论高压电气设备绝缘在线监测装置应用

论高压电气设备绝缘在线监测装置应用
论高压电气设备绝缘在线监测装置应用

论高压电气设备绝缘在线监测装置的应用摘要: 对高压电气设备绝缘的在线监测技术的应用现状和最新进展进行了较为全面的介绍,本文介绍了高压电气设备绝缘在线监测系统的监测方法、主要绝缘信号采集处理以及监测系统功能 ,对变电站中主要设备(避雷器、电容型设备、变压器、gis等)的监测要点进行了分析 ,这对电力企业提高设备的运行可靠性 ,减小设备的运行维护成本 ,延长设备绝缘寿命有其参照意义。

关键词:在线监测;诊断;高压电气设备

1.引言

高压电气设备在电网中具有举足轻重的地位 ,如果其绝缘部分缺陷或劣化 ,将会发生影响设备和电网安全运行的绝缘故障或事故。因此 ,在设备投运后 ,传统的做法是定期停电进行预防性试验和检修 ,以便及时检测出设备内部的绝缘缺陷 ,以防止发生绝缘事故。但是 ,随着电网容量的增大 ,高压电气设备的急剧增加 ,传统的预防性试验和事后维修已不能满足电网高可靠性的要求。同时 ,由于高压电气设备的绝缘劣化是一个累积和发展的过程 ,在很多情况下预防性试验已无法发现潜在的缺陷。

2.高压电气设备的绝缘在线监测

2.1.1 发电机的绝缘在线监测

绝缘是发电机事故概率最高的部分。就目前国内情况来看 , 200mw 以上的发电机定子绕组的故障率高达 40 %, 其中电气方面占主要因素 , 国内外均把绝缘作为发电机在线监测的主要项目。

直流系统在线绝缘监测装置

直流系统在线绝缘监测装置设备采购技术条件书 广东电网有限公司茂名供电局

目录 1总则 (3) 2工作范围 (3) 2.1 供货清单 (3) 2.2服务界限 (3) 2.3技术文件 (4) 3技术要求 (4) 3.1应遵循的主要现行标准 (4) 3.2使用条件要求 (5) 3.3基本设计要求 (5) 3.4 技术参数 (7) 4质量保证 (8) 5试验 (9) 5.1型式试验 (9) 5.2出厂检验 (9) 5.3第三方检测报告 (10) 6包装、运输和储存 (10) 7备品备件及专用工具 (11) 7.1备品备件 (11) 7.2专用工具 (11) 8 投标方应填写主要部件来源、规范一览表 (12)

1总则 1.1.本技术条件书适用于直流在线绝缘监测装置的功能设计、结构、性能、安装和试验等 方面的技术要求,以及技术服务等有关内容。 1.2.本技术条件书提出的是最低限度的技术要求, 并未对一切技术细节作出规定, 也未 充分引述有关标准和规范的条文, 投标方应提供符合本技术条件书和工业标准的优质产品。 1.3.如果投标方没有以书面形式对本技术条件书的条文提出异议, 则意味着投标方提供 的设备(或系统)完全符合本技术条件书的要求。如有异议, 不管是多么微小, 都应在报价书中以“对技术条件书的意见和同技术条件书的差异”为标题的专门章节中加以详细描述。 1.4.本技术条件书所使用的标准如遇与投标方所执行的标准不一致时, 按较高标准执行。 1.5.本技术条件书经招、投标双方确认后作为订货合同的技术附件,与合同正文具有同等 法律效力。 1.6.本技术条件书未尽事宜, 由招、投标双方协商确定。 2工作范围 2.1 供货清单 本技术条件书要求采购的直流在线绝缘监测装置范围包括: 1)装置主机; 2) 装置辅机; 3)选线模块; 4)超低频微电流开口CT; 5)网络线缆等辅助材料; 6)备品备件及专用工器具等。 2.2服务界限 2.2.1 从生产厂家至招标方指定交货点的运输和装卸全部由投标方完成。

变压器绝缘油中气体在线监测装置技术规范书

变压器绝缘油中溶解气体在线监测装置 技术规范书 工程项目: 广西电网公司 2008年10月 目次 1总则 2使用条件 3技术参数和要求 4试验 5供货范围 6供方在投标时应提供的资料 7技术资料及图纸交付进度 8包装、运输和保管要求 9技术服务和设计联络

1 总则 1.1本规范书适用于变压器绝缘油中溶解气体在线监测装置,它提出设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细则作出规定,也未充分引述有关标准和规范的条文,供方应提供一套满足本规范书和现行有关标准要求的高质量产品及其相应服务。 1.3如果供方没有以书面形式对本规范书的条款提出异议,则意味着供方提供的设备(或系统)完全满足本规范书的要求。如有异议,不管是多么微小,都应在投标书中以“对规范书的意见和和规范书的差异”为标题的专门章节加以详细描述。本规范书的条款,除了用“宜”字表述的条款外,对低于本规范书技术要求的差异一律不接受。 1.4本设备技术规范书经需供双方确认后作为订货合同的技术附件,和合同正文具有同等的法律效力。 1.5供方须执行现行国家标准和行业标准。应遵循的主要现行标准如下。下列标准所包含的条文,通过在本技术规范中引用而构成为本技术规范的条文。本技术规范出版时,所示版本均为有效。所有标准都会被修订,供需双方应探讨使用下列标准最新版本的可能性。有矛盾时,按现行的技术要求较高的标准执行。 DL/T 596-1996 电力设备预防性试验规程 DL/T 572-1995 电力变压器运行规程 DL/T722-2000 变压器油中溶解气体分析和判断导则 DL/573-1995 电力变压器检修导则 GB7957-1998 电力用油检验方法 GB/T17623-1998 绝缘油中溶解气体组份含量的气相色谱测定法 IEC60599-1999 运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则 GB190-1990 危险货物包装标志 GB5099-1994 钢质无缝钢瓶 DL/T5136-2001 火力发电厂、变电所二次接线设计技术规程 GB/T17626.1 电磁兼容试验和测量技术抗扰度试验总论 GB/T17626.2 电磁兼容试验和测量技术静电放电抗扰度试验 GB /T17626.3 电磁兼容试验和测量技术射频电磁场抗扰度试验 GB/T17626.4 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 GB/T17626.5 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 GB/T17626.6 电磁兼容试验和测量技术射频场感应的传导抗扰度

第三章电气设备绝缘实验

第三章 电气设备绝缘试验 3.1 概述 缺陷: ① 整体性或分布性缺陷:整体老化,变质,绝缘性能下降 ② 局部性或集中性缺陷:例开裂,局部机械损伤 非破坏性试验:绝缘电阻和吸收比 耐压试验:工频、直流冲击 3.2 绝缘电阻和吸收比测量 ∵电气设备中大多采用组合绝缘和层式结构 ∴在直流下均有明显的吸收现象,使外电路中有一个随时间而衰减的吸收电流 一、多层介质的吸收现象 当C 大时,衰减慢 图中用斜线表示的面积为绝缘在充电过程中逐渐“吸收”的电荷Qa 。这种逐渐“吸收”电荷的现象叫做吸收现象 图3-1 双层介质的等值电路 图3-2绝缘的吸收现象 在S 刚合闸瞬间(t=0+时刻),双层介质上的电压按电容反比分配 U c c c u 2 12 10 += U c c c u 2 11 20 + = 当到达稳态时(t →∞)双层介质上的电压按电阻正比分配 U R R R u 2 11 1+= ∞ U R R R u 2 1 2 2+ = ∞

∵吸收现象,U 10≠U 1∞,U 20≠U 2∞。从S 合闸到稳态的过渡过程的时间常数 )( 2 1 2 1 1 2 c c R R R R + += τ 流过电流表的电流:i I a g i + = ,i a 为吸收电流;若C R C R 2 2 1 1≈ 吸收电流比, 吸收现象不明显。 绝缘电阻:指吸收电流i a 按指数规律衰减完毕后所测得的稳态电阻值。t →∞时,可得R R R 2 1 + = ∞ 即等于两层介质电阻的串联值。 能发现的缺陷:绝缘或整体受潮;局部严重受潮;贯穿性缺陷。例如下定子绝缘局部发生裂纹形成贯穿性导电通道时。 局限性: ①大型设备(大型发电机、变压器等)的吸收电流很大,吸收过程可达数分钟,测稳态电阻,耗费时间长。 ②有些设备如电机,由I g 那部分所反映的绝缘电阻有很大的范围,这与该设备的几何尺寸(或其容量)有密切关系。因而难以给出绝缘值作为判断标准,只能与历史值比较。 吸收比,I I R R k t t t t 2 11 2 1= =,同一试品在不同时刻的绝缘电阻的比值 R R ? ?= 1560 ,(3-2)∴排出了绝缘结构体积尺寸的影响 一般以k 1≥1.3作为设备绝缘状态良好的标准亦不尽合适。例如油浸变压器有时 会出现下述情况。有些变压器的k 1虽大于1.3 但k 值较低;有些变压器的k 1<1.3 但k 值高。 极化指数R R k min 1min 102 = ,按国际惯例,将min 10 2=t 和min 11=t 时的绝缘电阻比值 定义为k 2。 Notice :仅凭R ∞,k 1,k 2测量结果来判断绝缘状态仍是不够可靠的。

电气设备绝缘在线监测装置

电气设备绝缘在线监测 装置 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电气设备绝缘在线监测装置 摘要:在线监测系统的原理、结构及在实际中的应用。 关键词:在线监测绝缘色谱分析单元 前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。

一种应用于交直流不接地系统绝缘监测装置的设计与开发-安科瑞电气股份有限公司 龚永波

一种应用于交直流不接地系统绝缘监测装置的设计与开发 赵雪莲1 沈标2 (1.青海三佳工程设计咨询有限公司,青海810000) (2.安科瑞电气股份有限公司,上海嘉定201801) 摘要:介绍了一种用于工业不接地系统的绝缘监测装置(IMD),针对现有技术的不足,提供了一种新的硬件平台,可监测400V等级的交直流不接地系统,并详述了绝缘监测仪的硬件和软件设计原理。目前该绝缘监测仪已通过试验验证,并在市场上大量销售,为工业不接地配电系统提供了可靠的绝缘监测。 关键词:交直流不接地系统绝缘监测装置自适应 IMD 0.前言 在一些对供电连续性要求较高的场所(如:矿井、化工厂、玻璃厂、冶金厂、某些集会场所的安全照明和某些电炉的试验设备等),设备故障断电会带来巨大的损失,因此采用不接地系统可以有效减少断电发生的频率,这是由于在不接地系统第一次出现接地故障时,系统还能够继续使用,不会出现断电的状况,如果第一次接地故障是人为导致,则对人体基本没有太大的伤害,但此时系统已经存在安全隐患,如果不及时排除故障,当再次出现异相接地故障时,系统就有可能断电,从而造成严重后果。安装绝缘监测装置,可以实时显示系统对地绝缘电阻,在系统第一次出现绝缘故障时,发出报警信号,及时提醒维修人员对系统进行故障排查,短时间内无需跳闸,从而保证了IT系统供电的可靠性和连续性[1]。JGJ 16-2008《民用建筑电器设计规范》第7.2.3条规定,IT配电系统必须配备绝缘监视仪[2]。国外对此也很重视,在上世纪六十年代,各个发达国家已经开始对电力系统的研究,但是其快速发展是在上世纪七十至八十年代。这十年间,数字电路的集成、计算机的迅速发展、各类传感器的出现推动了电子测量领域的发展。目前国内一些厂家愈发重视对绝缘监测产品的研究,主流的测量方式有直流信号注入法、交流信号注入法、平衡桥测量法等等。以上测量方式有各自的优势,但由于应用场所环境的差别(泄露电容、直流信号的存在等等)较大,可能存在着测量范围较窄、测量精度不高、系统中允许泄露电容较低、测量周期长、只能用于交流系统等缺点。本文提出一种新型绝缘监测装置的设计原理,该装置采用自适应系统频率的方法,有绝缘电阻测量范围广,允许系统泄露电容大,响应快,测量周期短等优势。 1.绝缘监测装置原理概述 图1所示为测量电路简图:

绝缘在线监测系统

电力设备在线监测与故障诊断课程设计 题目:电气设备绝缘在线监测系 统 专业:电气工程及其自动化 班级:09电气2班 学生姓名:王同春 学号:0967130219 指导教师:张飞

目录 摘要 (3) 引言 (3) 1 在线监测技术的发展现状 (3) 1.1 带电测试阶段 (3) 1.2 在线监测及智能诊断 (4) 2 在线监测技术的基本原理 (4) 2.1 在线监测系统的组成 (4) 3 硬件设计 (6) 4 电流传感器 (6) 5 前置处理电路 (7) 6 数字波形采集装置 (7) 7 现场通信控制电路 (8) 8 结语 (8) 参考文献: (8)

摘要: 绝缘在线监测与诊断技术近年来受到电力行业运营、科技部门的高度重视,应对其进行深入研究并开发应用。在线监测系统主要是对被测物理量(信号)进行监测、调理、变换、传输、处理、显示、记录、等多个环节组成的完整系统。随着传感器技术、信号采集技术、数字分析技术与计算机技术的发展和应用,使在线监测技术将向着更加准确、及时、全面的方向发展,使电气设备的工作更加安全可靠。 关键词: 电力系统;高压电气设备; 绝缘在线监测系统; 引言 在电网中,高压电气设备具有不可替代的作用,若其绝缘部分劣化或存在缺陷,就可能对电网设备的正常运行造成影响,进而引发安全事故。而以往的设备检修和测试工作都是在电网设备运营过程中,通过定期停电的方式来完成的。但这种检修方式也存在很多问题:①检修时必须停电,影响电网正常运营。一旦碰到突发状况,设备不能停电而造成漏试,可能埋下安全隐患。②由于测试程序繁琐、时间集中,且任务紧迫,工人的工作量较大,极易受人为因素影响。③检修周期长,某些故障就极易在这个周期内快速发展,酿成大事故。④测试电压达不到10KV,设备实际运营时的电压要比这个数值要大,同时因为测试期间停电,设备运营过程中关于磁场、温度、电场以及周围环境等情况无法真实的反映出来,因而测试结果不一定与实际运营情况相符。高压电气设备随着电网容量的持续增大而急剧增加,以往的预防性测试及事故维修已无法保证电网的安全运营。而且,因为高压电气设备的绝缘劣化是经过长时间累积的,在某些条件下,预防性测试已失去其应有的作用。所以,实现高压电气设备绝缘实时、在线的动态监测,可通过局部推测整体,通过现象预测本质,由当前情况预测未来发展,无需卸设备逐一测试,符合现代化设备的生产、使用及维修的要求。 1 在线监测技术的发展现状 在线监测技术的发展方面,高压电气设备的绝缘大致经过了两个阶段。 1.1 带电测试阶段 自十九世纪七十年代开始进入带电测试阶段。当时只是本着确保正常通电的的条件下直接测量电网设备中的部分绝缘参数。这一阶段研发了很多专用的带电测试仪器,监测技术实现了由以往的模拟测试向数字化测试模式转变。但设备构造简单,缺乏灵敏度,仍有部分参数无法测试。到了八十年代,随着计算机信息

直流系统绝缘检测原理介绍

直流系统绝缘检测原理介绍 时间:2013-2-25 11:56:56来源:深圳市信瑞达电力设备有限公司https://www.360docs.net/doc/6c5562242.html,打印本文直流系统绝缘检测原理介绍 直肯定会有很多人想知道直流系统绝缘检测原理介绍的一些内容? 下面小编就满足下大家的好奇心: 发电厂和变电站的直流电源作为主要电气设备的保安电源及控制信号电源,是一个十分庞大的多分支供电网络。在一般情况下,一点接地并不影响直流系统的运行,但如果不能迅速找到接地故障点并予以修复,又发生另一点接地故障,就可能引起重大故障的发生。 现有检测直流系统绝缘的方法主要有电桥平衡原理和低频探测原理。根据电桥平衡原理实现的绝缘监测装置被广泛使用,但它不能检测直流系统正、负极绝缘同等下降时的情况;绝缘监测装置即使报警,也不能直接得到系统对地的绝缘电阻大小。用低频探测原理检测接地故障是近几年采用的一种新方法,但它所能检测的接地电阻受直流系统对地分布电容的制约,而且低频交流信号容易受外界的干扰,另外注入的低频交流信号增大直流系统的电压纹波系数。可见,电桥平衡原理和低频探测原理均存在若干难以克服的缺陷。本文提出一种新的检测方法,即主回路用不平衡电桥检测总的绝缘电阻,而支路用直流互感器来检测到底是哪一路出现了绝缘降低。同时用单片机来实现这种检测方法。 主回路的绝缘电阻的测量 传统的平衡电桥检测原理如下图-1,通过检测电压Uj和Um,再加上给定的电阻R来算出R+、R-,但当正负绝缘都出现降低的情况下,检测的结果将与实际情况不符合。 图-1 为了能检测正负都绝缘降低的情况,下文设计一种不平衡电桥测量法。并用MCS 80C196KC单片机来实现,如图-2所示。首先我们先说明一下电子继电器AQW214的用法,当AQW214的1、2脚导通时,7、8脚也导通;而且导通的内阻很小。同理,3,4脚导通时,5、6脚也导通。而且,AQW214的耐压值可以达到400V,即当7、8,或5、6不导通时,它们两端可以承受400V的电压。所以我们可以通过控制P10的电平,来控制1、2脚的导通而达到控制JK1的导通与关断。同理,通过控制P11的电平来控制JK2的导通与关断。第一步,JK1、JK2都断开,我们通过80C196单片机的A/D口的AC4通道采集C4两端的电压,从而测得Um。第二步,JK1断开、JK2闭合,通过A/D口的AC5通道采集C2两端的电压,从而测算得Uj,记此时测得的电压Uj为Uj1。第三步,JK1闭合、JK2断开,记此时测得的电压Uj为Uj2。很明显的Uj1与R+,R-有关系,Uj2也与

变压器绝缘在线监测

前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV 电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。 因我局目前在观水变电站采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的变压器油中六种溶解气体在线监测诊断装置。所以我们以下主要介绍我局这一套油中气体在线监测装置的使用情况。 在线监测诊断装置在实际中的应用 我局目前在观水变电站一号主变上采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的DZJ-Ⅲ型电气设备绝缘在线监测装置。已于2000年3月15日进入试运行状态。 监测的原理及方法: 电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一,因此,国内外不仅要定期作以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。变压器在发生突发性事故之前,绝缘的劣化及潜伏性故障在运行电压下将产生光、电、声、热、化学变化等一系列效应及信息。对于大型电力变压器,目前几乎是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备异常的特征量。 从预防性维修制形成以来,电力运行部门通过对运行中的变压器定期分析其溶解于油中的气体组分、含量及产气速率,总结出了能够及早发现变压器内部存在潜伏性故障、判断其是否会危及安全运行的方法即油色谱分析法。油色谱分析法是将变压器油取回实验室中用色谱仪进行分析,不仅不受现场复杂电磁场的干扰,而且可以发现油设备中一些用介损和局部放电法所不能发现的局部性过热等缺陷。但常规的油色谱分析法存在一系列不足之处:不仅脱气中可能存在较大的人为误差,而且检测曲线的人工修正法也会加大误差,从取油样到实验室分析,作业程序复杂,花费的时间和费用较高,在技术经济上不能适应电力系统发展的需要;检测周期长,不能及时发现潜伏性故障和有效的跟踪发展趋势;因受其设备费用和技术力量的

直流电源绝缘检测技术应用分析

龙源期刊网 https://www.360docs.net/doc/6c5562242.html, 直流电源绝缘检测技术应用分析 作者:张明 来源:《科学与信息化》2017年第28期 摘要直流电源系统的绝缘监测装置作为对直流电源系统正负极接地、系统外电源窜入等故障造成的电压异常进行监测和告警的专用装置,其重要性不言而喻。由于直流电源系统绝缘监测装置技术规范的长期缺失,目前在运的直流电源系统绝缘监测装置与新颁标准的要求存在一定的差距,为避免由此带来的事故隐患,开展装置参数和功能的测评、校验就显得尤为重要。 关键词直流系统;绝缘检测技术;应用 前言 随着我国电力事业的发展,发电厂、变电站的种类越来越多,容量越来越大,安全发电、安全供电关系着整个国民经济和人们的正常生活。直流系统是发电厂、变电站的重要组成部分,直流系统的安全可靠性影响着发电厂、变电站的安全运行,关系着整个电网的安全生产。而直流电源多作为控制电源,为电力和通信系统中的信号装置、控制装置及继电保护装置等提供工作电源。尤其是在火力发电场中,要为发电机密封油泵及汽机润滑油泵中的直流电动机供电。 1 直流电源绝缘检测常用检测方法 1.1 定频法 定频法,就是通过向直流系统正负母线与大地之间注入一个频率固定的低频电压信号,如果某一支路发生接地故障时,则所加低频信号会通过对地电阻产生一个对地电流,检测此对地电流的流向和幅值大小,就可判断出该直流系统的接地支路与接地点。用定频法进行绝缘检测时,要恰当选择所注入信号的频率,一般选择范围为。因为若选择注入频率过高的信号,则系统分布电容会对测量结果造成较大影响,从而影响测量精度;而若选择注入频率过低的信号,会使流过交流电流传感器的信号很小导致不容易检测到此低频信号,从而同样影响检测精度。 1.2 交流信号注入法 交流信号注入法又称为低频信号探测法,其基本思路是通过在直流系统正负母线与大地之间定时注入低频率电压信号,用接在支路中的电流互感器检测出各支路中的互感电流,从而可以判断出注入电压信号的流向,实现对故障支路的查找。交流信号注入法既可应用到在线监测装置上,通过对注入的低频电压信号轨迹的查找来确定接地故障所发生支路;也可应用于同接地故障定位仪的配合中,通过在已经确定的故障支路上寻找所注入的低频电压信号轨迹,信号消失的地方可判定为故障发生点[1]。

电气设备绝缘在线监测装置

电气设备绝缘在线监测装置 摘要:在线监测系统的原理、结构及在实际中的应用。 关键词:在线监测绝缘色谱分析单元 前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。

因我局目前在观水变电站采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的变压器油中六种溶解气体在线监测诊断装置。所以我们以下主要介绍我局这一套油中气体在线监测装置的使用情况。 在线监测诊断装置在实际中的应用 我局目前在观水变电站一号主变上采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的DZJ-Ⅲ型电气设备绝缘在线监测装置。已于2000年3月15日进入试运行状态。 监测的原理及方法:电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一,因此,国内外不仅要定期作以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。变压器在发生突发性事故之前,绝缘的劣化及潜伏性故障在运行电压下将产生光、电、声、热、化学变化等一系列效应及信息。对于大型电力变压器,目前几乎是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备异常的特征量。 从预防性维修制形成以来,电力运行部门通过对运行中的变压器定期分析其溶解于油中的气体组分、含量及产气速率,总结出了能够及早发现变压器内部存在潜伏性故障、判断其是否会危及安全运行的方法即油色谱分析法。油色谱分析法是将变压器油取回实验室中用色谱仪进行分析,不仅不受现场复杂电磁场的干扰,而且可以发现油设备中一些用介损和局部

浅析高压电气设备试验重要性

一、高压试验的重要性 众所周知,电力生产的特点是发电、供电、用电同时完成。任何一个环节发生故障都会使用户停电,给工农业生产人民的生活带来损失。尤其在当前构建和谐的社会大气氛中停电将会带来更巨大的损失,为此电力生产必须安全第一。 安全生产,防止事故发生。控制手段就两条。一是人的因素,二是设备质量可靠程度本章主要从第二条设备质量可靠性程度。 电力系统内的发、供、用电设备除了长期在额定电压下运行之外,必须具备在过电压下的绝缘强度。过电压是指超过正常运行电压,它是电气设备或保护设备损坏的电压升高。在电力系统各种事故中,很大一部分是由于过电压造成设备的绝缘损坏引起的。当绝缘有缺陷时若不及时发现排除,最终导致设备损坏造成停电事故。影响了生产和人民的安居生活。而高压试验的目的就是通过一定的手段依靠相关的检测设备采用模拟的方法检验电气设备绝缘性能的可靠程度为安全发、供、用电提供可靠有力数据。 电气设备的绝缘的缺陷大致分为两类:一类是整体性缺陷如绝缘老化、变质、受潮和脏污等使绝缘性能完全下降;另一类是局部缺陷,如:绝缘局部受损、受潮和脏污等使绝缘性能下降。不论何类绝缘缺陷都能通过高压预防试验检查出来。所以电气设备在运行了一定时间都要进行定期检测试验。这是目前我国对电气设备安全运行采取的有力保证措施重要措施。通过高压试验掌握电气设备绝缘变化规律及时发现缺陷。采取相应的维护和检修措施,避免电气设备绝缘在额定电压与过电压的作用下击穿而造成停电事故。 电气设备的绝缘预防试验一般分为绝缘性能的特性试验和强度试验两种。前者又称为非破坏性试验,是指在较低电压作用下或用其他不损伤绝缘的办法。从不同角度对设备绝缘各种特性进行的试验。如绝缘电阻试验,泄漏电流试验和介质损耗因数试验等。后者又称破坏性试验,是对电气设备的绝缘在较高电压作用下的一种耐压试验。如直流耐压试验和交流耐压试验等。高压试验是判断运行中的电气设备安全的重要措施。 二、绝缘劣化学或损坏的主要原因: 目前高压电气设备安装在户外的还很多,受环境影响较大。因此电气设备的绝缘就容易损坏,电力系统中的事故很大部分就是由于设备绝缘损坏造成。造成绝缘劣化或损坏的原因很多。但归纳起来主要有化学、温度、机械和电气四种: 1) 化学原因: 电气设备的绝缘均为有机绝缘材料(如橡胶、塑料、纤维、沥青、油漆、蜡等)和无机绝缘材料(如云母、石棉、石英、陶瓷、玻璃等)组成。这些材料长期在户外工作耐受着日照、风沙、雨雾、冰雪等自然因素的侵蚀。在高压工作的电气设备还经常受温度、气压、气温的变化对绝缘产生的影响。在含有化学腐蚀性气体环境下工作的电气设备虽然有一定的抵御能力,但长期在这些因素环境中绝缘材料会引起一系列的化学反应。使绝缘材料的性能与结构发生变化,降低绝缘的电气和机械性能。 2)温度原因: 温度升高是造成绝缘老化的重要因素,电气设备的过负荷、短路或局部介质损耗过大引起的过热都会使绝缘材料温度大大升高,导致热稳定的破坏严重时造成热击穿。

QZJ-7AZ直流系统绝缘监测装置使用说明

一、产品说明: QZJ-7AZ型直流系统绝缘监测装置适用于各发电厂、变电站的直流操作电源和其它具有直流操作电源的系统,用来监测直流系统电压、母线和各支路的绝缘状况。一般可安装在电力系统用直流屏(柜)上,具有如下功能及特点: 1.1采用液晶汉显,操作简单; 1.2数字显示母线电压值,并监察母线过压、欠压; 1.3数字显示正、负母线对地绝缘电阻值,低于设定的门限值时,输出报警信号,既可自动又可人工巡查各支路绝缘情况,用户能很方便地得到故障支路号和对应的正、负极绝缘电阻值,各支路绝缘电阻的检测精度不受分布电容的影响; 1.4QZJ-7AZ单段母线型适用于单段母线的电力直流操作系统; 1.5本装置无需向直流系统中注入任何信号,因此对直流系统无影响; 1.6直流系统发生交流电源窜电故障时,可以定位交流窜入的支路。 1.7装置自动对各支路传感器软件校零; 1.8本装置具有RS485串行通信接口,能与上位机实现数据通信。 二、技术参数: 2.1环境温度:-10℃~45℃ 2.2相对湿度:<85% 2.3工作电压:直流母线额定电压Ue±20%

2.4母线直流电压测量范围:DC70%~130%Ue误差:<±1% 2.5母线对地交流电压测量:AC0~265V误差:<±2% 2.6母线电阻测量误差:<±10% 支路电阻测量误差:<±15% 测量范围:0~99.9KΩ(大于99.9KΩ时显示99.9KΩ) 2.7输出触点容量:DC200V/0.3A 2.8主机外形尺寸(mm):宽398×高165×深152 用户开孔尺寸(mm):361×154(已含正偏差). 2.9主机检测支路数:48路 配置从机可再扩展支路数:48路(从机需另外配置) 三、工作原理 3.1母线监测 在正常运行中,装置对母线电压进行监测,且不断采样其正、负极对地电压,送A/D转换器,经微机处理和数字计算后,直接显示母线电压值和正、负母线分别对地的绝缘电阻值。当母线对地绝缘电阻低于设定的告警坎值时,装置进入支路检测状态,测量出绝缘下降的支路及相应的绝缘电阻。报警门坎值可由用户整定。 3.2支路巡查 将专用的直流电流传感器同时穿套在各支路的正、负馈出线上,当支路未接地时,流经传感器的直流负载的电流大小相等,方向相反,产生的磁场相互抵消,传感器二次侧无信号输出,当某支路的正极或负极接地时,则其正、负极对地的直流漏电流的矢量和不为零,漏

电气设备绝缘测试

电气设备绝缘测试 一.绝缘的概念和作用 1.概念:所谓绝缘就是使用不导电的物质将带电体隔离或包裹起来,以对触电起保护作用的一种安全措施。简单的说电气设备绝缘电阻的大小就是隔离电压的能力。 2.作用:防止电气设备短路和接地,保证电气设备与线路的安全运行,防止人身触电事故的发生。 二.绝缘电阻的概念 加直流电压于电介质(电缆或电机绕组),经过一定时间(60S)后,流过电介质的泄漏电流对应的电阻称绝缘电阻。 注:泄漏电流:在没有故障的情况下,流入大地或电路中外部导电部分的电流。 三.为什么要测绝缘 因为电动机或其他电气设备停用或备用时间较长时,由于受潮或有大量积灰,影响电气设备的绝缘;长期使用的电气设备,绝缘也有可能老化,端线松弛。测量电气设备的绝缘就能发现这些问题,以便及时采取措施,不影响电气设备的运行或切换使用。 注:受潮怎么影响绝缘?当被测电气设备表面吸潮或瓷绝缘表面形成水膜会使泄漏电流增加使绝缘电阻显著降低而影响绝缘。 四.绝缘电阻的测试工具 五.摇表也称兆欧表,主要用于测量电气设备的绝缘电阻。它是由交流发电

机倍压整流电路、表头等部件组成。摇表摇动时,产生直流电压。当绝缘材料加上一定电压后,绝缘材料中就会流过极其微弱的电流,这个电流由三部分组成,即电容电流、吸收电流和泄漏电流。摇表产生的直流电压与泄漏电流之比为绝缘电阻,用摇表检查绝缘材料是否合格的试验叫绝缘电阻试验,它能发现绝缘材料是否受潮、损伤、老化,从而发现设备缺陷。

六.兆欧表的使用 1.正确选用兆欧表 兆欧表的额定电压应根据被测电气设备的额定电压来选择。测量500V以下的设备,选用500V或1000V的兆欧表;额定电压在500V以上的设备,应选用1000V或2500V的兆欧表;对于绝缘子、母线等要选用2500V或5000V 兆欧表。 2.使用前检查兆欧表是否完好 将兆欧表水平且平稳放臵,检查指针偏转情况:将E(接地端)、L(线路)两端开路,以约120r/min的转速摇动手柄,观测指针是否指到“∞”处;然后将E (接地端)、L(线路)两端短接,缓慢摇动手柄,观测指针是否指到“0”处,经检查完好才能使用。 注:为什么要指向最“0”呢?根据欧姆定律可知当在测量之前电阻最小,

发电机绝缘监测装置原理及应用

西安交通大学网络教育学院 毕业论文 论文题目发电机绝缘监测装置的原理及应用 班级 学号 姓名 联系方式_ 指导教师 提交日期

随着电子信息技术的飞速发展,从20世纪80年代初开始,各种各样的在线监测装置在汽轮发电机上得到了推广和应用。以往,我国发电设备长期以来实施“计划维修”,缺乏针对性,容易造成设备的“过度维修”。现在,先进的工业国家都转至状态维修也就是“需修时修”。 设备状态监测和诊断是实施状态维修、预知维修的重要基础,而状态维修必须扎根于状态监测仪器的实用性、可靠性及对测试结果的解读能力上。发电机容量的大小、已运行时间的长短、不同冷却方式、在线监测装置的可靠性等都会影响到在线监测装置的配置。因此,如何合理应用和配置在线监测装置是一项比较复杂的策略性选择,尤其在广泛推广使用时更要慎之。 本文针对国内外300MW及以上机组汽轮发电机绝缘在线监测使用情况的应用研究,做出综合分析,对发电机绝缘在线监测设备的选择和配置提出建议。 关键词发电机;绝缘监测;局部放电

摘要 (1) 1 前言 (3) 2 国内外研究动态 (4) 2.1发电机局部放电监测方法国内外研究现状 (4) 2.2 发电机局部放电监测方法现状 (4) 2.3 国内外主流发电机绝缘在线监测主要测量方法及原理 (4) 3 国内某600MW机组发电机绝缘在线检测装置参数 (11) 3.1 FJR―ⅡA型发电机绝缘过热监测装置工作条件 (11) 3.2 FJR―ⅡA型发电机绝缘过热监测装置主要技术指标 (11) 3.3 FJR―ⅡA型发电机绝缘过热监测装置性能及特点 (11) 3.4 FJR―ⅡA型发电机绝缘过热监测装置外型尺寸和重量 (12) 3.5 FJR―ⅡA型发电机绝缘过热监测装置工作原理 (12) 4 结论 (15) 4.1发电机在线监测装置测量原理总结 (15) 4.2发电机绝缘在线监测装置的改进建议 (16) 4.3发电机绝缘在线监测装置的应用选择 (16) 4.4发电机绝缘在线监测装置的管理建议 (17) 参考文献 (18) 致谢 (19)

电动汽车绝缘电阻在线监测方法

电动汽车绝缘电阻在线监测方法 一、前言 电动汽车是一个复杂的机电一体化产品,其中的许多部件包括动力电池、电机、充电机、能量回收装置、辅助电池充电装置等都会涉及高压电器绝缘问题。这些部件的工作条件比较恶劣,振动、酸碱气体的腐蚀、温度及湿度的变化,都有可能造成动力电缆及其他绝缘材料迅速老化甚至绝缘破损,使设备绝缘强度大大降低,危及人身安全。 目前发电厂、变电站等场所直流高压系统的绝缘监测技术有多种方式,但都存在一些缺点,如继电器检测方式灵敏度低,平衡电桥法在正负极绝缘同时降低时不能准确及时报警,注入交流信号法不仅会使直流系统纹波增大,影响供电质量,而且系统的分布电容会直接影响测量结果,分辨率低。与电力系统直流绝缘监测不同的是,电动汽车直流系统电压等级涵盖90~500V的宽范围,而且运行过程中电压频繁变化。文中提出的利用端电压监测系统绝缘状况的方法可以较好地解决上述问题,具有较高的精度,完全适合在电动汽车上应用。 二、绝缘电阻测量 原理电动汽车的绝缘状况以直流正负母线对地的绝缘电阻来衡量。电动汽车的国际标准[1]规定:绝缘电阻值除以电动汽车直流系统标称电压U,结果应大于100Ω/V,才符合安全要求。标准中推荐的牵引蓄电池绝缘电阻测量方法适用于静态测试,而不满足实时监测的要求。

文中通过测量电动汽车直流母线与电底盘之间的电压,计算得到系统的绝缘电阻值。假设电动汽车的直流系统电压(即电池总电压)为U,待测的正、负母线与电底盘之间的绝缘电阻分别为RP、RN,正、负母线与电底盘之间的电压分别为UP、UN,则待测直流系统的等效模型如图1中的虚线框内所示。 图1为电动汽车绝缘电阻测量原理,图中RC1、RC2为测量用的已知阻值的标准电阻。工作原理如下:当开关S1、S2全部断开时,测量正、负母线与电底盘之间的电压分别为UP0、UN0,由电路定律[2]可以得到 UP0/RP=UN0/RN(1) 当开关S1闭合、S2断开时,则在正母线与电底盘之间加入标准偏置电阻RC1,测量正、负母线与电底盘之间的电压分别为UPP、UNP,同样可以得到 同样,绝缘电阻在以下2种情况也可以得到:

电气设备的高压试验及防范措施

电气设备的高压试验及 防范措施 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电气设备的高压试验及防范措施 摘要:随着我国电压等级的日益提升,以及电网水平的不断发展,也对当前的电力系统运行稳定性与安全性提出更高要求。通过对当前的高压电网故障进行分析研究,发现大多均是由电气设备绝缘受损所导致。电气设备质量与高压试验数据息息相关。因此,落实好电气设备高压试验工作至关重要。但在当前实践过程中,仍存在较多缺陷问题,急需采取针对性措施加以预防,以此为设备及人员安全提供保障。文章主要对电气设备的高压试验及防范措施进行了分析与研究。 关键词:电气设备;高压试验;防范措施 随着社会经济的不断发展,社会各行各业对于电力能源的需求量逐年上升,电能在为人们日常生活带来极大便利的同时,也存在着较高的危险隐患,故一定要采取相应措施,确保人们的用电安全。在此也对电气设备运行稳定性提出更高要求,通过电气设备高压试验的开展,可有效解决上述问题,从而为电力设备运行的稳定性和安全性提供保障。 一、开展电气设备高压实验的必要性分析 在电力系统运行中,电气设备扮演着十分关键的角色,其运行的稳定性与电网的运行状态息息相关,但无论是哪种设备,在长时间不间断的运行过程中,均难以避免的出现问题,电气设备更是如此。因此,相关人员应尽可能的通过合理措施及时发现问题,解决问题,从而将问题产生的危害降至最低。电气设备的高压实验,主要是通过一定的测试手段,对设备的绝缘性和运行性能进行检验,之后对设备实际运行标准相关数据进行全面分析,从而可在第一时间发现设备中存在的主要问题,并采取针对性措施加以解决。 通过上述操作,即便无法解决全部问题,但仍可对相关问题进行削减,当再次出现类似问题时,也防止了工作人员无计可施、盲目操作现象的产生,使其反而能够轻松应对,顺利解决实际问题,可见,开展电气设备高压试验十分关键。在电网不断运行过程中,需定期对设备进行试验检查,如此更加有助于工作人员在第一时间发现问题,解决问题,从而为电力系统的安全、稳定运行提供保障[1]。 二、电气设备高压实验安全管理问题分析

关于电气设备绝缘的试验

? ? 第五章电气设备绝缘试验(一)电气设备绝缘试验可分为两大类: (1)耐压试验(破坏性试验):模仿设备绝缘在运行过程中可能受到的各种电压,对绝缘施加与之相等的或更为严格的电压,从而考研绝缘耐受这类电压的能力,称为耐压试验。对绝缘考察严格,但容易造成不必要的绝缘损坏。 (2)检查性试验(非破坏性试验):测定绝缘某些方面的特性,并据此间接地判断绝缘的状况,称为检查性试验。这类试验一般在较低的电压下进行,通常不会导致绝缘的击穿损坏。 由此可见,上述两类试验时互为补充,而不能相互代替的。当然,应先做检

查性试验,据此再确定耐压试验的时间和条件。 5-1 测定绝缘电阻 绝缘电阻是反映绝缘性能的最基本的指标之一,通常都用兆欧表测量绝缘电阻。其工作原理图可参考图5-1-1。通常兆欧表的量程为500V、1000V、2500V、5000V等。 图5-1-1 兆欧表原理电路图 如图5-1-2是用兆欧表测套管绝缘的接线图,兆欧表对外有三个接线端子,测量时,线路端子(L)接被试品的高压导体;接地端子(E)接被试品外壳或地;屏蔽端子(G)接被试品的屏蔽环或别的屏蔽电极。

图5-1-2 用兆欧表测套管绝缘的接线图 如前所述,一般电介质都可以用图1-4-2所示的等效电路图来表示。图中, 串联之路R P —C P 代表电介质的吸收特性,如绝缘良好,则最终R lk 和R P 的值都很 大,稳定的绝缘电阻值也很高。反之,绝缘受潮时,则不仅最后稳定的电阻很低,而且还会很快达到稳定值。因此,也可以用绝缘电阻随时间而变化的关系来反映绝缘的状况。通常用时间为60s和15s时所测得的绝缘电阻值之比,称为吸收比K,即 K=R 60/R 15 如绝缘良好,则此值应大于1.3~1.5。 对于某些容量较大的电气设备,其绝缘的极化和吸收的过程很长,上述的吸收比K还不能充分反映绝缘吸收过程的整体。此时可增测极化指数P P=R 10min /R 1min 如绝缘良好,则此值应大于1.5~2.0。 测量绝缘电阻可以有效发现下列缺陷: (1)总体绝缘质量欠佳; (2)绝缘受潮; (3)两极间有贯穿性的导电通道; (4)绝缘表面情况不良。 测量绝缘电阻不能发现下列缺陷: (1)绝缘中的局部缺陷(如非贯穿性的局部损伤、含有气泡等)(2)绝缘的老化 测量绝缘电阻时应注意:(1)试验前将被试品接地放电一定时间。 (2)高压测试连接线应尽量保持架空;

相关文档
最新文档