术无法比拟的优越性: (1)超导储能系统可长期无损耗地储存能量,其转换效率超过90%; (2)超导储能系统可通过采用电力电子器件的变流技术实现与电网的连接,响应速度快(毫秒级); (3)由于其储能量与功率调制系统的容量可独立地在大范围内选取,因此可将超导储能系统建成所需的大功率和大能量系统; (4)超导储能系统除了真空和制冷系统外没有转动部分,使用寿命长; (5)超导储能系统在建造时不受地点限制,维护简单、污染小。 目前,超导储能系统的研究开发已经成为国际上在超导电力技术研究开发方面的一个竞相研究的热点,一些主要发达国家(例如美国、日本、德国等)在超导储能系统的研究开发方面投入了大量的人力和物力,推动着超导储能系统的实用化进程和产业化步伐。 二、开发超导储能系统的必要性 由于电力系统的“电能存取”这一环节非常薄弱,使得电力系统在运行和管理过程中的灵活性和有效性受到极大限制;同时,电能在“发、输、供、用”运行过程中必须在时空两方面都达到“瞬态平衡”,如果出现局部失衡就会引起电能质量问题(闪变),瞬态激烈失衡还会带来灾难性电力事故,并引起电力系统的解列和大面积停电事故。要保障电网安全、经济和可靠运行,就必须在电力系统的关键环节点上建立强有力的电能存取单元(储能系统)对系统给与支撑。基于以上因素,电能存取技术越来越受到各国能源部门和电力部门的重视。 超导储能系统由于其存储的是电磁能,这就保证超导储能系统能够非常迅速

华科船舶结构强度第二次大作业

船体强度与结构设计 ------第二次大作业 班级: 姓名: 学号:

题目:图示为某船舶横剖面结构示意图。请计算当船舶船舯为波谷,且弯矩值为×107N ·m ,考虑折减系数计算总纵弯矩应力。 解答: 一、计算依据 1、计算载荷 计算弯矩 7 9.010m M N =?? 2、船体材料 计算剖面的所有构件均采用低碳钢,屈服极限=235a Y MP σ 3、许用应力 (1)总纵弯曲许用应力 []0.5Y σσ= (2)总纵弯曲与板架局部玩去合成应力的许用应力: 在板架跨中 12[+]0.65Y σσσ= 在横仓壁处 12[+]Y σσσ=

二、总纵弯曲正应力计算 1、总纵弯曲正应力第一次近似计算 肋骨剖面计算简图如题图所示。将图中个强力构件编号并将其尺寸填入表中。船体剖面要素及第一次近似总纵弯曲应力的计算在下表中完成。

在计算中,参考轴取在基线处。利用上表中的数据可得第一次近似中和轴距参考轴的距离为: =2748.361702.81=1.614m ?÷ 所以,第一次近似中和轴距基线的距离为 船体剖面对水平中和轴的惯性矩为: 222=2(9951.42138.512748.361702.81)11308.1cm m I ?+-÷=? 剖面上各构件的应力为: ' i i = /100M Z I σ 式中'i i Z Z =-? 2、临界压力计算 由于该计算中船舶船舯处于波谷中,即船舶处于中垂状态,所以下面只列出中和轴以上部分受压板的临界应力。 纵骨架式板格(四边自由支持)按下式计算: 2 10076( )cr t b σ= 3、船体总纵弯曲应力第二次近似计算 (1)剖面折减系数计算 已知本船体结构为纵骨架势,因此对于只参加抵抗总纵弯曲的构件 cr i σ?βσ= 式中 cr σ——板格的临界应力

近 代 物 理 实 验 报 告 -高温超导

近代物理实验报告 实验题目:高温超导材料的特性与表征作者:李健 时间:2015-09-17

高温超导材料的特性与表征 【摘要】本实验主要通过对高温超导材料Y-Ba-Cu-O特性的测量,理解超导体的两个基本特性,即完全导电性和完全抗磁性,了解超导磁悬浮的原理。本实验利用液氮将高温超导材料Y-Ba-Cu-O降温,用铂电阻温度计测量温度,通过测量铂电阻的大小及查询铂电阻-温度对照表得出相应的温度,再电压表测得超导体电阻,即能得到超导体电阻温度曲线,测得该样品的超导转变温度约为93K;再通过超导磁悬浮实验验证了高温超导材料的磁特性,得到分别在零场冷却,有场冷却下的超导体的磁悬浮力与超导磁体间距的关系曲线。 【关键词】高温超导零电阻现象MEISSNER效应低温恒温器四引线法磁悬浮 【引言】 从1991年荷兰物理学家卡默林·翁纳斯(H.K.Onnes)发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,是人类对超导电性的基本探索和认识阶段,核心是提出库珀电子对;第二阶段是从1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。 超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准,在991年1月1日开始生效的伏特和欧姆的新实验基准中,电压基准就是以超导电性为基础。 本实验目的是通过对氧化物高温超导材料的测量与演示、加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 【正文】 一、实验原理 1.超导现象、临界参数及实用超导体 (1)零电阻现象 将物体冷却到某一临界温度Tc以下时电阻突然降为零的现象,称为超导体的零电阻现象。不同的超导体的临界温度各不相同。如下图,用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset,临界温度Tc定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度Tcm。电阻变化10%到90%所对应的温度间隔定义为转变宽度△Tc,电阻全降到零时的温度为零电阻温度Tc。通常说的超导转变温度Tc指Tcm。

铁基高温超导体研究进展

物理四38卷(2009年)9期 h t t p :∕∕w w w.w u l i .a c .c n 铁基超导体专题 铁基高温超导体研究进展* 陈仙辉? (中国科学技术大学物理系 合肥微尺度物质科学国家实验室 合肥 230026 )摘 要 最近,由于在铁基L n (O ,F )F e A s 化合物及其相关化合物中发现具有高于40K 的超导电性,层状的铁基化合物引起了凝聚态物理学界很大的兴趣和关注.在随后的研究中发现,在该类材料中最高超导临界温度可达到55K.这些重要的发现使得人们又重新对高温超导体的探索产生了极大的兴趣,并且为研究高温超导的机理提供了新的一类材料.文章主要介绍了作者所在组在新型铁基超导体方面的最新研究进展,包括:(1)铁基超导材料探索研究;(2) 铁基超导体的单晶制备及物性研究;(3)铁基超导体的电子相图及自旋密度波(S DW )和超导共存研究;(4)同位素交换对超导转变和S DW 转变的效应.最后,在已完成的工作基础上提出了一些今后的研究方向和发展前景.关键词 铁基超导体,自旋密度波,相图,结构相变 N e w i r o n -p n i c t i d e s u p e r c o n d u c t o r s C H E N X i a n - H u i ? (H e f e iN a t i o n a lL a b o r a t o r y f o rP h y s i c a l S c i e n c e a tM i c r o s c a l e a n dD e p a r t m e n t o f P h y s i c s ,U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y o f C h i n a ,H e f e i 230026,C h i n a )A b s t r a c t T h ed i s c o v e r y o f s u p e r c o n d u c t i v i t y w i t hac r i t i c a l t e m p e r a t u r e (T c )h i g h e r t h a n40Ki nt h e i r o na r s e n i d eL n (O ,F )F e A s h a s d r a w nm u c h i n t e r e s t i n c o n d e n s e dm a t t e r p h y s i c s .L a t e r d i s c o v e r i e s ,i n c l u -d i n g t h e e n h a n c e m e n t o f T c u p t o 55K ,h a s e v o k e d i n t e n s e e x c i t e m e n t i n t h e p i l g r i m a g e t o w a r d s t h e u n d e r -s t a n d i n g o f t h em e c h a n i s mo f h i g hT c s u p e r c o n d u c t i v i t y ,w h i l e p r o v i d i n g a b r a n d n e wf a m i l y o fm a t e r i a l s t o a d d r e s s t h i s i s s u e .I n t h i s r e v i e ww e p r e s e n t o u r g r o u p 'sm a j o r r e s e a r c h o n n e w i r o n b a s e d s u p e r c o n d u c t o r s ,i n c l u d i n g :(1)o u r i n i t i a l i n v e s t i g a t i o n s ;(2)t h e s y n t h e s i s o f i r o n a r s e n i d e s i n g l e c r y s t a l s a n d t h e c h a r a c t e r -i z a t i o no f i t s p h y s i c a l p r o p e r t i e s ;(3)t h e e l e c t r o n i c p h a s e d i a g r a mo f i r o n b a s e d s u p e r c o n d u c t o r s a n d t h e c o -e x i s t e n c eb e t w e e n s p i n d e n s i t y w a v e s a n d s u p e r c o n d u c t i v i t y ;(4)t h e e f f e c t o f i s o t o p e e x c h a n g e o n s p i n d e n -s i t y w a v e s a n d s u p e r c o n d u c t i n g t r a n s i t i o n s .T o f i n i s h ,w e p r o p o s e p o s s i b l e f u t u r e d i r e c t i o n s i n t h i s f i e l d .K e y w o r d s i r o n - p n i c t i d e s u p e r c o n d u c t o r ,s p i nd e n s i t y w a v e (S DW ),p h a s e d i a g r a m ,s t r u c t u r a l t r a n s i t i o n * 国家自然科学基金二 国家重点基础研究发展计划(批准号:2006C B 601001,2006C B 922005 )和中国科学院资助项目2009-07-15收到 ? E m a i l :c h e n x h @u s t c .e d u .c n 1 引言 1986年,I B M 研究实验室的物理学家B e d n o r z (柏诺兹)和M ül l e r (缪勒)发现了临界温度为35K (零下238.15℃)的镧钡铜氧超导体[1]. 这一突破性发现导致了一系列铜氧化物高温超导体的发现.自那以后,铜基高温超导电性及其机理成为凝聚态物理的研究热点.然而直至今日,铜基高温超导机制仍未解决,这使得高温超导成为当今凝聚态物理学中最大的谜团之一.因此科学家们都希望在铜基超导材料以外再找到新的高温超导材料,能够从不同的 角度去研究高温超导机制,最终解决高温超导的机制问题. 最近,由于在铁基L a O 1-x F x F e A s (x =0.05 0.12)化合物中发现有26K 的超导电性[2] , 层状的Z r C u S i A s 型结构的L n O MP n (L n =L a ,P r ,C e ,S m ;M =F e ,C o ,N i ,R u 和P n =P 和A s )化合物引起了科学家很大的兴趣和关注[3,4] .2008年3月, 四 906四

二维时谐分析 Ansys工程电磁场有限元分析 华科电气

第三章二维时谐分析 (2-D Harmonic (AC) Analysis) 分析对象:正弦交变电流产生的效应 ?Eddy currents涡流 ?Skin effects集肤效应 ?Power loss due to eddy currents涡流损耗 ?Forces and torque力和力矩 ?Impedance and inductance阻抗和自感 ?Two contacting bodies with dissimilar meshes不同网孔(如转子/定子气隙)典型应用: ?Transformers变压器 ?Induction machines电感器 ?Eddy-current braking systems涡流刹车系统 ?Most electromagnetic devices that work on AC交流电磁装置 不能有永磁体,不考虑磁滞效应。

3.1 线性分析与非线性分析 ?严格上讲,时谐分析只适用于线性分析。 ?中等饱和的非线性问题,如果不关心波形畸变,只关心时间平均的量,则可分析。 ?B-H曲线为等效值。 ?严格的非线性分析只能通过瞬态分析完成。 3.2 所用的单元 实体单元:

远场单元: 电路单元: 3.3 创建2D 时谐分析物理环境 自由度选项 ? AZ :无外加电压;用于短路导体 ? AZ-VOLT :允许外加电压,可模拟多种状况 t ? ?=--??A E j j V ωω ?=-- E A

Note :d V t ?=? (time-integrated potential),(单位:V s )。同一断面上 V 是常数。使用时需要对所有相关节点进行耦合。 ? AZ-CURR :用于电压源驱动的线圈(线圈不计涡流) 模型物理特性设置

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

超导磁储能系统(SMES)及其在电力系统中的应用

高温超导磁储能系统及在电力系统中的应用 一、超导磁储能基本原理 1、什么是超导磁储能系统? 超导储能系统(Superconducting Magnetic Energy Storage, SMES)是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,一般由超导线圈、低温容器、制冷装臵、变流装臵和测控系统部件组成。 超导储能系统可用于调节电力系统峰谷(例如在电网运行处于其低谷时把多余的电能储存起来,而在电网运行处于高峰时,将储存的电能送回电网),也可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因素的调节以改善电力系统的稳定性。超导储能系统具有一系列其它储能技术无法比拟的优越性: (1)超导储能系统可长期无损耗地储存能量,其转换效率超过90%; (2)超导储能系统可通过采用电力电子器件的变流技术实现与电网的连接,响应速度快(毫秒级); (3)由于其储能量与功率调制系统的容量可独立地在大范围内选取,因此可将超导储能系统建成所需的大功率和大能量系统; (4)超导储能系统除了真空和制冷系统外没有转动部分,使用寿命长; (5)超导储能系统在建造时不受地点限制,维护简单、污染小。 目前,超导储能系统的研究开发已经成为国际上在超导电力技术研究开发方面的一个竞相研究的热点,一些主要发达国家(例如美国、日本、德国等)在超导储能系统的研究开发方面投入了大量的人力和物力,推动着超导储能系统的实用化进程和产业化步伐。 2、储能工作原理 SMES在电力系统中的应用首先是由Ferrier在1969年提出的。最初的设想是将超导储能用于调节电力系统的日负荷曲线。但随着研究的深入,人们逐渐认识到调节现代大型电力系统的日负荷曲线需要庞大的线圈,在技术和经济上存在着困难。现在,SMES在电力系统应用中的研究重点主要着眼于利用SMES四象限的有功、无功功率快速响应能力,提高电力系统稳定性、改善供电品质等。超导磁能储存的概念最开始来自于充放电时间很短的脉冲能量储存,大规模能量储存开始于电器元件,其原理就是电能可以储存在线圈的磁场中。如果线圈是由超导材料制成,即保持在临界温度以下,即使发生变化,电流也不会发生衰减。线圈卸载荷,可以将电流释放回电路中去。 电流I循环储存在线圈中的能量E为

结构力学大作业(华科)

一、任务 1.求解多层多跨框架结构在竖向荷载作用下的弯矩以及水平荷载作用下的弯矩和 各层的侧移。 2.计算方法: (1)用近似法计算:水平荷载作用用反弯点法计算,竖向荷载作用采用分层法和二次力矩分配法计算。 (2)用电算(结构力学求解器)进行复算。 3. 就最大相对误差处,说明近似法产生误差的来源。 4. 将手算结果写成计算书形式。 二、结构形式及各种资料 1. 计算简图:如图1所示。 2. 基本计算参数 底层柱bXh(mm) 其它层bXh(mm) 边梁bXh(mm) 中间梁bXh(mm) 500X500 450X450 250X450 250X450 材料弹性模量: 72 3.210/ h E kN m =? 竖向荷载: 2 1 =23/ g kN m,2 2 =20/ g kN m 水平荷载: =32 p F kN 1,2 =18 P F kN 3. 荷载分组: (1)计算水平荷载(见图2);(2)计算竖向恒载(见图3); L1L2H1 H2 H2 H2 H2 F F F F F 图1 计算简图图2 水平荷载作用

g2 g1 g1 g1 g1 q2 q1 图3 竖向荷载作用 三、计算内容 ?水平荷载 1、反弯点法 (1)求柱的剪力 由所给数据可得各层梁柱的线刚度(单位:kN·m)如下表: i底柱i其它柱i左梁i右梁 34792363331270825417 第五层柱;F Q14 = F Q25 = F Q36 = 18/3kN = 6kN 第四层柱;F Q47 = F Q58 = F Q69 = 50/3kN 第三层柱;F Q710 = F Q811 = F Q912 = 82/3kN 第二层柱;F Q1013 = F Q1114 = F Q1215 = 114/3kN 第一层柱;F Q1316 = F Q1417 = F Q1518 = 146/3kN (2)求柱的弯矩 第五层柱;M 14 = M 41 = M 25 = M 52 = M 36 = M 63 = 6×3/2 = 9kN·m 第四层柱;M 47 = M 74 = M 58 = M 85 = M 69 = M 96 = 50/3×3/2 = 25kN·m 第三层柱;M 710 = M 107 = M 811 = M 118 = M 912 = M 129 = 82/3×3/2 = 41kN·m 第二层柱;M 1013 = M 1310 = M 1114 = M 1411 = M 1215 = M 1512 = 114/3×3/2 = 57kN·m 第一层柱;M 1316 = M 1417 = M 1518 = 146/3×4.8/3 = 77.87kN·m M 1613 = M 1714 = M 1815 = 146/3×2×4.8/3 = 155.74kN·m (3)求梁的弯矩 分别取结点1、2为隔离体 1 M12 ∑M1=0 M12=M14=9kN·m M14

高温超导材料特性和低温温度计实验报告

高温超导材料特性和低温温度计实验报告 学号:39051609 姓名:齐德轩日期:2011/4/15 一、实验目的 1.了解高临界温度超导材料的基本特性及其测试方法 2.学习三种低温温度计的工作原理和使用以及进行比对的方法 3.了解液氮使用和低温温度控制的简单方法 二、实验原理 1.超导体和超导电性 (1)常用临界温度Tc,临界磁场Bc和临界电流Ic作为临界参量来表征材料的超导性能。温度的升高、磁场或电流的增大,都可以使超导体从超导状态转 变为正常态。Bc和Ic都是温度的函数。 (2)迈斯纳效应 不论有没有外加磁场,是样品从正常态转变为超导态,只要T>Rr,R≈Ri(T) 在液氮正常沸点到室温这一范围内,铂电阻温度计具有良好的线性电阻— 温度关系。可表示为R(T)=AT+B。因此可以根据给出的铂电阻温度计在液氮 正常沸点和冰点的电阻值,可确定所用的铂电阻温度计的A、B值,并由此 对铂电阻温度计定标,得到不同电阻值所对应的温度值。 (2)温差电偶温度计 当两种金属所做成的导线连成回路,并使其两个接触点维持在不同的温度 下时,改闭合回路中就会有温度差电动势催在,如果将回路的一个接触点 固定在一个已知的温度下,则可以由所测得的温差电动势确定回路的另一 个接触点的温度。 三、仪器用具 1.低温恒温器 2. 不锈钢杜瓦容器和支架 3. PZ158型直流数字电压表 4. BW2型高温超导材料特性测试装置(电源盒)

铁基超导体

铁基超导体 对于现代人来说,超导已经不再是一件什么神秘的事情了,普通的中学生就已经知道了所谓的超导现象:当导体的温度降到一个临界温度时电阻会突然变为零。处于超导状态的导体称之为超导体。超导体除了电阻为零的特殊性质之外,人们后来又发现了它的另一个神奇的性质——完全抗磁性,也就是说超导体内的磁感应强度为零,把原来存在于体内的磁场也完全“排挤”出去。这一现象也被称为“迈斯纳效应”。正是由于超导体的这一性质,而铁基材料通常具有铁磁性,因此被认为最不具备成为高温超导材料的条件。但最近的科研结果却打破了这一传统的束缚,铁基超导材料成为了高温超导研究领域的一个“重大进展”。 铁基超导体的发现历程 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。1986年,美国科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点,超导体的临界温度也不断“飙升”,在短短几年中,铜氧化合物的超导临界转变温度就被提高到134K(常压)和164K(高压)。然而直至今日,对于铜基超导材料的高温超导机制,物理学界仍未形成一致看法,这也使得高温超导成为当今凝聚态物理学中最大的谜团之一。因此很多科学家都希望在铜基超导材料以外再找到新的高温超导材料,从而能够使高温超导机制更加明朗。

2008年2月23日,日本科学技术振兴机构和东京工业大学联合发布公报称,东京工业大学教授Hosono的研究小组合成了氟掺杂钐氧铁砷化合物。该化合物是一种由绝缘的氧化镧层和导电的砷铁层交错层叠而成的结晶化合物。纯粹的这种物质没有超导性能,但如果把化合物中的一部分氧离子转换成氟离子,它就开始表现出超导性,并且在26K(零下247摄氏度)时具有超导特性。其实在2006和2007年Hideo Hosono小组就已经分别报道在LaFePO 和LaNiPO 材料中发现转变温度为2到7K的 超导电性。但这一次却立刻引发 了人们对这一体系的强烈关注 (下图为LaFeAsO的晶体结构)。 3月14日,中科院物理所闻海虎, 在镧氧铁砷 (LaOFeAs) 材料中用二价金属替换三价的La,在空穴型掺杂中取得重要进展,临界温度达到25K。3月25日,中国科技大学陈仙辉领导的科研小组又报告,氟掺杂钐氧铁砷化合物在临界温度43开尔文(零下230.15℃)时也变成超导体。3月28日,中国科学院物理研究所赵忠贤领导的科研小组报告,氟掺杂镨氧铁砷化合物的高温超导临界温度可达52开尔文(零下221.15℃)。4月13日该科研小组又有新发现:氟掺杂钐氧铁砷化合物假如在压力环境下产生作用,其超导临界温度可进一步提升至55开尔文(零下218.15℃,将这场追求铁基高临界温度的竞争推向高潮,并保持着目前为止铁基超导体的临界温度最高纪录。 新的超导机制有望取得突破

铁基超导体研究取得重要进展

铁基超导体研究取得重要进展 [本刊讯]近日,中国科学技术大学合肥微尺度物质科学国家实验室、中国科学院强耦合量子材料物理实验室的陈仙辉教授研究组在铁基超导研究领域取得了重大进展,成功发现了一种新的铁基超导材料(Li0.8Fe0.2)OHFeSe,其超导转变温度高达40开以上,并与美国国家标准技术研究所中子研究中心的黄清镇博士以及中科大吴涛教授等几个研究组合作,确定了该新材料的晶体结构并发现超导电性和反铁磁共存。相关研究成果在线发表在12月15日的Nature Materials上。 铁基高温超导体是目前凝聚态物理领域的研究热点,其机理还没有得到完全理解,FeSe类超导体以其诸多独特的性质被认为是研究铁基超导机理的理想材料体系。尤其是近期报道的生长于SrTiO3衬底上的FeSe单层薄膜的零电阻转变温度高达100开以上,更加激起了科学家对于这一体系的浓厚兴趣。然而,对于FeSe类超导材料,目前研究较为广泛的AxFe2Se2(A=K,Rb,Cs)体系存在严重的相分离,反铁磁绝缘相与超导相的共生导致该类材料的结构与性质非常复杂,从而使得研究其内在的物理机制变得非常困难。而FeSe 单层薄膜以及通过液氨等低温液相插层方法合成的Lix(NH2)y(NH3)1-yFe2Se2等化合物在空气中极不稳定,无法深入研究其物理性质。为了能够深入探究铁基高温超导的物理机制,亟需寻找到新的具有高的超导转变温度且空气稳定。并适合物理测量的FeSe类超导材料。 陈仙辉研究组首次利用水热反应方法成功发现了一种新的FeSe类超导材料(Li0.8Fe0.2)OHFeSe,超导转变温度高达40开以上。通过结合X射线衍射。中子散射和核磁共振三种技术手段精确确定了该新材料的晶体结构。此外,发现该结构中严重畸变的FeSe4四面体

GRS超导治疗系统

GRS超导治疗系统 GRS超导治疗系统是目前国际上治疗泌尿生殖感染的新技术,突破了传统治疗模式的局限,不直接接触患病部位,通过超导能量直接穿透病变组织屏障,快速全面杀灭体内各种病原体,达到有效治愈的目的。 GRS场效治疗系统,专业治疗慢性前列腺炎、前列腺增生,具有不住院、不开刀、不插管、无创伤、无痛苦、无副作用等特点。 GRS螺旋超导治疗仪治疗原理: 利用GRS产生强大的电能,驱使组织细胞内带电离子产生移动补充其丢失的电位从而达到修补人体生物电场的作用。这一过程包括: 热效应: GRS使体内发热,发热程度因电流密度而异。在高温70C时使蛋白产生不可逆变性,能治疗前列腺增生。45C、46C、47C进对有引起细菌和生物体能起到杀灭和抑制作用前列腺及其他炎症。 排毒效应: GRS补充细胞的电特性,吸附白细胞的能力加强,细菌被灭杀或抑制生长,并扩张前列腺中各种腺管,增强其代谢功能。治疗中可见脓状物随尿液排出体外。 生物效应: GRS可以诱导机本体内部的某些理化过程及生理效应,促进与恢复病变细胞、组织的正常生理功能及细胞活力的提高,并有利于药物的吸收,以达到治疗的目的。 GRS治疗后,配合联合用药7-10天,可使前列腺治疗更迅速、更彻底,特别针对久治不愈的顽固性前列腺炎效果非常明显。98%前列腺炎患者被完全治愈,并且性功能都有不同程度的提高。该疗法完全符合世界卫生组织极力推广的无创、无痛、非介入治疗模式。 GRS超导治疗系统五大优势

优势一: 治疗时不插管,安全舒适,并避免可尿道感染的机会。 优势二: 治疗时无并发症和后遗症,是其他多种治疗方法无法比拟的。 优势三: “非介入,无痛,无创伤”的治疗方式,是世界卫生组织极力提倡的治疗方式,并深受患者欢迎。优势四: 治疗电磁波穿透力强,直达深部病变组织,松懈粘连组织,疏通闭塞的前列腺导管口,彻底清除炎症及毒素,达到标本兼治。 优势五: 治疗时间短、见效快,对慢性盆腔炎、附件炎、良性前列腺增生的临床症 状一般1——2次即有明显效果,慢性前列腺炎治疗仅需3——5 次。 治疗特色: 由于热疗使炎症组织的通透性增加,药物更易扩散,组织的吸收及代谢更好,从而达到综合治疗炎症的目的。临床反映对前列腺炎和前列腺炎效果显著。这种利用生物物理的方式达到治疗目的非手术疗法在治疗过程中几乎不对患者构成损伤和痛。 治疗效果: 治疗精确、灭菌全面、疗程更短、杜绝复发。 诊疗范围: 龟头炎、急慢性尿道炎、睾丸附睾炎、精囊炎、膀胱炎等泌尿生殖感染疾病

2016年华中科技大学有限元复习重点

2016年华中科技大学有限元复习题 重点掌握一般问题的描述、模型简化、有限元的基本思想及分析原理、位移法求解基本过程、位移函数构造、单元特性、有限元计算的具体操作(单元刚阵形成、总纲阵组装)、边界条件处理(载荷等效/边界约束施加)、有限元分析的具体操作 一、基本概念 1、弹性力学基本概念(位移、应力、应变、应力状态及任意方向的应力计算)、基本方程(平衡方程、几何方程、物理方程、边界条件)、基本解法(位移法、应力法、混合法);;线弹性力学基本假设与非线性问题比较 2、平面应力/平面应变问题;空间问题/ 轴对称问题;板壳问题;杆梁问题;温度场;线性问题/非线性问题(材料非线性/几何非线性)等 3、一般物理问题数学表示形式(微分方程、等效积分方程),等效积分的强 形式和弱形式的差别或物理意义。 4、有限元法的基本思想(二次近似)与有限元法应用的基本步骤(5 步) 5、差分法、里兹法的基本思想及与有限元法区别 6、如何利用泛函极值(或最小势能原理)及加权残值法推导有限元计算格式的基本流程 7、如何利用虚功原理推导有限元计算格式的基本流程 8、有限元法的基本定义(节点、单元、节点力、节点载荷) 9、位移函数的构造方法及基本条件 10、位移函数的收敛性条件(协调元、非协调元)及单元协调性的判断 11、有限元解的误差、性质 12、虚功原理、最小势能原理及变分法(里兹法)的理解 13、形函数特性 14、单元刚度/质量矩阵的性质及元素的物理意义 15、常用单元的特性(如单元内部边界位移/应变/应力分布,相邻单元边界的协调性分析)(常应变单元三角形/四面体;矩形单元;等参四边形单元;矩形板单元) 16、等参单元定义、存在条件及特性 17、何为超单元、亚单元及其理解 18、边界条件处理(载荷等效移置集中力/均布力/线性分布力边界位移约束处理固定/指定位移等) 19、总体刚度矩阵组装原则及总刚阵特点 20、不同类型单元的节点自由度的理解和不同单元连接的处理 21、固有频率与特征向量(振型)定义及理解、振型特性 22、振型正交的物理意义 23、静力学问题有限元结果的下限性,固有特性计算结果是否存在呢? 二、基本计算及证明 1、位移模式正确性构造 2、等效载荷计算 3、单元刚阵计算 4、总体刚度矩阵及载荷向量组装,约束条件的引入、整体方程的求解(包括约束反力计算) 5、单元形函数特性及单元协调性证明 6、振型正交性证明 三、工程结构的有限元建模与结果分析(教程 12-14) 1、影响有限元分析精度和成本的因素 2、为什么要进行几何模型简化?简化时的基本原则是什么?

铁基超导体材料

[键入公司名称] 铁基超导体材料[键入文档副标题] 吕鸿燕 14园林本2 1407220221

铁基超导体材料 以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所和中国科学技术大学研究团队因为在“40K以上铁基高温超导体的发现及若干基本物理性质研究”方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。 超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。 超导是物理世界中最奇妙的现象之一。正常情况下,电子在金属中运动时,会因为金属晶格的不完整性(如缺陷或杂质等)而发生弹跳损耗能量,即有电阻。而超导状态下,电子能毫无羁绊地前行。这是因为当低于某个特定温度时,电子即成对,这时金属要想阻碍电子运动,就需要先拆散电子对,而低于某个温度时,能量就会不足以拆散电子对,因此电子对就能流畅运动。 通常的低温超导材料中,电子是通过晶格各结点上的正离子振动而结合在一起的。但大多数的物理学家都认为,这一电子对结合机制并不能解释临界温度最高可达138开尔文(零下135.15℃)的铜基材料超导现象。每一种铜基超导材料都是由层状的“铜-氧”面组成,其中的电子是如何成对的,仍是未解难题。 在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。 继铜基超导材料之后,日本和中国科学家最近相继报告发现了一类新的高温超导材料——铁基超导材料。美国《科学》杂志网站报道说,物理学界认为这是高温超导研究领域的一个“重大进展”。 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。1986年,科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点。

华科电气MATLAB大作业

华科电气MATLAB大作业

————————————————————————————————作者:————————————————————————————————日期:

华中科技大学电气与电子工程学院 《MATLAB课程作业》 班级 学号 姓名 时间2014年12月25日

目录 一.概述 (2) 二.设计要求 (2) 三.设计分析 (2) 1.系统的稳态误差理论分析 (3) 2.系统稳态误差仿真分析 (3) 3.阶跃响应仿真分析 (4) 四.根轨迹法设计相位滞后环节 (9) 1.相位滞后环节设计 (9) 2.加入相位滞后环节的仿真分析 (10) 五.超前校正设计 (11) 1.超前校正器设计 (11) 2.超前校正仿真分析 (13) 六.滞后校正设计 (17) 1.滞后校正器设计 (17) 2.仿真分析 (18) 七.总结 (20) 参考文献 (21)

反馈控制系统设计—铣床控制系统设计 一.概述 铣床是指主要用铣刀在工件上加工各种表面的机床。通常铣刀旋转运动为主运动,工件和铣刀的移动为进给运动。它可以加工平面、沟槽,也可以加工各种曲面、齿轮等。铣床是用铣刀对工件进行铣削加工的机床。铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,效率较刨床高,在机械制造和修理部门得到广泛应用。 铣床的自动控制系统的设计直接影响到加工的精度,影响产品的工艺。所以,本文通过利用MATLAB 和Simulink 对铣床的控制系统做一个校正设计,使其具有相应的性能。 二.设计要求 1、单位斜坡输入2 1()R s s 作用下 ,速度误差不大于1 8; 2、阶跃输入时的超调量小于20%。 三.设计分析 用Visio 画出一个简化的铣床闭环控制系统的方框图如图二所示。 Contoller Gc(s) Plant G(s) + - + + ++ D(s) N(s) R (s ) Desired depth-of-cut Y (s ) Actual depth-of-cut 图1. 简单的铣床闭环控制系统

相关文档
最新文档