最优化问题的数学模型及其分类

最优化问题的数学模型及其分类
最优化问题的数学模型及其分类

最优化问题的数学模型及其分类

例1.1.1 产品组合问题

某公司现有三条生产线用来生产两种新产品,其主要数据如表1-1所示。请问如何生产可以让公司每周利润最大? 表1-1

设每周生产的产品一和产品二 的产量分别为1x 和2x ,则每周的生产利润为:2153x x z +=。由于每周的产品生产受到三条生产线的可用时间的限制,因此1x ,2x 应满足以下条件:

??????

?≥≤+≤≤0,

18231224212121

x x x x x x 故上述问题的数学模型为

2153max

x x z +=

.

.t s ??????

?≥≤+≤≤0,

18231224212121

x x x x x x 其中max 是最大化(maximize )的英文简称,??t s 是受约束于(subject to )的简写。

例1.1.2 把一个半径为1的实心金属球熔化后,铸成一个 实心圆柱体,问圆柱体取什么尺寸才能使它的表面积最小? 设圆柱体的底面半径为r ,高为h ,则该问题的数学模型为:

???

??=?

?+=ππππ3

422min

22

h r t s r rh S 其中min 是最小化(minimize )的简写。

通过以上二例,可以看出最优化问题的数学模型具有如下结构:

(1) 决策变量(decision variable ):即所考虑问题

可归结为优选若干个被称为参数或变量的量

n x x x ,,,21 ,它们都取实数值,它们的一组值构

成了一个方案。

(2) 约束条件(constraint condition ):即对决策

变量n x x x ,,,21 所加的限制条件,通常用不等式或等式表示为: ()(),,,2,1,

0,,,,,2,1,

0,,,2121l j x x x h m i x x x g n

j n i ===≥

(3) 目标函数(objective function )和目标:如使

利润达到最大或使面积达到最小,通常刻划为极大化(maximize )或极小化(minimize )一个实值函数()n x x x f ,,21

因此,最优化问题可理解为确定一组决策变量在满足约束条件下,寻求目标函数的最优。

注意到极大化目标函数()n x x x f ,,21相当于极小化

()n x x x f ,,21-,因此,约束最优化问题的数学模型一般可

表示为:

()

()()()??

?

??===≥??l

j x x x h m i x x x g t s x x x f n j n i n ,,2,1,0,,,1.1.1,,2,1,0,,,,,min 212121

若记()T

n x x x x

,,21=,则(1.1.1)又可写成:

()()()

()???

?

???=='

=≥??l

j x h m i x g t s x f j i ,,2,1,01.1.1,,2,1,0min

其中

()()

m i x g i ,2,10

=≥称为不等式约束;

()()l j x h j ,,2,10 ==称为等式约束。()()m i x g i ,,2,1 =与

()()l j x h j ,,2,10 ==称约束函数(constraint function )。

* 当目标函数和约束函数均为变量x 的线性函数时,问题(1.1.1)称为线性规划问题(linear programming problem )。

* 当目标函数和约束函数中至少有一个函数是x 的非线性函数时。问题(1.1.1)称为非线性规划问题(nonlinear programming problem )

* 当目标函数为x 的二次函数,约束函数均为x 的线性函数时,问题(1.1.1)称为二次规划问题(guadratic programming problem )

* 如果要求某些决策变量或全部决策变量取非负整数值时,问题(1.1.1)称为整数规划问题(integer programming problem ) * 若目标函数不止一个,即

()()()()()2,,,21≥=p x f x f x f x f T

p ,

* 则问题()'1.1.1为多目标规划问题(multiobjective

programming problem )

*此外,根据决策变量、目标函数和约束函数的不同特点,最优化问题还可以划分为许多其它分支。例如:动态规划(dynamical programming)

网络规划(network programming)

几何规划(geometric programming)

非光滑优化 (non-smooth optimization )

随机规划(stochastic programming)

目标规划(goal programming)

模糊规划(fuzzy programming)

数学建模算法分类

数学模型按照不同的分类标准有许多种类: 1.按照模型的数学方法分,有几何模型,图论模型,微分方程模型。概率模型,最优控制模型,规划论模型,马氏链模型。 2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型。 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。) 图像处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab来处理问题。) 数学建模方法 统计:1.预测与预报2.评价与决策3.分类与判别4.关联与因果 优化:5.优化与控制 预测与预报 ①灰色预测模型(必须掌握) 满足两个条件可用: a数据样本点个数少,6-15个 b数据呈现指数或曲线的形式 ②微分方程预测(备用) 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式

数学模型的分类有哪些

数学模型的分类有哪些 数学模型可以按照不同的方式分类,下面介绍常用的几种. 1.按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等. 2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等. 按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模. 3.按照模型的表现特性又有几种分法:

确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化. 线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的. 离散模型和连续模型指模型中的变量(主要是时间变量)取为离 散还是连续的. 虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法. 4.按照建模目的分:有描述模型、分析模型、预报模型、优化模

优化问题的数学模型及基本要素

第1章 优化设计 Chapter 1 Optimization Design 1-1 优化设计 1-1-1 最优化 (optimize, optimization ) 所谓最优化,通俗地说就是在一定条件下,在所有可能的计划、设计、安排中找出最好的一个来。换句话说,也就是在一定的条件下,人们如何以最好的方式来做一件事情。(Optimization deals with how to do things in the best possible manner) 结论的唯一性是最优化的特点,即公认最好。(It is the best of all possibilities) 最优化的思想体现在自然科学、工程技术及社会活动的各个领域,最优化的方法在这些领域也得到了广泛地应用。(P1) 1-1-2 最优化方法 (Arithmetic ) 要从所有可能的方案中找出最优的一个,用“试”(try )的办法是不可行的,需要采用一定的数学手段。二十世纪五十年代以前,用于解决最优化问题的数学方法仅限于古典的微分和变分(differential and variation)。数学规划法在五十年代末被首次用于解决最优化问题,并成为现代优化方法的理论基础。线性规划和非线性规划是数学规划的主要内容,它还包括整数规划、动态规划、二次规划等等。(Linear programming or Nonlinear programming, Integer, Dynamic, Quadratic ) 数学规划法与电子计算机的密切结合,改变了最优化方法多有理论研究价值,而少有实际应用的局面,使得解决工程中的优化问题成为可能。因此,我们现在所说的最优化方法,实际上包括了最优化理论和计算机程序二方面的内容。(Optimization theory plus computer program) 1-1-3 优化设计 下面以一个简单的问题为例来说明传统设计与优化设计这二个不同的设计过程。 例1-1 设计一个体积为5cm 3的薄板包装箱,其中一边的长度不小于4m 。要求使薄板耗 材最少,试确定包装箱的尺寸参数,即长a ,宽b 和高h 。 分析 包装箱的表面积s 与它的长a ,宽b 和高h 尺寸有关。因此,耗板最少的问题可以转化为表面积最小问题,故取表面积s 为设计目标。 传统设计方法: 首先固定包装箱一边的长度如)(4m a =。要满足包装箱体积为3 5m 的设计要求,则有以下多种设计方案: 如果包装箱的长度a 再取)(4m a >的其他值,则包装箱的宽度和高度还会有很多其他结果… 。 最后,从上面众多的可行方案中选择出包装箱表面积最小的方案来,这就是相对最好的设计方案。但由于不可能列出所有可能的设计方案,最终方案就不一定是最优的。 机械产品的传统设计通常需要经过:提出课题、调查分析、技术设计、结构设计、绘图

数学建模进行投资最优化

. . 资产最优组合 摘要 本文在充分分析数据的基础上,运用了模糊评价评估产品近期表现的优劣性,利用线性规划模型对多种金融产品进行组合,得到最优解,最后对模型进行评价。 问题一:基于模糊评价模型。本文使用累计收益率、本月平均涨幅、β系数(风险指标)3个指标,建立评估模型,来评估金融产品近期的优劣性表现。首先用层次分析法给出各项评估指标的权重并进行对指标一致性检验,再用熵权法对权重值进行修正;然后建立评估模型,利用模糊评价法得出景顺长城需增长、中邮战略新兴产业、华夏现金增利货币、工银货币、华能国际(稳健型)、万向钱潮(波动型)、*ST 中华A (ST 型)、国债⑺、万业债的模糊评估指标分别为 [] 0.00971 0.00484 0.00072 0.00090 0.34040 0.45785 0.17205 0.00332 0.01022通过以上数据比较可知,股票的表现明显优于债券和基金。 问题二:首先构建线性规划模型,通过收益最大目标函数和约束条件,求解出最优产品组合。其次求解收益对应的β系数,绘出收益和风险的折线图。根据图示,找到风险变化一单位得到最大收益处的值,得到最优解:选择华能国际(稳健型)、万向钱潮(波动型)、国债⑺、万业债、中邮战略新兴产业、华夏现金增利货币的投资量为:3716.556、3752.874、3819.063、52.10025、109.8907、541.8917、41.32636 问题三:本文在对选取的指标运用层次分析法赋予权重后,用熵权法对权值进行修正,使权值更为准确。同时,利用综合评价得出产品的近期优劣性表现。但是,本文β系数求解考虑较为单一,β系数的计算公式可以根据产品公司进行修改。 本文运用EXCEL 统计了大量数据,利用SPSS 软件进行数据分析,使用MATLAB 进行模型求解,使得模型更具合理性,可行性和科学性。 关键词:层次分析,一致性检验,熵值取权,模糊评价, 线性规划

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

关于电梯系统优化问题的数学模型

关于电梯系统优化问题 的数学模型 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

关于电梯系统优化问题的数学模型 摘要 在高层商务楼里,电梯承担着将人和货物运送到各个楼层的任务。在当今社会,工作生活节奏愈发加快,因而电梯系统的运行效率对人们的生活的影响不可忽视。目前的高层商务楼等大多数高层建筑中,一般都使用单井道单轿厢或者单井道双轿厢两种模式的电梯,本文就结合这两种模式,根据实际情况将问题分为两种情况考虑,重点讨论了将电梯运行效率最大化的方法,建立了相关模型,并给出了相应的优化参数。 本文将电梯系统的优化分为高峰期和非高峰期两种时期进行讨论。高峰期时通过对问题的分析,发现可以设置电梯区间以尽可能减少目标层较高的乘客占用目标层较低的乘客的电梯资源,根据这一思想,我们将其简化为排队问题来考虑,并据此建立了排队模型,通过实地统计数据以及C语言的编程,能够较好地解出模型,得到在高峰期时将一部分电梯区间的顶层设为第14层左右的优化方案。非高峰期时通过对这一时期特点的分析,以每台电梯在无乘梯需求时自动停留的楼层为着眼点,采用枚举的方法编程求解,得到在非高峰期将电梯均匀分布在楼层中的优化方案。最后,我们对模型参数进行了灵敏度的分析,发现虽然模型对数据的依赖性较强,但最优方案不随参数的波动而变化,所以这个结果还是可信的。 本文提出的方案直观易行,且几乎不需额外的经济投入,可行性很强,具有较好的参考价值。 一问题重述 在高层商务楼里,电梯承担着将人和货物运送到各个楼层的任务。目前的高层商务楼等大多数高层建筑中,主要使用单轿厢和双轿厢两种电梯运行系统。单轿厢电梯在向上运行时,只有满足了所有“上行请求”时才会开始满足“下行请求”,反之亦然;而对于双轿厢电梯,乘客在进入轿厢前就通过按钮面板选择了要停靠的楼层,系统迅速整合分析接收到的流量数据,并调度合适的轿箱来应接乘客。 现有一座商务楼,设计地上层数为28层,地下停车楼2层,每层的建筑面积为1500平方米,楼内有6个用于客梯的电梯井道。电梯按照商务楼建筑面积15至20平方米每人的标准来设计。第1层的楼层高为4.8米,其余层均为3.2米,设计电梯的平均运行速度1.6米/秒。我们的任务是: 1.建立一个合适的单轿箱客梯系统的运行方案,使尽可能地提高电梯系统的运行效率; 2.分别在运行的高峰期与非高峰期,对双轿箱的电梯系统与单轿箱的电梯系统的运行效率等进行对比分析,评价两种方案的优劣性,估计双轿厢系统运行效率的提高率。 二基本假设 1.电梯载客量为13人,且不超载。13人载客量是国内最常见的一种电梯规格,并且为了乘梯安全,电梯不应超载。 2.电梯在每层停留的时间相等。在假设1成立的前提下,电梯乘客可以迅速有序地离开电梯,电梯停留时间受离开人数的影响可以忽略不计。

优化问题的数学模型

一. 管理科学的定义 管理科学是对与定量因素有关的管理问题通过应用科学的方法进行辅助管理决策制定的一门学科. (1) 定量因素(2) 科学的方法(3) 辅助决策制定 二.用管理科学的方法解决问题的基本步骤. (1) 提出问题,并根据需要收录有关数据信息。管理科学工作者向管理者咨询、鉴别所 要考虑的问题以确定合理的目标,然后根据要求收集一些关键数据,并对数据作相应的分析。 (2) 建立模型,引入决策变量,确定目标函数(约束条件)。建模过程是一项创造性的 工作,在处理实际问题时,一般没有一个唯一正确的模型,而是有多种不同的方案。建模是一个演进过程,从一个初始模型往往需要不断的完善渐渐演化成一个完整的数学模型。 (3) 从模型中形成一个对问题求解的算法。要在计算机上运行数学程序对模型进行求 解,一般情况下能找到对模型求解的标准软件。例如,对线性规划问题已有Excel 、Cplex 、Lingo 等标准软件求解。有时要自己编写程序。 (4) 测试模型并在必要时修正。在模型求解后,需要对模型进行检验,以保证该模型能 准确反映实际问题,需要检验模型提供的解是否合理,所有主要相关因素是否已考虑,当有些条件变化时,解如何变化等。 (5) 应用模型分析问题以及提出管理建议。对模型求解并分析后,将相应的最优方案提 交给管理者,由管理者做出决策。管理科学工作者并不作管理决策,其研究只是对涉及的问题进行分析并向管理者提出建议。管理者还要考虑管理科学以外的众多因素才能做出决策。 (6) 帮助实施管理决策。建议被管理者采纳以后,一旦做出管理决策一般要求帮助监督 决策方案的实施。 新问题, 新模型, 新算法, 新应用. 三.优化问题的数学模型 1212max(min)(,, ,) (,,)0..1,2,n j n Z f x x x g x x x s t j m =≤?? =? 由于,j f g 是非线性函数时,此问题是非线性优化问题, 求解较复杂。我们主要讨论线性优化问题,常见的形式:混合整数规划 (1) max 0 0 Z CX hY AX GY b X Y =++≤≥≥取整数 其中111,,,,m n m p m n p A G b C h ?????,不失一般性,我们假定,,,,C h A G b 都是整数矩阵。 当0p =时,(1)为纯整数规划,当0n =时,(1)为线性规划。

建立数学模型的方法、步骤、特点及分类 ()

薅§16.3建立数学模型的方法、步骤、特点及分类 螁[学习目标] 蚀1.能表述建立数学模型的方法、步骤; 蒆2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 羆3.能表述数学建模的分类; 蒃4.会采用灵活的表述方法建立数学模型; 葿5.培养建模的想象力和洞察力。 薆一、建立数学模型的方法和步骤 膃—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 袁可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 膈建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 薆§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 薄图16-5建模步骤示意图 蚃模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 芁模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学模型的分类有哪些

数学模型的分类有哪些? 数学模型可以按照不同的方式分类,下面介绍常用的几种. 1.按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等. 2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等. 按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模. 3.按照模型的表现特性又有几种分法: 确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型. 静态模型和动态模型取决于是否考虑时间因素引起的变化. 线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的. 离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的. 虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法. 4.按照建模目的分:有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等. 5.按照对模型结构的了解程度分:有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.

优化问题与规划模型

§3.6 优化问题与规划模型 与最大、最小、最长、最短等等有关的问题都是优化问题。 解决优化问题形成管理科学的数学方法:运筹学。运筹学主要分支:(非)线性规划、动态规划、图与网络分析、存贮学、排队伦、对策论、决策论。 6.1 线性规划 1939年苏联数学家康托洛维奇发表《生产组织与计划中的数学问题》 1947年美国数学家乔治.丹契克、冯.诺伊曼提出线性规划的一般模型及理论. 1. 问题 例1 作物种植安排 一个农场有50亩土地, 20个劳动力, 计划种蔬菜,棉花和水稻. 种植这三种农作物每亩地分别需要劳动力 1/2 1/3 1/4, 预计每亩产值分别为 110元, 75元, 60元. 如何规划经营使经济效益最大. 分析:以取得最高的产值的方式达到收益最大的目标. 1. 求什么?分别安排多少亩地种蔬菜、棉花、水稻? x 1亩、 x 2 亩、 x 3 亩 2. 优化什么?产值最大 max f=10x 1+75x 2 +60x 3 3. 限制条件?田地总量 x 1+x 2 +x 3 ≤ 50 劳力总数 1/2x 1 +1/3x 2 +1/4x 3 ≤ 20 模型 I : 设决策变量:种植蔬菜 x 1亩, 棉花 x 2 亩, 水稻 x 3 亩, 求目标函数 f=110x 1+75x 2 +60x 3 在约束条件x 1+x 2 +x 3 ≤ 50 1/2x 1 +1/3x 2 +1/4x 3 ≤20 下的最大值 规划问题:求目标函数在约束条件下的最值, 规划问题包含3个组成要素: 决策变量、目标函数、约束条件。 当目标函数和约束条件都是决策变量的线性函数时,称为线性规划问题, 否则称为非线性规划问题。 2. 线性规划问题求解方法 称满足约束条件的向量为可行解,称可行解的集合为可行域, 称使目标函数达最值的可行解为最优解. 命题 1 线性规划问题的可行解集是凸集. 因为可行解集由线性不等式组的解构成。两个变量的线性规划问题的可行解集是平面上的凸多边形。 命题2 线性规划问题的最优解一定在可行解集的某个极点上达到. 图解法:解两个变量的线性规划问题,在平面上画出可行域,计算目标函数在各极点处的值,经比较后,取最值点为最优解。 命题3 当两个变量的线性规划问题的目标函数取不同的目标值时,构成一族平行直线,目标值的大小描述了直线离原点的远近。 于是穿过可行域的目标直线组中最远离(或接近)原点的直线所穿过的凸多边形的顶点即为取的极值的极点—最优解。 单纯形法 : 通过确定约束方程组的基本解, 并计算相应目标函数值, 在可行解

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

最优化问题的数学模型及其分类

最优化问题的数学模型及其分类 例1.1.1 产品组合问题 某公司现有三条生产线用来生产两种新产品,其主要数据如表1-1所示。请问如何生产可以让公司每周利润最大? 表1-1 设每周生产的产品一和产品二 的产量分别为1x 和2x ,则每周的生产利润为:2153x x z +=。由于每周的产品生产受到三条生产线的可用时间的限制,因此1x ,2x 应满足以下条件: ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 故上述问题的数学模型为

2153max x x z += . .t s ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 其中max 是最大化(maximize )的英文简称,??t s 是受约束于(subject to )的简写。 例1.1.2 把一个半径为1的实心金属球熔化后,铸成一个 实心圆柱体,问圆柱体取什么尺寸才能使它的表面积最小? 设圆柱体的底面半径为r ,高为h ,则该问题的数学模型为: ??? ??=? ?+=ππππ3 422min 22 h r t s r rh S 其中min 是最小化(minimize )的简写。 通过以上二例,可以看出最优化问题的数学模型具有如下结构: (1) 决策变量(decision variable ):即所考虑问题 可归结为优选若干个被称为参数或变量的量 n x x x ,,,21 ,它们都取实数值,它们的一组值构 成了一个方案。 (2) 约束条件(constraint condition ):即对决策

变量n x x x ,,,21 所加的限制条件,通常用不等式或等式表示为: ()(),,,2,1, 0,,,,,2,1, 0,,,2121l j x x x h m i x x x g n j n i ===≥ (3) 目标函数(objective function )和目标:如使 利润达到最大或使面积达到最小,通常刻划为极大化(maximize )或极小化(minimize )一个实值函数()n x x x f ,,21 因此,最优化问题可理解为确定一组决策变量在满足约束条件下,寻求目标函数的最优。 注意到极大化目标函数()n x x x f ,,21相当于极小化 ()n x x x f ,,21-,因此,约束最优化问题的数学模型一般可 表示为: () ()()()?? ? ??===≥??l j x x x h m i x x x g t s x x x f n j n i n ,,2,1,0,,,1.1.1,,2,1,0,,,,,min 212121 若记()T n x x x x ,,21=,则(1.1.1)又可写成:

中考数学模型的常见类型及其应用

中考数学模型的常见类型及其应用 史承灼 【摘要】“联系实际,加强应用”已经成为数学教育改革的一个重要方面,以应用数学的理论和方法解决实际问题的能 力为目标的“问题解决”亦已成为中考一大热点.而“数学模 型”或“数学建模”则是实现“数学问题解决”的基本手段和 主要内容.初中阶段常见的数学模型大致有:数与式、方程、 不等式、函数、三角、几何和统计模型等. 【关键词】初中数学问题解决构建数学模型随着数学教育改革的不断发展和深入,“联系实际,加强应用”已经成为数学 教育改革的一个重要方面,在基础教育中以培养应用数学的理论和方法解决实际问题的能力为目标的“问题解决”越来越引起人们的高度关注,亦已成为国际数学教育的一大热点.而“数学模型”或“数学建模”则是实现“数学问题解决”的基本手段和主要内容.掌握常见的“数学模型”和“数学建模”的方法,将会激发学生的创造能力,有助于应用数学知识解决实际问题能力的提高,从而达到加强“数学问题解决”教育的目的. 在数学的“问题解决”中,应用数学知识去解决实际问题,首先要把实际问题中的数学问题明确地表述出来,也就是说,要通过对实际问题的分析、归纳给出以描述这个问题的数学提法;然后才能使用数学的理论和方法进行分析,得出结论;最后再返回去解决现实的实际问题.由于实际问题的复杂性,往往很难把现成的数学理论直接套用到这些实际问题上,这就必须要在数学理论和所要解决的实际问题之间构建一个桥梁来加以沟通,以便把实际问题中的数学结构明确地表示出来,这个桥梁就是“数学模型”,这个桥梁的构建过程就是“数学建模”.一般说来,所谓数学模型是指通过抽象和简化,使用数学语言对实际现象的一个近似的刻画,以便于人们更深刻地认识所研究的对象.而“数学建模”的过程 考数学试题中,常见的应用问题按解决问题时建立数学模型所用数学知识和方法的

建立数学模型方法步骤特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法

为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模-面试最优化问题

C题面试时间问题 有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟): 这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司? 面试时间最优化问题 摘要: 面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于 n 位面试者的面试顺序的所有排列数 根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。 关键词:排列排序0-1非线性规划模型线性优化 (1)

(一)问题的提出 根据题意,本文应解决的问题有: 1、这4名同学约定他们全部面试完以后一起离开公司。假定现在的时间是早晨8:00,求他们最早离开公司的时间; 2、试着给出此类问题的一般描述,并试着分析问题的一般解法。 (二)问题的分析 问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行 )。 对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况: (一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。这一段等待时间必将延长最终的总时间。 (二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。同样的,这个也会延长面试的总时间。 以上两种情况,必然都会延长整个面试过程。所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。他们就能以最短的时间完成面试一起离开公司。这也是我们想要的结果。 (三)模型的假设 1.我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关; 2.面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0; 3.参加面试的求职者事先没有约定他们面试的先后顺序; 4.假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。即:没有中途退出面试者; 5.面试者及各考官都能在8:00准时到达面试地点。 (四)名词及符号约束 1. aij (i=1,2,3,4;j=1,2,3)为求职者i在j阶段参加面试所需的时间甲乙丙丁分别对应序号i=1,2,3,4 2. xij (i=1,2,3,4;j=1,2,3) 表示第i名同学参加j阶段面试的开始时间(不妨把早上8:00记为面试的0时刻) (2)

最新数学建模的常见类型

新课标下初中数学建模的常见类型 汕头市澄海溪南中学 陈耀盛 全日制义务教育数学课程标准对数学建模提出了明确要求,标准强调“从学生以有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解析与应用的过程,进而使学生获得对数学理解的同时,在思维能力。情感态度与价值观等方面得到进步和发展。”强化数学建模的能力,不仅能使学生更好地掌握数学基础知识,学会数学的基本思想和方法。也能增强学生应用数学的意识,提高分析问题,解决实际问题的能力。2007年全国各地的中考试题考查学生建模思想和意识的题目有许多,现分类举例说明。 一、建立“方程(组)”模型 现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决 例1(2007年深圳市中考试题)A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道。已知甲工程队每周比乙工程队少铺设1公里,甲工程对提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道? 解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(x +1)公里。 依题意得:31 1818=+-x x 解得x 1=2, x 2=-3

经检验x1=2,x2=-3都是原方程的根。 但x2=-3不符合题意,舍去。 ∴x+1=3 答:甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里。二、建立“不等式(组)”模型 现实生活建立中同样也广泛存在着数量之间的不等关系。诸如统筹安排、市场营销、生产决策、核定价格范围等问题,可以通过给出的一些数据进行分析,将实际问题转化成相应的不等式问题,利用不等式的有关性质加以解决。 例2 (2007年茂名市中考试题)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题: (1)该采购员最多可购进篮球多少只? (2)若该商场能把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元? 解:(1)该采购员最多可购进篮球x只,则排球为(100-x)只,依题意得:130x+100(100-x)≤11815 解得x≤60.5 ∵x是正整数,∴x=60 答:购进篮球和排球共100只时,该采购员最多可购进篮球60只。 (2)该采购员至少要购进篮球x只,则排球为(100-x)只,

相关文档
最新文档