圆切线证明的方法(完整资料).doc

圆切线证明的方法(完整资料).doc
圆切线证明的方法(完整资料).doc

【最新整理,下载后即可编辑】

切线证明法

切线的性质定理: 圆的切线垂直于经过切点的半径

切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点.

切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心

切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.

切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.

【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙

O 的切线.

思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可.

证明:连接OC ,BC .

∵AB 为⊙O 的直径,∴∠ACB =90o.

∵∠CAB =30o,∴BC =2

1

AB =OB .

图1

∵BD =OB ,∴BC =2

1OD .∴∠OCD =90o.

∴DC 是⊙O 的切线.

【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.

【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.

思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆

的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90o即可.

证明:连接OD .

∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,

∴△OBC ≌△ODC .∴∠OBC =∠ODC .

∵BC 是⊙O 的切线,∴∠OBC =90o.∴∠ODC =90o. ∴DC 是⊙O 的切线.

【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,

图2

AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .

思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径.

证明:连接OC .

∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .

【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.

【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么? 解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .

∵∠COD 是△BOC 的外角, ∴∠COD =∠OCB +∠B =2∠B . ∵∠ACD =2∠B , ∴∠ACD =∠COD . ∵CD ⊥AB 于D ,

∴∠DCO +∠COD =90°. ∴∠DCO +∠ACD =90°. 即OC ⊥AC .

图3

O A

B

C

D

2 3

1

∵C为⊙O上的点,

∴AC是⊙O的切线.

【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,

∴∠CAO=∠ACO,

∵AC平分∠EAB,

∴∠EAC=∠CAO=∠ACO,

∴AE∥CO,

又AE⊥DE,

∴CO⊥DE,

∴DE是⊙O的切线.

二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径

【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.

证明:连接OD,作OE⊥AC,垂足为E.

∵AB=AC,OB=OC.

∴AO为∠BAC角平分线,∠DAO=∠EAO

∵⊙O与AB相切于点D,

∴∠BDO=∠CEO=90°.∵AO=AO

∴△ADO≌△AEO,所以OE=OD.

∵OD是⊙O的半径,∴OE是⊙O的半径.

∴⊙O与AC边相切.

【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.

求证:EF与⊙O相切.

证明:连结OE,AD.

∵AB是⊙O的直径,

∴AD⊥BC.

又∵AB=BC,

∴∠3=∠4.

⌒⌒

∴BD=DE,∠1=∠2.

又∵OB=OE,OF=OF,

∴△BOF≌△EOF(SAS).

∴∠OBF=∠OEF.

∵BF与⊙O相切,

∴OB⊥BF.

∴∠OEF=900.

∴EF与⊙O相切.

说明:此题是通过证明三角形全等证明垂直的

【例8】如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.

求证:PA与⊙O相切.

证明一:作直径AE,连结EC.

∵AD是∠BAC的平分线,∴∠DAB=∠DAC.

∵PA=PD,∴∠2=∠1+∠DAC.

∵∠2=∠B+∠DAB,∴∠1=∠B.

又∵∠B=∠E,∴∠1=∠E

∵AE是⊙O的直径,

∴AC⊥EC,∠E+∠EAC=900.

∴∠1+∠EAC=900. 即OA⊥PA.

∴PA与⊙O相切.

证明二:延长AD交⊙O于E,连结OA,OE.

∵AD是∠BAC的平分线,

⌒⌒

∴BE=CE,

∴OE⊥BC.

∴∠E+∠BDE=900.

∵OA=OE,

∴∠E=∠1.

∵PA=PD,

∴∠PAD=∠PDA.

又∵∠PDA=∠BDE,

∴∠1+∠PAD=900

即OA⊥PA.

∴PA与⊙O相切

说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.

【例9】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M

求证:DM与⊙O相切. 证明一:连结OD.

∵AB=AC,

∴∠B=∠C.

∵OB=OD,

∴∠1=∠B.

∴∠1=∠C.

∴OD∥AC.

∵DM⊥AC,

∴DM⊥OD.

∴DM与⊙O相切证明二:连结OD,AD.

∵AB是⊙O的直径,

∴AD⊥BC.

又∵AB=AC,

∴∠1=∠2.

∵DM⊥AC,

∴∠2+∠4=900

∵OA=OD,

∴∠1=∠3.

∴∠3+∠4=900. D

C

即OD⊥DM.

∴DM是⊙O的切线

说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.

【例10】如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.

求证:DC是⊙O的切线

证明:连结OC、BC.

∵OA=OC,

∴∠A=∠1=∠300.

∴∠BOC=∠A+∠1=600.

又∵OC=OB,

∴△OBC是等边三角形.

∴OB=BC.

D ∵OB=BD,

∴OB=BC=BD.

∴OC⊥CD.

∴DC是⊙O的切线.

说明:此题解法颇多,但这种方法较好.

【例12】如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.

求证:PC是⊙O的切线.

证明:连结OC

∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,

OC

OP

OD OC

. 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.

说明:此题是通过证三角形相似证明垂直的

【例13】 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F. 求证:CE 与△CFG 的外接圆相切.

分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解. 证明:取FG 中点O ,连结OC.

∵ABCD 是正方形,

∴BC ⊥CD ,△CFG 是Rt △ ∵O 是FG 的中点,

∴O是Rt△CFG的外心.

∵OC=OG,

∴∠3=∠G,

∵AD∥BC,

∴∠G=∠4.

∵AD=CD,DE=DE,

∠ADE=∠CDE=450,

∴△ADE≌△CDE(SAS)

∴∠4=∠1,∠1=∠3.

∵∠2+∠3=900,

∴∠1+∠2=900.

即CE⊥OC.

∴CE与△CFG的外接圆相切

二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”

【例14】如图,AB=AC,D为BC中点,⊙D与AB切于E 点.

求证:AC与⊙D相切.

证明一:连结DE,作DF⊥AC,F是垂足.

∵AB是⊙D的切线,

∴DE⊥AB.

∵DF⊥AC,

∴∠DEB=∠DFC=900.

∵AB=AC,

∴∠B=∠C.

又∵BD=CD,

∴△BDE≌△CDF(AAS)

∴DF=DE.

∴F在⊙D上.

∴AC是⊙D的切线

证明二:连结DE,AD,作DF⊥AC,F是垂足.

∵AB与⊙D相切,

∴DE⊥AB.

∵AB=AC,BD=CD,

∴∠1=∠2.

∵DE⊥AB,DF⊥AC,

∴DE=DF.

∴F在⊙D上.

∴AC与⊙D相切.

说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平

分线有关.

【例15】已知:如图,AC,BD与⊙O切于A、B,且AC ∥BD,若∠COD=900.

求证:CD是⊙O的切线.

证明:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.

∵AC,BD与⊙O相切,

∴AC⊥OA,BD⊥OB.

∵AC∥BD,

∴∠F=∠BDO.

又∵OA=OB,

∴△AOF≌△BOD(AAS)

∴OF=OD.

∵∠COD=900,

∴CF=CD,∠1=∠2.

又∵OA⊥AC,OE⊥CD,

∴OE=OA.

∴E点在⊙O上.

∴CD是⊙O的切线.

圆的切线专题证明题

1、.已知:如图,CB 是⊙O 的直径,BP 是和⊙O 相切于点B 的切线,⊙O 的弦AC 平行于OP . (1)求证:AP 是⊙O 的切线.(2)若∠P=60°,PB=2cm ,求AC . 2、⊿ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于D ,D E ⊥AC 于E.求证:DE 为⊙O 的切线 3、、如图,AB=BC ,以AB 为直径的⊙O 交AC 于D ,作D E ⊥BC 于E 。(1)求证:DE 为⊙O 的切线(2)作DG ⊥AB 交⊙O 于G ,垂足为F ,∠A=30°.AB=8,求DG 的长 4、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线. 5、如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .求证:BD 是⊙O 的切线; 6 .如图,在中, ,以 为直径的分别交、于点、,点在的延长 线上,且 求证:直线 是⊙0的切线; O A B P E C

7、如图 9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上, 连接DB,且AD=DB。(1)判断DB与⊙O的位置关系,并说明理由。(2)若AD=1,PB=BO,求弦AC的长 8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。 9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P. 若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径. 10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线. 11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O 的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线; (2)若DE=3,⊙O的半径为5,求BF的长. F E D A C O B P M B D C O N

证明圆的切线方法

证明圆的切线方法 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F. 求证:EF 与⊙O 相切. 证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4. ∴BD=DE ,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切. 说明:此题是通过证明三角形全等证明垂直的 ⌒ ⌒

例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD. 求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E ∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA ⊥PA. ∴PA 与⊙O 相切. 证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE , ∴OE ⊥BC. ∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠ BDE, ⌒ ⌒

中考数学专题圆的切线精华习题

中考数学专题圆的位置关系 第一部分真题精讲 【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线; (2)若DE=2,tan C=1 2 ,求⊙O的直径. A 【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证OD⊥DE。至于第二问则重点考察直径所对圆周角是90°这一知识点。利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。 【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点, A ∴ OD为△ABC的中位线.∴OD∥BC. ∵ DE⊥BC,∴∠DEC=90°. ∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D. ∴ DE为⊙O的切线. (2)解:联结DB.∵AB为⊙O的直径, ∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°. ∵ D为AC中点,∴AB=AC. 在Rt△DEC中,∵DE=2 ,tanC=1 2 ,∴EC=4 tan DE C =. (三角函数的意义要记牢) 由勾股定理得:DC= 在Rt △DCB 中, BD=tan DC C ?= BC=5. ∴AB=BC=5. ∴⊙O的直径为5. 【例2】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥ 于点D.(1)求证:DA为⊙O的切线;(2)若1 BD=, 1 tan 2 BAD ∠=,求⊙O的半径.

圆的切线专题复习

2、如图,AB 是O O 的直径,/ A = 30°,延长 OE 到D,使BD= OB (OCB 是否是等边三角形?说明你的理由; 圆与特殊角度 1.已知,如图,在△ ADC 中, 长线 上,连接BF,交AD 于点E (1)求证:BF 是eO 的切线; ADC 90,以DC 为直径作半圆eO ,交边AC 于点F ,点B 在CD 的延 BED 2 C . (2)若BF FC , AE 3,求eO 的半径. 3 .如图,AB 是O O 的直径,点 D 在O O 上,OC/ AD 交O O 于E , (1)求证: ; 2)求证:CD 是O O 的切线? 证明: 点F 在CD 延长线上,且 BOC ADf =90 . 4.如图,在O O 中,弦 AE BC 于 D, BC 6 , AD 7 , BAC 45 (1) 求O O 的半径。 (2) 求DE 的长。 19.如图,已知直线 PA 交O O 于A 、B 两点,AE 是O O 的直径,C 为O O 上一 点, 且AC 平分/ PAE 过点C 作CDL PA 于D. (1) 求证:CD 是O O 的切线; (2) 若 AD DG 1: 3, AB=8,求O O 的半径. C B O P ZI C O D A B E

32?已知:如图,AB 是O O 的直径,BD 是O O 的弦,延长BD 到点C,使DGBR 连结AC 过点D 作D 巳 AC,垂足为E . 21?如图,已知 △ ABC ,以BC 为直径,O 为圆心的半圆交 AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点 M , AD ABC 勺角平分线,且 AD BE ,垂足为点H . (1) 求证:AB 是半圆O 的切线; (2) 若 AB 3, BC 4,求 BE 的长. 圆与三角函数 22.如图,在△ ABC 中,/ 0=90° , AD 是/ BAC 的平分线, (1) 求证:B0是O O 切线; (2) 若 BB 5, DO3,求 AC 的长. 解: O 是AB 上一点,以OA 为半径的O O 经过点D (1)求证:ABAC ⑵求证:DE 为O O 的切线; A A A

证明圆的切线的两种常用方法教案

证明圆的切线的两种常用方法 一、教学目的要求: 1.知识目的: (1)掌握切线的判定定理. (2)应用切线的判定定理证明直线是圆的切线,掌握圆的切线证明问题中辅助线的添加方法. 2.能力目的: (1)培养学生动手操作能力. (2)培养学生观察、探索、分析、总结、推理论证等能力. 3.情感目的: 通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性。 二、教学重点、难点 1.重点:切线的判定定理. 2.难点:圆的切线证明问题中,辅助线的添加方法. 三、教学过程: (一)复习引入 回答下列问题:(口述) 1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的? 2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直

线是不是一个圆的切线? ①与圆有唯一公共点的直线是圆的切线. ②与圆心的距离等于半径的直线是圆的切线. ③经过半径外端并且垂直于这条半径的直线是圆的切线. (要求学生举手回答,教师用教具演示) (二)新课讲解 证明直线与圆相切是一类常见题目,解决这类问题常用的方法有两种。 方法一、连接半径,证明垂直 若图形中已给出直线与圆的公共点,但未给出过点的半径,则可先连结过此点的半径,再证其与直线垂直。 例1 如图(1)所示,在△ABC中,AB=AC,以AB为直径作圆交于BC于D,作DE⊥AC于E。求证:DE为⊙O的切线。 证明:连结OD ∵OB=OD ∴∠B=∠ODB ∵AB=AC ∴∠B=∠C ∴∠ODB=∠C ∵DE⊥AC ∴∠C+∠CDE=90° ∴∠ODB+∠CDE=90°

∴∠ODE=90°,即DE⊥OD ∴DE是⊙O的切线。 例2 如图(2)所示,AB是⊙O的直径,过A点作⊙O的切线,在切线上任取一点C,连结OC交⊙O于D,连结BD并延长交AC 于E,求证:CD是△ADE外接圆的切线。 证明:取AE的中点F,连结FD。 ∵AB为直径, ∴AD⊥BD ∵FD=FE(=FA) ∴∠FED=∠FDE ∵∠CDE=∠BDO=∠B ∠FEB+∠B=90° ∴∠FDE+∠CDE=90° 即FD⊥CD ∴CD是△ADE的外接圆的切线。 方法二、作垂线,证明半径 若图形中未给出直线与圆的公共点,则需先过圆心作该直线的垂线,再证垂足到圆心的距离等于半径。 例3 如图(3)所示,已知AB是⊙O的直径,AC⊥L于C,BD ⊥L于D,且AC+BD=AB。求证:直线L与⊙O相切。 证明:过O作OE⊥L于E。 ∵AC⊥L,BD⊥L,

圆的切线的证明复习(教案)

专题复习----圆的切线证明教案 积石山县吹麻滩中学秦明礼 一、温习梳理 1、切线的定义:直线和圆有公共点时,这条直线叫圆的切线。 2、切线的性质:圆的切线于过切点的半径。 3、切线的判定:⑴和圆只有公共点的直线是圆的切线。 ⑵到圆心距离半径的直线是圆的切线。 ⑶经过半径的外端并且于这条半径的直线是圆的切线。 4、证明直线与圆相切,一般有两种情况: ⑴已知直线与圆有公共点,则连,证明。 ⑵不知直线与圆有公共点,则作,证明垂线段的长等于。

二、课前检测: 1.如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D, ∠BAD=∠B=30° (1)求证:BD是⊙O的切线; (2)请问:BC与BA有什么数量关系?写出这个关系式,并说明理 由。 三、活动于探究: 1.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线.

2.已知:如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于D , DE ⊥AC 于E .求证:DE 是⊙O 的切线. 3.如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1) 求证:直线PB 与⊙O 相切; (2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长.

4.如图,RT ?ABC 中,∠ABC=90O ,以 AB 为直径作⊙O 交边于点D ,E 是BC 边的中点,连接DE . (1)求证:直线DE 是⊙O 的切线; (2)连接OC 交DE 于点F ,若OF=CF , 求tan ∠ACO 的值. 四、反馈检测: 如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC . 求证:DE 是⊙O 的切线. 五、小结回顾: 1、本节课我们学习了:圆的切线的判定。 2、证明圆的切线的基本思路是:如果切点已知,需连接圆心做半径,证明半径和要证的切线垂直即可。而要证明垂直则需三种方法——平行、互余、全等。 B C E B A O F D

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

九年级数学证明圆的切线专题

证明圆的切线专题 证明一条直线是圆的切线,主要有两个思路: 1是证这条直线到圆心的距离等于这个圆的半径: 2,是利用切线的判判定定理,证明这条直线经过一条半径的外端,并且和这条半径垂直. 1不常用,一般常用2. 1. 如图,在Rt ABC ?中, 90C ?∠=,点D 是AC 的中点,且90A CDB ?∠+∠=,过点,A D 作O ,使圆心O 在AB 上,O 与AB 交于点E . (1)求证:直线BD 与O 相切; (2)若:4:5,6AD AE BC ==,求O 的直径. 2.如图,在Rt △ABC 中,∠C=90o,O 、D 分别为AB 、BC 上的点,经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ,且D 为EF 的中点。 (1)(4分)求证:BC 与⊙O 相切 (2)(4分)当,∠CAD=30o时,求AD 的长。 3. 如图,已知CD 是ΘO 的直径,AC ⊥CD ,垂足为C ,弦DE ∥OA ,直线AE 、CD 相交于点B . (1)求证:直线AB 是OO 的切线; (2)如果AC =1,BE =2,求tan ∠OAC 的值.

4. 如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)如果BC =8,AB =5,求CE 的长。 5.如图,在△ABC 中,∠C=90°,∠ACB 的平分线交AB 于点O ,以O 为圆心的⊙O 与AC 相切于点D . (1)求证:⊙O 与BC 相切; (2)当AC=3,BC=6时,求⊙O 的半径 6. 如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点D ,C ,DO 平分∠A DC . (1)求证:CD 是⊙O 的切线; (2)若AD=4,BC=9,求⊙O 的半径R . 7.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是?AB 的中点,连接P A ,PB ,PC . (1)如图①,若∠BPC =60°,求证: AP AC 3=; (2)如图②,若2524sin = ∠BPC ,求PAB ∠tan 的值.

证明圆的切线方法

证明圆的切线方法 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

证明圆的切线方法 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC.

∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B.

中考总复习圆的切线专题

题型专项(八)与切线有关的证明与计算 类型1与全等三角形有关 1.(2016·梧州)如图,过⊙O上的两点A,B分别作切线,交于BO,AO的延长线于点C,D,连接CD,交⊙O于点E,F,过圆心O作OM⊥CD,垂足为点M. 求证:(1)△ACO≌△BDO; (2)CE=DF. 证明:(1)∵AC,BD分别是⊙O的切线, ∴∠A=∠B=90°. 又∵AO=BO,∠AOC=∠BOD, ∴△ACO≌△BDO. (2)∵△ACO≌△BDO, ∴OC=OD. 又∵OM⊥CD,∴CM=DM. 又∵OM⊥EF,点O是圆心, ∴EM=FM. ∴CM-EM=DM-FM. ∴CE=DF. 2.(2016·玉林模拟)如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB 的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于点D,连接OC. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值. 解:(1)证明:由已知得∠ACB=90°,∠ABC=30°. ∴∠Q=30°,∠BCO=∠ABC=30°. ∵CD是⊙O的切线,CO是半径, ∴CD⊥CO. ∴∠DCQ=∠BCO=30°. ∴∠DCQ=∠Q. 故△CDQ是等腰三角形. (2)设⊙O的半径为1,则AB=2,OC=1,BC= 3. ∵等腰三角形CDQ与等腰三角形COB全等, ∴CQ=CB= 3.

∴AP=AQ=. ∴BP=AB-AP=. ∴PO=AP-AO= 3-1 (3)若∠B=30°,AP=AC,求证:DO=DP. ∴=. ∵∠PCE=∠AOE, ∴∠PEA=∠AOE.∵OA=OE, ∴OF= 3 r.∵AP=AC, ∴AP=.∵PE2=PA·PC,∴PE=r. ∴AQ=AC+CQ=1+ 3. 11+3 22 3-3 2 2. ∴BP∶PO= 3. 3.(2016·柳州)如图,AB为△ABC外接圆⊙O的直径,点P是线段CA的延长线上一点,点E在弧上且满足PE2=PA·PC,连接CE,AE,OE交CA于点D. (1)求证:△PAE∽△PEC; (2)求证:PE为⊙O的切线; 1 2 证明:(1)∵PE2=PA·PC, PE PA PC PE 又∵∠APE=∠EPC, ∴△PAE∽△PEC. (2)∵△PAE∽△PEC,∴∠PEA=∠PCE. 1 2 1 2 ∴∠OAE=∠OEA. ∵∠AOE+∠OEA+∠OAE=180°, ∴∠AOE+2∠OEA=180°, 即2∠PEA+2∠OEA=180°. ∴∠PEA+∠OEA=90°. ∴PE为⊙O的切线. (3)设⊙O的半径为r,则AB=2r. ∵∠B=30°,∠PCB=90°,∴AC=r,BC=3r. 过点O作OF⊥AC于点F, 1 22 r3 22 在△ODF与△PDE中,

圆切线证明的方法

切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =2 1 AB =OB . ∵BD =OB ,∴BC = 2 1 OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90o即可. 图1 A 图2

中考数学专题突破:证明圆的切线

中考数学专题突破:证明圆的切线方法一:等角代换(☆☆☆☆☆) 方法二:利用平行线的性质(☆☆)方法三:证明三角形全等或相似(☆)方法四:算出角度 方法五:勾股定理 方法一:等角代换(找到与90度相等的角) 【2017山东潍坊22】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为 的中点,作DE⊥AC,交AB的延长线于点F,连接DA. (1)求证:EF为半圆O的切线; 【解析】(1)证明:连接OD, ∵D为的中点,∴∠CAD=∠BAD, ∵OA=OD,∴∠BAD=∠ADO, ∴∠CAD=∠ADO, ∵DE⊥AC,∴∠E=90°, ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°, ∴OD⊥EF,∴EF为半圆O的切线; 【2017山东德州20】如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC

为直径的⊙O 交AB 于点E .(1)求证:DE 是⊙O 的切线; 【解析】(1)证明: 连接OE 、EC , ∵AC 是⊙O 的直径,∴∠AEC=∠BEC=90°, ∵D 为BC 的中点,∴ED=DC=BD ,∴∠1=∠2, ∵OE=OC ,∴∠3=∠4, ∴∠1+∠3=∠2+∠4,即∠OED=∠ACB , ∵∠ACB=90°,∴∠OED=90°, ∴DE 是⊙O 的切线; 【2017湖北咸宁】如图,在ABC ?中,AC AB =,以AB 为直径的⊙O 与边 AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F . ⑴求证:DF 是⊙O 的切线; 【解析】(1)证明:如图,连接OD ,作OG ⊥AC 于点G , ,

∵OB=OD ,∴∠ODB=∠B , 又∵AB=AC ,∴∠C=∠B ,∴∠ODB=∠C , ∵DF ⊥AC ,∴∠DFC=90°, ∴∠ODF=∠DFC=90°, ∴DF 是⊙O 的切线. 【2016·四川泸州】如图,△ABC 内接于⊙O ,BD 为⊙O 的直径,BD 与AC 相交于点H ,AC 的延长线与过点B 的直线相交于点E ,且∠A =∠EB C . (1)求证:BE 是⊙O 的切线; 【解答】(1)证明:连接CD , ∵BD 是直径,∴∠BCD =90°,即∠D +∠CBD =90°, ∵∠A =∠D ,∠A =∠EBC ,∴∠CBD +∠EBC =90°, ∴BE ⊥BD ,∴BE 是⊙O 切线. 【2017山东滨州23】如图,点E 是△ABC 的内心,AE 的延长线交BC 于点F ,交△ABC 的外接圆⊙O 于点D ;连接BD ,过点D 作直线DM ,使∠BDM =∠DA C . (1)求证:直线DM 是⊙O 的切线; 【解析】证明:(1)如答图1,连接DO ,并延长交⊙O 于点G ,连接BG ; A M B O E F C · ·

九年级数学证明圆的切线专题

九年级数学证明圆的 切线专题 证明一条直线是圆的切线;主要有两个思路: 1是证这条直线到圆心的距离等于这个圆的半径: 2;是利用切线的判判定定理;证明这条直线经过一条半径的外端;并且和这条半径垂直. 1不常用;一般常用2. 1. 如图;在Rt ABC ?中; 90C ?∠=;点D 是AC 的中点;且90A CDB ?∠+∠=;过点,A D 作O ;使圆心O 在AB 上;O 与AB 交于点E . (1)求证:直线BD 与O 相切; (2)若:4:5,6AD AE BC ==;求O 的直径. 2.如图;在Rt △ABC 中;∠C=90o;O 、D 分别为AB 、BC 上的点;经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ;且D 为EF 的中点。 (1)(4分)求证:BC 与⊙O 相切 (2)(4分)当;∠CAD=30o时;求AD 的长。 3. 如图;已知CD 是ΘO 的直径;AC ⊥CD ;垂足为C ;弦DE ∥OA ;直线AE 、CD 相交于点B . (1)求证:直线AB 是OO 的切线; (2)如果AC =1;BE =2;求tan ∠OAC 的值.

4.如图;在△ABC中;AB=AC;以AB为直径作⊙O;交BC于点D;过点D作DE⊥AC;垂足为E。(1)求证:DE是⊙O的切线; (2)如果BC=8;AB=5;求CE的长。 5.如图;在△ABC中;∠C=90°;∠ACB的平分线交AB于点O;以O为圆心的⊙O与AC相切于点D. (1)求证:⊙O与BC相切; (2)当AC=3;BC=6时;求⊙O的半径 6.如图;AB是⊙O的直径;AM;BN分别切⊙O于点A;B;CD交AM;BN于点D;C;DO平分∠A DC. (1)求证:CD是⊙O的切线; (2)若AD=4;BC=9;求⊙O的半径R.

证明圆的切线的七种常用方法

证明圆的切线的七种常用方法 类型1、有公共点:连半径,证垂直 方法1、勾股定理逆定理法证垂直 1.如图,⊙O的直径AB =12,点P 是AB 延长线上一点,且PB =4,点C是⊙O上一点,PC=8. 求证:PC是⊙O的切线. 方法2、特殊角计算法证垂直 2. 如图,△ABC内接于⊙O,∠B =60°,CD是⊙O 的直径,点P是CD延长线上一点,且AP=AC. (1)求证:P A是⊙O的切线; (2)若PD=5,求⊙O的直径. 方法3、等角代换法证垂直 3.如图,在Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E. 求证:DE是⊙O的切线. 方法4、平行线性质法证垂直 4.如图,已知四边形OABC的三个顶点A,B,C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB,AO的延长线于点D,E,AE交半圆O于点F,连接CF,且∠E=30°, 点B是︵ AC的中点. (1)判断直线DE与半圆O的位置关系,并说明理由; (2)求证:CF=OC; (3)若⊙O的半径是6,求DC的长. A B P O C A C B P D O A E B D O C A O F E C D B

方法5、全等三角形法证垂直 5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF . 求证:BF 是⊙O 的切线. 类型2、无公共点:作垂直,证半径 方法6、角平分线性质法证半径 6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,DE =DC ,以点D 为圆心,BD 长为半径作OD ,AB =5,EB =2. (1)求证:AC 是OD 的切线; (2)求线段AC 的长. 方法7、全等三角形法证半径 7.如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O . 求证:⊙O 与边CD 相切. A O B C D F A B C D E A O B C D

证明圆的切线经典例题1

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F. 求证:EF 与⊙O 相切. 证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4. ∴BD=DE ,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切. 说明:此题是通过证明三角形全等证明垂直的 例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD. ⌒ ⌒

求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E ∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA ⊥PA. ∴PA 与⊙O 相切. 证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE , ∴OE ⊥BC. ∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 ⌒ ⌒

圆切线证明的方法(完整资料).doc

【最新整理,下载后即可编辑】 切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙ O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =2 1 AB =OB . 图1

∵BD =OB ,∴BC =2 1OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆 的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90o即可. 证明:连接OD . ∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC , ∴△OBC ≌△ODC .∴∠OBC =∠ODC . ∵BC 是⊙O 的切线,∴∠OBC =90o.∴∠ODC =90o. ∴DC 是⊙O 的切线. 【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点, 图2

圆的切线证明专题

1 1.如图,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 2.如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2 =OD ·OP. 求证:PC 是⊙O 的切线. 3.如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300 ,BP=OB ,点P 在AB 的延长线上. 求证:PC 是⊙O 的切线. O A B C D 2 3 4 1

24.AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F. 求证:DE 是⊙O 的切线. 5.△ABC 中,AB=AE ,以AB 为直径,作⊙O 交BE 于C ,过C 作CD ⊥AE 于D ,DC 的延长线与AB 的延长线交于点P. 求证:PD 是⊙O 的切线. 6.在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使∠FCA =∠AOE ,交AB 的延长线于点D. 求证:FD 是⊙O 的切线. F E D C B A O F B D E O C

3 7.如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D , 且BAC D ∠=∠.求证:AD 是半圆O 的切线. 8.如图,已知△ABC 内接于⊙O,AC 是直径,D 是弧AB 的中点,过点D 作直线BC 的垂线,分别交CB 、CA 的延长线于 E 、 F . (1)求证:EF 是⊙O 的切线. (2)若EF =8,EC =6,求⊙O 的半径. O B A C E D

专题:《切线的证明技巧》

专题:《切线的证明技巧》 [方法技巧]连半径,证垂直或作垂直,证半径是证明直线是圆的切线的常用方法。 -、有公共点→连半径,证垂直 1、已知△ABC为⊙O的内接三角形,∠BCE=∠BAC,求证:CE是⊙O的切线。 方法点拔:借助角度转换证垂直 2、如图,⊙O的弦AD=4,BD=8,AD⊥BD,C是BD延长线上一点,CD=2,求证:AC是⊙O的切线。 方法点拔:借助角度转换证垂直 C

3、如图,AB 是⊙O 的直径,AE 是⊙O 的切线,切点为A ,OE 平行于弦BC 。求证:CE 是⊙O 的切线。 方法点拔:借助全等证垂直 O E A B C 二、无公共点→作垂直,证半径 方法点拔:借助角平分线性质证d=R 4、如图△ABC 中,CA=CB ,D 为AB 中点,以 D 为圆心的圆与 AC 相切于点E ,求证:BC 与⊙O 相切。 D A B C E

5、如图,四边形ABCD中,∠A=∠ABC=90°,AD+BC=CD,求证:以AB为直径的圆与CD相切。 D A O B C

[课后练习] 1.(2015?湖北模拟)如图,已知R t△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连接BD.取BC的中点E,连接ED,试证明ED与⊙O相切. 2.如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.求证:PB为⊙O的切线; D C O B P E A 3.(2015?武汉校级模拟)如图所示.P是⊙O外一点.PA是⊙O的切线.A是切点.B 是⊙O上一点.且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.求证:PB是⊙O的切线;

最新中考数学专题圆的切线

中考数学专题圆的切线晃位置关系 第一部分真题精讲 【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线; (2)若DE=2,tan C=1 2 ,求⊙O的直径. A 【例2】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥ 于点D.(1)求证:DA为⊙O的切线;(2)若1 BD=, 1 tan 2 BAD ∠=,求⊙O的半径 . F C F C

【例3】已知:如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且.OA AB AD == (1)求证:BD 是⊙O 的切线; (2)若点E 是劣弧BC 上一点,AE 与BC 相交 于点F ,且8BE = ,tan BFA ∠= O 的半径长. 【例4】如图,等腰三角形ABC 中,6AC BC ==,8AB =.以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是⊙O 的切线; (2)求sin E ∠的值. 【例5】如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆交AD 于F ,交BC 于G ,延长BA 交圆于E . (1)若ED 与⊙A 相切,试判断GD 与⊙A 的位置关系,并证明你的结论; (2)在(1)的条件不变的情况下,若GC =CD =5,求AD 的长. G F E D C B A C

第二部分发散思考 【思考1】如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B. (1)求证:AD是⊙O的切线; (2)若⊙O的半径为3,AB=4,求AD的长. 【思路分析】此题为去年海淀一模题,虽然较为简单,但是统计下来得分率却很低. 因为题目中没有给出有关圆心的任何线段,所以就需要考生自己去构造。同一段弧的圆周角相等这一性质是非常重要的,延长DB就会得到一个和C一样的圆周角,利用角度关系,就很容易证明了。第二问考解三角形的计算问题,利用相等的角建立相等的比例关系,从而求解。 【思考2】已知:AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB. (1)判断直线BD与⊙O的位置关系,并证明你的结论; (2)若⊙O的半径等于4, 4 tan 3 ACB ∠=,求CD的长. 【思路分析】本题也是非常典型的通过角度变换来证明90°的题目。重点在于如何利用∠D=∠ACB这个条件,去将他们放在RT三角形中找出相等,互余等关系。尤其是将∠OBD拆分成两个角去证明和为90°。 【思考3】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC 于点G,交AB于点F,FB恰为⊙O的直径. (1)求证:AE与⊙O相切; (2)当BC=4,cosC= 1 3 时,求⊙O的半径. 【思路分析】这是一道去年北京中考的原题,有些同学可能已经做过了。主要考点还是切线判定,等腰三角形性质以及解直角三角形,也不会很难。放这里的原因是让大家感受一下中考题也无非就是如此出法,和我们前面看到的那些题是一个意思。 A B C O

中考复习专题圆切线证明

中考复习专题圆切线证明 知识考点: 1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。 2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。 精典例题: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线

交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上. 求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切.

二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径” 例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点. 求证:AC与⊙D相切. 例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900. 求证:CD是⊙O的切线. [习题练习] 例1如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.

相关文档
最新文档