岩石的力学特性及静态试验分析

岩石的力学特性及静态试验分析
岩石的力学特性及静态试验分析

河南建材2008年第3期

1岩石的力学特性

1.1岩石的受力变形特性

岩石在外力作用下产生变形,其变形按性质分为弹性变形和塑性变形,图是岩石典型的完整应力应变曲线。根据曲率变化,可将岩石变形过程分为四个阶段:

图1岩石的应力应变

1)微裂隙压密阶段。岩石中原有的裂隙在荷载的作用下逐渐被压密,曲线呈上凹形,曲线斜率随应力增大而逐渐增大,表示微裂隙的变化开始较快,随后逐渐减慢。A点对应的应力称为压密极限强度。对于微裂隙发育的岩石,本阶段比较明显,但对于致密岩石而言,很难划出这个阶段。

2)弹性变形阶段。岩石的微裂隙进一步的闭合,空隙被压缩,原有的裂隙没有新的发展,也没有产生新的裂隙,应力应变基本上成正比关系,曲线近于直线,岩石变形以弹性为主。B点对应的应力称为弹性极限强度。

3)裂隙的发展和破坏阶段。当应力超过弹性极限强度后,岩石中产生新的裂隙,同时已有裂隙继续发展,应变的增加速率超过应力的增加速率,应力应变曲线的斜率逐渐降低,并成曲线关系,体积变形由压缩转变为膨胀。应力增加,裂隙进一步扩展,岩石局部破损,且破损范围逐渐扩大形成贯穿的破裂面,导致岩石破坏。C点对应的应力达到最大值,称为峰值强度或单轴极限抗压强度。

4)峰值后阶段。岩石破坏后,经较大的变形,应力下降到一定程度开始保持常数,D点对应的应力称为残余强度。

岩石的变形性能一般用弹性模量和泊松比两个指标来表示。弹性模量是在单轴压缩条件下,轴向压应力和轴向应变之比。弹性模量越大,变形越小,说明岩石抵抗变形的能力越强。岩石在轴向压力作用下,除产生轴向压缩外,还会产生横向膨胀。这种横向应变与轴向应变之比,称为岩石的泊松比。泊松比越大,说明岩石受力后的横向变形越大,岩石的泊松比一般都在。

1.2岩石的强度

岩石的抗压强度:岩石在单向压力作用下抵抗压碎破坏的能力。在数值上等于岩石受压达到破坏的极限应力,岩石的抗压强度是在单向压力无侧向约束的条件下测得的,在单轴压力作用下常见的破坏方式有:(a)单轴压力作用下试件的劈裂;(b)单斜面剪切破坏;(c)多个共扼斜面剪切破坏,如图2所示。

图2岩石单轴压缩时的常见破坏形式

岩石的抗拉强度:是岩石在单向受拉条件下拉断时的极限应力值。岩石的抗拉强度远小于抗压强度,目前常用劈裂法来测定岩石抗拉强度。

岩石的抗剪强度:岩石抵御剪切破坏的能力。数值上等于岩石受剪切破坏时剪切面上的极限剪应力,常以黏聚力和内摩角这两个抗剪参数表示。室内实验主要采用直接剪切实验,楔形剪切实验和三轴实验来测定抗剪强度标。

在岩石的几个指标中,抗压强度最高,抗剪强度居中,抗拉强度最小。抗剪强度为抗压强度的10%~40%;抗拉强度仅为抗压强度的2%~16%,岩石越坚硬,其值相差越大,较软的岩石差别较小。因此,岩石的抗压强度和抗剪,抗拉强度是相互联系的。

2岩石静力学试验

2.1试验装置和试件

本次试验使用60吨电液万能试验机,采用徐州市鼓楼区花岗岩石材厂生产的花岗岩(抗压强度一般为100~250MPa,抗拉强度为7~25MPa,泊松比为0.2~0.3,按抗压强度分为:微裂隙发育的花岗岩,中粒花岗岩和致密花岗岩)。通过中国矿业大学能源学院煤炭与安全重点实验室进行制作打磨,试件采用静态力学试验的标准试件,为直径5厘米、高10厘米的圆柱体共三个。各试件之间的尺寸,允许有的变化,试件表面用磨光机加工、游标卡尺控制厚度,其表面不平整度严格控制在0.02mm以内。

2.2试验结果

本次试验的加载速度为1.0kN/s,试件的峰值强度分别为:107.516、109.478、105.147、107.380(MPa)。

试验发现,试件达到峰值强度后,岩石的破裂逐渐发展

岩石的力学特性及静态试验分析

王立平徐伟95866部队(071051)

摘要:论述了岩石介质的受力破坏形态与强度,之后选取花岗岩进行静力学试验,将试验结果与理论分析进行比较,得出二者的一致性,并说明了二者存在差异的原因。

关键词:岩石;力学特性;静态试验;强度

22

河南建材2008年第3期

成为贯穿的破裂面,岩石全面破坏,承载能力逐渐降低,最后完全破坏,岩石试件的破坏是瞬间产生的典型的斜剪切破坏,也就是图2中的岩石破坏类型(b)。

通过仪器得到各试件轴向的试验力-位移全过程的曲线,以试件为例,见图3。

图3试件的试验力-位移曲线

通过试验,同岩石单轴加载条件下的变形相比,实测的曲线和四个阶段基本相符,只是相对于第四阶段峰值后阶段有些差别,对于微裂隙发育的岩石,第一阶段比较明显。图3中,第一阶段也是比较明显的,说明试件是有微裂隙发育的花岗岩。相对于第四阶段,由于试验中的加载速度比较大,岩石试件在最后突然破碎而失去承载能力,因此最后的试验力-位移曲线是一个断点。

参考文献:

[1]林英松,葛洪魁.岩石动态与静态弹性参数差别的微观机理.石油大学学报.2006.4

[2]马飞,长杆弹对坚硬岩石侵彻的工程近似分析.徐州空军学院硕士论文.2008.3

[3]李廷,席道瑛.动荷载作用下岩石非线性弹性响应研究.地学边缘.2006.5

[4]李相然.工程地质学.北京:中国电力出版社.2006

1传统结构计算理论的概况

在不断的结构设计研究和实践中,我国工程结构计算理论经历经验估算、容许应力法、破损阶假计算、极限状态计算、到目前普遍采用的概率极限状态理论阶段。现行的《建筑结构设计统一标准》(GB50068-2001)则采用以概率为基础的结构极限状态设计准则[1]。相对来说“分项系数表达的以概率极限理论为基础的极限状态设计方法”,更符含技术先进、经济合理、安全适用的要求。尽管现行极限状态理论已普遍采用,但该法存在着严重的缺陷:一方面,概率极限状态设计法在运算过程中还带有一定程度的近似,只能视作近似概率法,仅凭极限状态设计也很难估计建筑物的真正承载力[2]。另一方面,任何建筑物都是一个包含有许多构件组成的空间结构,各种构件以相当复杂的方式协同工作,非单独工作的构件;且传统的结构设计理论对空间结构体系的研究上采用了较多假定和简化,整体研究上存在较大局限性。并且传统结构设计似乎只关注如何提高结构抗力R,而忽略去想办法降低作用效应S,结果设计中混凝土等级越用越高,配筋量越来越大,造价也越来越高。

2概念设计思路

面对现行结构理论设计突现的各种问题,概念设计思路的应用能很好的解决。因为概念设计思想主张在特定的建筑空间及地理条件下,根据整体结构体系与各基木分体系(或杆件)之间的力学关系、结构破坏机制、震害实验现象和工程经验及计算结果的分析,考虑到结构实际受力与计算假设间的差异,灵活有意识地利用结构总体系与各分体系间的力学特性、设计准则、现有资源,全面合理地解决结构设计中的基本问题。既注意总体布置上的大原则,又顾及到关键部位细节,因此能从根本上提高结构可靠度,概念设计的目的是使设计、施工“又快、又好、又省”,方案安全、可靠、经济、合理。应用好概念设计,能使结构在满足建筑要求条件下,以最快的方式将荷载传递到基础、地基中,创造更为安全、舒适的工作生活环境,还能节约材料和资金[3];概念设计不受传统设计思想束缚,更容易设计出前人从未想到的新结构,是结构设计师进行创新设计的基础。

3概念设计在结构设计中的应用

3.1概念设计在结构设计过程中的应用

3.1.1运用概念设计能更快的选择合理结构方案

在进行综合分析时,传统设计方法难以迅速抉择,而应用概念设计可以迅速、有效地对结构体系进行构思、比较与选择,易于手算确定出最优方案,而且所得方案往往概念清晰、定性正确,避免了后期设计阶段一些繁琐运算,具有较好的经济可靠性能;并且它主张起始就握好场址选择、能量输入、房屋体型、荷载类型、结构体系、刚度分布、构件延性等方面,从而还可从根本上消除建筑中的抗震薄弱环节。3.1.2运用概念设计思想选用恰当的计算简图

结构计算是在简图基础上进行的。面对现在复杂多样

结构设计中的概念设计思想

陈结友

杭州青城房地产开发有限公司(310000)

摘要:针对传统结构理论的缺陷,概念设计思想在结构设计中体现出强大生命力和特有的创造性,指出概念设计将成为结

构设计的主流思想,并就如何做好概念设计提出参考。

关键字:概念设计;结构设计;设计思想;结构体系

23

岩石力学-硕士研究生课程报告-中南大学

硕士研究生课程报告 题目顺层高边坡稳定性影响因素 及工程灾害防治 姓名曾义 专业班级岩土13级 任课教师阳军生张学民 中南大学土木工程学院

引言 近年来,随着铁路公路建设步伐加快,铁路公路等级不断提高,边坡防护建设工程中所遇到的岩土边坡安全稳定性问题也相应增多,并成为岩土工程中比较常见的技术难题。由于工程建设的需要,往往在一定程度上破坏或扰动原来较为稳定的岩土体而形成新的人工边坡,因而普遍存在着边坡稳定的问题需要解决。国家实施西部大开发战略以来,西部山区高等级公路得到迅速发展。在山区修建高等级公路不可避免会遇到大量的深挖高填路基,就目前建设的高速公路情况看:一般情况下,100km长的山区高等级公路,挖填方路基段落长度占路线总长度的60%以上。已建高速公路最高的填方已达到50多米,最高的挖方边坡高度已超过100m。尽管山区高等级公路的建设越来越倡导环境保护,尽量避免深挖高填,但路基作为公路的主要结构,其边坡稳定问题不可避免。在山区复杂多变的地质条件下建设高等级公路,其边坡稳定性问题必将受到人们的普遍关注,高边坡岩土安全状况直接关系到公路交通运输安全。 虽然计算理论方法、地质探测技术、现代监测技术、边坡加固技术及施工技术不断的在进步,但顺层边坡稳定性问题和高边坡稳定性问题,时至今日依然是国内外学者研究的热点问题,并逐步涌现出许多的新的研究方向。 1、顺倾高边坡稳定性研究现状 随着人类工程活动的发展,对边坡问题的研究也在不断深入,归纳前人对边坡问题的研究大致可分为以下几个阶段: 人们对边坡稳定性的关注和研究最早是从滑坡现象开始的(张倬元等,2001)。19世纪末和20世纪初期,伴随着欧美资本主义国家的工业化而兴起的大规模土木工程建设(如修筑铁路、公路,露天采矿,天然建材开采等),出现了较多的人工边坡,诱发了大量滑坡和崩塌,造成了很大的损失。这时,人们才开始重视边坡失稳给人类造成的危害,并开始借用一般材料分析中的工程力学理论对滑坡进行半经验、半理论的研究。 20世纪50年代,我国学者引进苏联工程地质的体系,继承和发展了“地质历史分析”法,并将其应用于滑坡的分析和研究中,对边坡稳定性研究起到了推动作用(张倬元等,1994)。该阶段学者们着重边坡地质条件的描述和边坡类型的划分,采用工程地质类比法评价边坡稳定性。 20世纪60年代,世界上几起灾难性的边坡失稳事件的发生(如意大利的瓦依昂滑坡造成近3000人死亡和巨大的经济损失)(张倬元等,1994),使人们逐渐认识到了结构面对边坡稳定性的控制作用以及边坡失稳的时效特征,初步形

岩石力学(沈明荣)考试重点

一章: 1. 叙述岩体力学的定义. :岩体力学主要是研究岩石和岩体力学性能的一门学科,是探讨岩石和岩体在其周围物理环境(力场、温度场、地下水等)发生变化后,做出响应的一门力学分支。 2. 何谓岩石?何谓岩体?岩石与岩体有何不同之处?(1)岩石:由矿物或岩屑在地质作用下按一定规律聚集而形成的自然物体。(2)岩体:一定工程范围内的自然地质体。(3)不同之处:岩体是由岩石块和各种各样的结构面的综合体。 3. 何谓岩体结构?岩体结构的两大要素是什么?(1)岩体结构是指结构面的发育程度及其组合关系;或者是指结构体的规模、形态及其排列形式所表现的空间形态。(2)结构体和结构面。 4. 岩体结构的六大类型?块状、镶嵌、层状、碎裂、层状碎裂、松散结构。 5. 岩体有哪些特征?(1)不连续;受结构面控制,岩块可看作连续。(2)各向异性;结构面有一定的排列趋势,不同方向力学性质不同。(3)不均匀性;岩体中的结构面方向、分布、密度及被结构面切割成的岩块的大小、形状和镶嵌情况等在各部位不同,各部位的力学性质不同。(4)赋存地质因子特性(水、气、热、初应力)都会对岩体有一定作用。 二章:岩石物理力学性质有哪些? 岩石的质量指标,水理性质指标,描述岩石风化能力指标,完整岩石的单轴抗压强度,抗拉强度,剪切强度,三向压缩强度和各种受力状态相对应的变形特性。影响岩石强度特性的主要因素有哪些?对单轴抗压强度的影响因素有承压板、岩石试件尺寸及形状(形状、尺寸、高径比),加载速率、环境(含水率、温度)。对三相压缩强度的影响因素:侧向压力、试件尺寸与加载速率、加载路径、空隙压力。 什么是岩石的应力应变全过程曲线?所谓应力应变全过程曲线是指在刚性实验机上进行实 验所获得的包括岩石达到峰值应力之后的应力应变曲线。 2.4 简述岩石刚性实验机的工作原理?:压力机加压(贮存弹性应能)岩石试件达峰点强度(释放应变能)导致试件崩溃。AA0201面积一峰点后,岩块产生 微小位移所需的能。AC020面积一一峰点后,刚体机释放的能量(贮存的能量)。AB020—1 —峰点后,普通机释放的能量(贮存的能量)。当实验机的刚度大于岩石的刚度,才有可能记录下岩石峰值应力后的应力应变曲线。 莫尔强度理论,格尔菲斯强度理论和E.hoek 和E.T.brown 提出的经验理论的优缺点?:莫尔强度理论优点是使用方便,物理意义明确;缺点是1 不能从岩石破坏机理上解释其破坏特征2 忽略了中间主应力对岩石强度的影响;格尔菲斯强度理论优点是明确阐明了脆性材料破裂的原因、破裂所需能量及破裂扩展方向;缺点是仅考虑岩石开裂并非宏观上破坏的缘故。E.hoek 和E.T.brown 提出的经验理论与莫尔强度理论很相似其优点是能够用曲线来表示岩石的强度,但是缺点是表达式稍显复杂。 典型的岩石蠕变曲线有哪些特征?典型的岩石蠕变曲线分三个阶段第I阶段:称 为初始蠕变段或者叫瞬态蠕变阶段。在此阶段的应变一时间曲线向下弯曲;应变与时间大致呈对数关系,即£*炯t。第U阶段:称为等速蠕变段或稳定蠕变段。在此阶段内变形缓慢,应变与时间近于线性关系。第川阶段:称为加速蠕变段非 稳态蠕变阶段。此阶段内呈加速蠕变,将导致岩石的迅速破坏。有哪三种基本力学介质模型? 1 弹性介质模型 2 塑性介质模型 (理想塑性模型、有硬化塑性介质模型)3 黏性介质模型

岩石力学研究进展报告

岩石力学研究新进展报告 姓名:XXX 学号:XXXXXXXX 专业:岩土工程

岩石力学研究新进展报告 1 引言 时光如白驹过隙,一学期的《XXXXX》课程在不知不觉间结课了。这一学期的学习,使我在岩石力学方面有了很大的启发,特别是分形理论在岩石力学中的应用令我神往。下面我对岩石力学研究的新进展做简要报告。 岩石力学可以作为固体力学的一个新分支,用以研究岩石材料的力学性能和岩石工程的特殊设计方法。岩石力学经过近50年的发展,在土木工程、水利工程、采矿工程、石油工程、国防工程等领域都得到了广泛的应用,随着科学技术的进步,岩石力学涉及的领域会进一步扩大。岩石力学是一门内涵深,工程实践性强的发展中学科。岩石力学面对的是“数据有限”的问题,输入给模型的基本参数很难确定,而且没有多少对过程(特别是非线性工程)的演化提供信息的测试手段。另一方面,对岩体的破坏机体还不能准确的解释。岩石力学所涉及的力学问题是多场(应力场、温度场、渗流场、甚至还存在电磁场等)、多相(固、液、气)影响下的地质构造和工程构造相互作用的耦合问题。这就表明,工程岩体的变形破坏特征是极为复杂的,其大多数是高度非线性的。目前,岩石力学的许多数学模型是不准确和不完整的,可以广泛接受和适用的概化模型并不多。基于此,近年来,多种数值方法、细观力学、断裂与损伤力学、系统科学、分形理论、块体理论等在岩石力学中的应用以及各种人工智能、神经网络、遗传算法、进化算法、非确定性数学等域岩石力学的交叉学科的兴起,为我们提供了全新和有效的思维方式和研究方法,更能激发研究者的创新精神,这也为突破岩石力学的确定性研究方法提供了强有力的理论基础[1]。 本报告主要对分形岩石力学、块体岩石力学、断裂与损伤岩石力学和岩石细观力学四部分的研究新进展做简要报告。由于时间和精力有限(最近导师安排的任务非常多,而且要准备英语和政治期末考试),每部分内容除第一大段的研究新进展综述外,只对近几年的三篇比较好的文献做分析说明,包括两篇中文学术论文和一篇外文学术论文,这12篇学术论文我都比较仔细的看了。以后若有机会和时间,我会在导师和各位老师同学的不吝赐教下,努力做岩石力学的创新性研究,届时会在文献综述部分查阅和介绍更多最新以及更优秀的文献。 2 分形岩石力学 从古至今,岩石已成为人们熟知的工程材料,它是由矿物晶粒、胶结物质和大量各种不同阶次、不规则分布的裂隙、薄弱夹层等缺陷构成,是一种成分和结构高度复杂的孔隙体。岩石力学经过近50年的发展,人们尝试用各种数学力学方法研究和描述岩石复杂的自然结构性状和物理力学性质,提出了多种岩石力学分析和计算方法,为解决实际工程中的岩石力学问题创造了条件。19世纪70年代Mandelbrot创立分形几何学,提出了一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,从此分形几何学广泛地应用于自然科学研究的各个领域,并且在经济学等社会科学也有很巧妙的应用。19世纪80年代,分形几何学开始应用于岩石力学研究,开始形成分形岩石力学这一门新兴交叉学科。人们逐渐发现岩石力学领域中的分形现象相当普遍,不仅岩石的自然结构性状、缺陷几何形态、分布以及地质结构产状、断层几何形态、分布都观察到分形特征或分形结构,而且岩石体强度、变形、破断力学行为以及能量耗

岩石力学性质试验

岩石力学性质试验 一、岩石单轴抗压强度试验 1.1概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4主要仪器设备 钻石机、锯石机、磨石机或其他制样设备。 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。

岩石单轴抗压强度试验

岩石单轴抗压强度试验 文章发表于:2009-7-1 11:28:46 岩石单轴抗压强度试验 岩石单轴抗压强度是试件在无侧限条件下受轴向力作用破坏时单位面积所承受的荷载。 试件含水状态可根据需要选择天然、烘干或饱和状态,同一状态下每组试件数量不应少于3个。 为了消除受载时的端部效应,试件两端安放钢质垫块。垫块直径等于或略大于试件直径。其高度约等于试件直径,垫块的刚度和平整度应符合承压板的要求。 标准试件采用圆柱体,直径为50mm,高径比为2~。 单轴抗压强度:R=P/A 软化系数:K=R1/R2 R1、R2分别为饱和和干燥状态下单轴抗压强度平均值。 实验一岩石单轴抗压强度测定实验 双击自动滚屏 一、教学目的 岩石的单轴抗压强度是岩石最重要的物理力学性能之一,是从事岩石工程烟研究、设计、施工和生产中不可或缺的力学参数。本次课的目的旨在使学生在熟悉了岩石的基本力学性能的基础上,掌握岩石单轴抗压强度的测定技术。 二、教学基础要求 通过本次实验课教学,学生须达到如下要求: 1.深入理解试样描述的意义,熟练掌握岩石单轴抗压实验试样描述方法和尺 寸测量方法; 2.熟悉万能材料实验机的工作原理,并熟悉掌握其使用方法; 3.熟悉掌握国际岩石力学学会(ISRM)推荐的“岩石单轴抗压强度测试试验 标准”; 4.能够密切观察实验过程中岩石试件的破坏过程,精确记录其破坏荷载,并 通过试件破坏后描述,准确分析其破坏机理; 5.根据所记录的有关数据,能够熟练地计算各试件的破坏时单轴压应力; 6.能熟练地根据实验结果和破坏后试件描述,剔除破坏应力(或荷载)奇异 的试件,准确计算出岩石的单轴抗压强度; 7.按《岩石力学实验指导书》要求撰写实验报告。 三、实验方法和手段 1.试件致密无节理、裂隙、形状为圆柱形,直径D—50MM、高H—100~125MM, 精度、表面平整度、光洁度、轴线与端面垂直度均符合ISRM推荐规定; 2.实验设备万能材料实验机一台; 3.实验方法沿试件轴线方向加载,加载速度为~s,直至试件破坏。 四、实验过程与步骤 参阅《岩石力学实验指导书》。

岩石力学试验报告-2010

长沙理工大学 岩石力学试验报告 年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字: 实验一 实验二 实验三 实验四 实验五 实验六 实验七

试验一、岩石单向抗压强度的测定 一、试验的目的: 测定岩石的单轴抗压强度Rc。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、试样制备: 1、试料可用钻孔岩心或坑槽探中采取的岩块。在取料和试样制备过程中,不允许人为裂隙出现。 2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。 3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。 5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。 6、试样数量:每组须制备3个。 7、试样制备的精度。 (1)在试样整个高度上,直径误差不得超过0.3mm。 (2)两端面的不平行度,最大不超过0.05mm。 (3)端面应垂直于试样轴线,最大偏差不超过0.25。 三、试样描述: 试验前的描述,应包括如下内容: 1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。 2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。 3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。 试件压坏后,应描述其破坏方式。若发现异常现象,应对其进行描述和解释。 四、主要仪器设备:

岩石力学参数测试

3.2 侏罗系煤岩层物理力学性质测试 3.2.1试验仪器及原理 本试验采用电子万能压力试验机(图3.24)对侏罗系、石炭系岩石试样进行抗压强度、抗拉强度以及抗剪强度的测定。 (a) 电子万能压力试验机 (b) 单轴抗压强度测试 (c) 抗拉强度测试 (d) 抗剪强度测试 图3.24 岩石力学电子万能压力试验机及试验过程 (1) 岩石抗压强度测定: 单轴抗压强度的测定:将采集的岩块试件放在压力试验机上,按规定的加载速度(0.1mm/min)加载至试件破坏。根据试件破坏时,施加的最大荷载P ,试件横断面A 便可计算出岩石的单轴抗压强度S 0,见式(3.1)。 S 0= P A (3.1) 一般表面单轴抗压强度测定值的分散性比较大,因此,为获得可靠的平均单轴抗压强度值,每组试件的数目至少为3块。 (2) 岩石抗拉强度的测定: 做岩石抗拉试验时,将试件做成圆盘形放在压力机上进行压裂试验,试件受集中荷载的作用,见式(3.2)。

S t = 2P DT π (3.2) 式中:S t ——岩石抗拉强度 MPa ; P ——岩石试件断裂时的最大荷载,KN ; D ——岩石试件直径; T ——岩石试件厚度。 为使抗拉强度值较准确,每种岩石试件数目至少3块。 (3) 岩石抗剪强度测定: 将岩石试件放在两个钢制的倾斜压模之间,然后把夹有试件的压模放在压力实验机上加压。当施加荷载达到某一值时,试件沿预定的剪切面剪断,见式(3.3)。 sin cos n T P A A N P A A τασα? = =? ??? ==?? (3.3) 式中:P ——试件发生剪切破坏时的最大荷载; T ——施加在破坏面上的剪切力; N ——作用在破坏面上的正压力; A ——剪切破坏面的面积; τ——作用在破坏面上的剪应力; n σ——作用在破坏面上的正应力; α——破坏面上的角度。 每组取3块试件,变换不同的破坏角,根据所得的数值,便可在στ-坐标系上画出反映岩石发生剪切破坏的强度曲线。并可求出反映岩石力学性质的另外两个参数:粘聚力c 及内摩察角?。 3.2.2 标准岩样加工 根据需要和所在矿的条件,在晋华宫矿12#煤层2105巷顶板钻取岩样,钻孔长度约22m ,在。根据各段岩心长度统计结果,晋华宫矿顶板岩层的RQD 值为72.4%,围岩质量一般。 岩心取出后,随即贴上标签,用透明保鲜袋包好以防风化,之后装箱,托运到实验室,经切割、打磨、干燥制成标准的岩石试样,岩样制作过程见图3.25。

岩石力学数值试验实验报告

岩石力学数值试验实验报告 姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军 同组人:郑周立、周义现、胡斌、朱红伟、高言、 王坤 实验名称:圆孔对岩石力学性质影响的数值加载 试验 2014年5月16日

圆孔对岩石力学性质影响的数值加载试验 一、实验目的: 1.通过对RFPA2D学习,知道RFPA2D基本使用方法。 2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。 3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。 二、实验原理: RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。 三、 1、试样尺寸: 100mm*51mm 2、基元数: 100*51 3、应力分析模式: 平面应变 4、圆孔:半径10mm 5、加载方式:单轴压缩 6、加载条件:竖向位移加载 7、均质度m=2 8、加载量:每步0.002mm

9、实验内容: (1)、应力-应变曲线; (2)、强度; (3)、破坏模式 四、实验内容: (一)、操作步骤: 第一步启动RFPA,新建模型建立存放的根目录 第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式... (二)实验结果 弹性模量图 第1步

第4步(开始破坏) 第7步(开始横向破坏) 第32步(彻底破坏) 第200步

最大剪应力图第1步

第4步(开始破坏) 第33步(彻底破坏) 第200步 最大主应力图

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

《岩石力学》期末测验及答案

《岩石力学》期末试卷及答案 姓名 学号 成绩 一、 选择题(每题1分,共20分) 1. 已知岩样的容重为γ,天然含水量为0w ,比重为s G ,40C 时水的容重为w γ,则该岩样的饱和容重m γ为( A ) A. ()()w s s G w G γγ++-011 B. ()()w s s G w G γγ+++011 C. ()()γγ++-s s w G w G 011 D. ()()w s s G w G γγ+--011 2. 岩石中细微裂隙的发生和发展结果引起岩石的( A ) A .脆性破坏 B. 塑性破坏 C. 弱面剪切破坏 D. 拉伸破坏 3. 同一种岩石其单轴抗压强度为c R ,单轴抗拉强度t R ,抗剪强度f τ之间一般关系为( C ) A.f c t R R τ<< B. f t c R R τ<< C. c f t R R <<τ D. t f c R R <<τ 4. 岩石的蠕变是指( D ) A. 应力不变时,应变也不变; B. 应力变化时,应变不变化; C. 应力变化时,应变呈线性随之变化; D. 应力不变时应变随时间而增长 5. 模量比是指(A ) A .岩石的单轴抗压强度和它的弹性模量之比 B. 岩石的 弹性模量和它的单轴抗压强度之比 C .岩体的 单轴抗压强度和它的弹性模量之比 D .岩体的 弹性模量和它的单轴抗压强度之比 6. 对于均质岩体而言,下面岩体的那种应力状态是稳定状态( A ) A.??σσσσsin 23131<++-cctg B.?? σσσσsin 23131>++-cctg C. ??σσσσsin 23131=++-cctg D.??σσσσsin 23131≤++-cctg 7. 用RMR 法对岩体进行分类时,需要首先确定RMR 的初始值,依据是( D ) A .完整岩石的声波速度、RQD 值、节理间距、节理状态与地下水状况 B. 完整岩石的强度、RQD 值、节理间距、节理状态与不支护自稳时间 C. 完整岩石的弹性模量、RQD 值、节理间距、节理状态与地下水状况 D. 完整岩石的强度、RQD 值、节理间距、节理状态与地下水状况 8. 下面关于岩石变形特性描述正确的是( B ) A. 弹性就是加载与卸载曲线完全重合,且近似为直线 B. 在单轴实验中表现为脆性的岩石试样在三轴实验中塑性增强 C. 加载速率对应力-应变曲线没有影响 D. 岩基的不均匀沉降是由于组成岩基的不同岩石材料含水量不同导致的 9. 下面关于岩石水理性质描述正确的是( B )

软岩力学特性试验

软岩力学特性试验 软岩是一种特定环境下的具有显著塑性变形的复杂岩石力学介质,其基本力学理论和方法迫切需要深入研究。 软岩问题一直是困扰隧道运行和建设的重大难题之一。每年约有800万米的巷道在软弱围岩中开掘,随着开挖深度的增加,软岩问题愈趋严重,直接影响工程安全生产,危及人身安全。 通过可学的试验判定软岩两个基本力学属性:软化临界荷载和软化临界深度,从而判断是否属于软岩工程,杜宇转雀帝实施工程设计极为重要。 软岩的基本属性 软岩之所以能产生显著塑性变形的原因,是因为软岩中的泥质成分和结构面控制了软岩的工程力学特性,一般说来,软岩具有可塑性,膨胀性,崩解性,分散性,流变性,触变性和离子交换性。 可塑性 可塑性是指软岩在工程力的作用下形成变形,去掉工程力之后这种变形不能恢复的性质。低应力软岩、高应力软岩和节理化软岩的可塑性机理不同,低应力软岩的可塑性是由软岩中泥质成分的亲水性和结构面扩容共同引起的。 节理化软岩的可塑性变形是由于软岩中的缺陷和结构面扩容共同引起的,与粘土的矿物成分吸水软化的机制没有关系。描述结构面扩容,一般用塑性扩容内变量θp,这方面的研究尚待进一步深入。高应力软岩的可塑性变形机制比较复杂,前述两种机制(结构面扩容机制和粘土矿物吸水软化机制)可同时存在。 膨胀性 软岩在力的作用下或在水的作用下体积增大的现象,称为软演的膨胀性。根据产生的膨胀钉激励,膨胀性可分为内部膨胀性,外部膨胀性和应力扩容膨胀性三种。 内部膨胀是指水分子进入晶胞间而发生的膨胀。在常温下观察蒙脱石的层间水状态,则可见到其层间成平行水分子并有规则的层面排列。和水继续作用,则水分子层相继在层间平等堆积,扩大层间距离。 外部膨胀性是极化水分子进入颗粒与颗粒之间产生的膨胀性。因为粘土矿物都是层状硅酸盐,所以其表面积主要是底表面积。也就是说,水主要存在于小薄片之间,并使其膨胀,这种膨胀性称为外部膨胀性。 扩容膨胀性是软岩受力后其中的微裂隙扩展、贯通而产生的体积膨胀现象,故亦称应力扩容膨胀性。如果说内部膨胀是指层间膨胀、外部膨胀是指粒间膨胀的话,扩容膨胀则是集合间体系或更大的微裂隙的受力扩容。 崩解性 低应力软岩和高应力软岩、节理化软岩的崩解机理是不同的。低应力软岩的崩解性是软岩中的粘土矿物集合体在与水作用使膨胀应力不均匀分布造成崩裂现象;高应力软岩和节理化软岩的崩解性则主要表现为在航道工程力的作用下,由于裂隙发育的不均匀造成局部张应力集中引起的向空间崩裂、片帮现像。

中南大学ANSYS上机实验报告

ANSYS上机实验报告 小组成员:郝梦迪、赵云、刘俊 一、实验目的和要求 本课程上机练习的目的是培养学生利用有限单元法的商业软件进行数值计算分析,重点是了解和熟悉ANSYS的操作界面和步骤,初步掌握利用ANSYS建立有限元模型,学习ANSYS分析实际工程问题的方法,并进行简单点后处理分析,识别和判断有限元分析结果的可靠性和准确性。 二、实验设备和软件 台式计算机,ANSYS10.0软件 三、基本步骤 1)建立实际工程问题的计算模型。实际的工程问题往往很复杂,需要采用适当的模型在计算精度和计算规模之间取得平衡。常用的建模方法包括:利用几何、载荷的对称性简化模型,建立等效模型。 2)选择适当的分析单元,确定材料参数。侧重考虑一下几个方面:是否多物理耦合问题,是否存在大变形,是否需要网格重划分。 3)前处理(Preprocessing)。前处理的主要工作内容如下:建立几何模型(Geometric Modeling),单元划分(Meshing)与网格控制,给定约束(Constraint)和载荷(Load)。在多数有限元软件中,不能指定参数的物理单位。用户在建模时,要确定力、长度、质量及派生量的物理单位。在建立有限元模型时,最好使用统一的物理单位,这样做不容易弄错计算结果的物理单位。建议选用kg,N,m,sec;常采用kg,N,mm,sec。 4)求解(Solution)。选择求解方法,设定相应的计算参数,如计算步长、迭代次数等。 5)后处理(Postprocessing)。后处理的目的在于确定计算模型是否合理、计算结果是否合理、提取计算结果。可视化方法(等值线、等值面、色块图)显

岩石力学实验指导书

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编

北京科技大学 土木与环境工程学院 2008 年3 月 3

试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验; 3、岩石密度试验; 4、岩石耐崩解试验 5、岩石膨胀试验; 6、岩石冻融试验; 7、岩石单轴抗压强度试验, 8、岩石压缩变形试验, 9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (5) 三、岩石密度试验 (10) 四、岩石耐崩解试验 (17) 五、岩石膨胀试验 (20) 六、岩石冻融试验 (28) 岩石力学性质试验 (33) 七、岩石单轴抗压强度试验 (33) 八、岩石压缩变形试验 (39) 九、岩石抗拉强度试验(巴西法) (46) 十、岩石抗剪强度试验(变角剪切) (51) 十一、岩石三轴压缩及变形试验 (56) 十二、岩石弱面剪切强度试验 (68) 十三、点载荷指数的测定 (75) 十四、岩石纵波速度测定 (78) 十五、岩石力学伺服控制刚性试验 (80) 十六、岩石声发射试验 (86)

油页岩性能检测及其结果分析

油页岩性能检测及其结果分析 朱文鉴1王镇泉2 (1.北京探矿工程研究所,北京,100083;2.中国石油大学(北京),北京,102249) 摘要:本文介绍了吉林扶余矿区和辽宁野马套海矿区的油页岩物理特性和力学特性的检测结果,结合油页岩的物理力学特性数据,作者分析了在油页岩矿区进行钻探施工采用PDC钻头的适应性和泥浆体系的优选结果。为油页岩矿区进行地质勘探施工的钻头选型和泥浆体系优选提供一定的参考。 关键词:油页岩、适应性、试验分析 油页岩是一种高灰分(>40%)的固体可燃有机矿产,低温干馏可获得类似天然石油。它由无机物和有机物组成,常见的无机物有石英、粘土、长石碎屑物、碳酸盐等,有时还含有铜、钴、镍、钛、钒等化合物。含油率>3.5%,有机质含量较高,主要为腐泥质、腐殖质或混合型,其发热量一般大于4186.8kJ/kg,仅次于煤的发热量。油页岩是一种重要的能源,又属非常规油气资源,在提供动力燃料和热电等方面发挥着较大的作用。 我国油页岩资源丰富,居世界第4位。我国油页岩主要分布在20个省和自治区、47个盆地,共有80个含矿区。全国油页岩资源为7199.37亿T,如果将油页岩折算成页岩油,全国页岩油资源为476.44亿T,如果扣除油页岩开发和干馏过程中的损失,全国页岩油可回收资源为119.79亿T。随着我国经济社会高速的发展,能源需求日益增大,油气资源又相对缺乏,急切需要寻找和开发可替代能源,因此开发利用油页岩是重要的可行的发展之路。 1 油页岩力学特性测试 解决油页岩地层的钻探工程问题是加快油页岩勘探开发进程的必要条件。为解决油页岩钻探中存在的技术问题,采集了吉林和辽宁省油页岩矿区的油页岩(见表1、图1),进行了油页岩的物理化学性质、力学性能等指标严格测试。为油页岩钻井液优选、破岩工具研制、钻进规程优化、油页岩开采等提供基础数据。

岩层实验报告

中国矿业大学矿业工程学院实验报告

《岩层控制》实验报告 实验一矿山岩体力学实验 注:包括岩石抗拉、抗压、抗剪三个内容。 岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力称为岩石的单轴抗拉强度。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 二、实验仪器 (1)钻石机或车床,锯石机,磨石机或磨床。 (2)劈裂法实验夹具,或直径2.0mm钢丝数根。 (3)游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。(4)材料实验机。 三、实验原理 图3-1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χy r/R 0.5 -0.5x σyσx y 压缩拉伸应力值/MPa 160120804040 图3-1 劈裂实验应力分布示意图四、实验内容

(1) 了解试件的加工机具、检测机具,规程对精度的要求及检测方法; (2) 学会材料实验机的操作方法及拉压夹具的使用方法; (3) 学会间接测试岩石抗压强度及数据处理方法。 五、 实验步骤 (1) 测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、裂隙、风 化程度、含水状态机加工过程中出现的问题进行描述,并填入记录表1-1内。 (2) 检查试件加工精度,测量试件尺寸,填入记录表内。 (3) 选择材料实验机度盘时,一般应满足下式:0.2 P 0< P max <0.8P 0 (4) 通过试件直径两端,沿轴线方向画两条互相平行的线作为加载基线。把试件放入夹具内,夹具上、下刀刃对准加载基线,用两侧夹持螺钉固定好试件,或用两根直径2.0mm 的钢丝放在加载基线上,钢丝间用橡皮筋固定。 (5) 把夹好试件的夹具或夹好钢丝的试件放入材料实验机的上、下承压板之间,使试件的中心线和材料实验机的中心线在一条直线上。 (6)开动材料实验机,施加数百牛载荷后,松开夹具两侧夹持螺钉,然后以0.03~0.05MPa/s 的速度加载,直至试件破坏。 (7)记录破坏载荷,对破坏后的试件进行摄影或描述。 六、 注意事项 (1) 记录试件的完整状态, (2) 选择合适的材料实验机及合适的实验机度盘值, (3) 夹具对试件的加载方向要与试件的轴线在一平面上, (4) 选择合适的加载速率。 七、 数据处理 表1-1 计算试件单向抗拉强度: R 1= 102?DL P π=5.98MPa 式中 R 1—试件的抗拉强度,MPa ; P —试件破坏载荷,kN; D —试件直径,cm; L —试件厚度,cm 。 八、误差分析 (1)试件自身各方面的影响; (2)系统误差;

岩石力学实验方案

实验方案 实验一单轴压缩试验 一、实验得目得 以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比. 本次试验主要测定饱与状态下试样得单轴抗压强度。 二、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。 (2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。 (3)试样制备得精度应満足如下要求: a沿试样高度,直径得误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0、25°; d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。 三、主要仪器设备 1、制样设备:钻石机、切石机及磨石机. 2、测量平台、角尺、游标卡尺、放大镜、低温箱等。

3、压力试验机。 四、实验步骤 1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h; 2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息; b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4); 3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况. 五.成果整理与计算 1、按下式计算岩石得单轴抗压强度: -———-岩石单轴抗压强度,MPa; ———-最大破坏荷载,N; -—-—垂直于加载方向得试样横截面积,mm2。 2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单

岩石力学(沈明荣)考试重点

一章: 1.叙述岩体力学的定义.:岩体力学主要是研究岩石和岩体力学性能的一门学科,是探讨岩石和岩体在其周围物理环境(力场、温度场、地下水等)发生变化后,做出响应的一门力学分支。 2.何谓岩石?何谓岩体?岩石与岩体有何不同之处?(1)岩石:由矿物或岩屑在地质作用下按一定规律聚集而形成的自然物体。(2)岩体:一定工程范围内的自然地质体。(3)不同之处:岩体是由岩石块和各种各样的结构面的综合体。 3.何谓岩体结构?岩体结构的两大要素是什么? (1)岩体结构是指结构面的发育程度及其组合关系;或者是指结构体的规模、形态及其排列形式所表现的空间形态。(2)结构体和结构面。 4. 岩体结构的六大类型? 块状、镶嵌、层状、碎裂、层状碎裂、松散结构。 5.岩体有哪些特征?(1)不连续;受结构面控制,岩块可看作连续。(2)各向异性;结构面有一定的排列趋势,不同方向力学性质不同。(3)不均匀性;岩体中的结构面方向、分布、密度及被结构面切割成的岩块的大小、形状和镶嵌情况等在各部位不同,各部位的力学性质不同。(4)赋存地质因子特性(水、气、热、初应力)都会对岩体有一定作用。 二章:岩石物理力学性质有哪些? 岩石的质量指标,水理性质指标,描述岩石风化能力指标,完整岩石的单轴抗压强度,抗拉强度,剪切强度,三向压缩强度和各种受力状态相对应的变形特性。影响岩石强度特性的主要因素有哪些?对单轴抗压强度的影响因素有承压板、岩石试件尺寸及形状(形状、尺寸、高径比),加载速率、环境(含水率、温度)。对三相压缩强度的影响因素:侧向压力、试件尺寸与加载速率、加载路径、空隙压力。 什么是岩石的应力应变全过程曲线?所谓应力应变全过程曲线是指在刚性实验机上进行实验所获得的包括岩石达到峰值应力之后的应力应变曲线。 2.4简述岩石刚性实验机的工作原理?:压力机加压(贮存弹性应能)岩石试件达峰点强度(释放应变能)导致试件崩溃。AA′O2O1面积—峰点后,岩块产生微小位移所需的能。ACO2O1面积——峰点后,刚体机释放的能量(贮存的能量)。ABO2O1——峰点后,普通机释放的能量(贮存的能量)。当实验机的刚度大于岩石的刚度,才有可能记录下岩石峰值应力后的应力应变曲线。 莫尔强度理论,格尔菲斯强度理论和E.hoek和E.T.brown提出的经验理论的优缺点?:莫尔强度理论优点是使用方便,物理意义明确;缺点是1不能从岩石破坏机理上解释其破坏特征2忽略了中间主应力对岩石强度的影响;格尔菲斯强度理论优点是明确阐明了脆性材料破裂的原因、破裂所需能量及破裂扩展方向;缺点是仅考虑岩石开裂并非宏观上破坏的缘故。E.hoek和E.T.brown提出的经验理论与莫尔强度理论很相似其优点是能够用曲线来表示岩石的强度,但是缺点是表达式稍显复杂。 典型的岩石蠕变曲线有哪些特征?典型的岩石蠕变曲线分三个阶段第Ⅰ阶段:称为初始蠕变段或者叫瞬态蠕变阶段。在此阶段的应变一时间曲线向下弯曲;应变与时间大致呈对数关系,即ε∝㏒t。第Ⅱ阶段:称为等速蠕变段或稳定蠕变段。在此阶段内变形缓慢,应变与时间近于线性关系。第Ⅲ阶段:称为加速蠕变段非

岩体力学实验..

岩体力学实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

相关文档
最新文档