操作系统实验三

操作系统实验三
操作系统实验三

操作系统

实验报告

哈尔滨工程大学

计算机科学与技术学院

第三讲进程的创建

一、实验概述

1. 实验名称

进程的创建

2. 实验目的

● 练习使用EOS API函数CreateProcess创建一个进程,掌握创建进程的方法,理解进程和程序的区别。

● 调试跟踪CreateProcess函数的执行过程,了解进程的创建过程,理解进程是资源分配的单位。

3. 实验类型

设计

4. 实验内容

4.1 准备实验

按照下面的步骤准备本次实验:

1. 启动OS Lab。

2. 新建一个EOS Kernel项目。

3. 分别使用Debug配置和Release配置生成此项目,从而在该项目文件夹中生成完全版本的EOS SDK文件夹。

4. 新建一个EOS应用程序项目。

5. 使用在第3步生成的SDK文件夹覆盖EOS应用程序项目文件夹中的SDK文件夹。

4.2 练习使用控制台命令创建EOS应用程序的进程

练习使用控制台命令创建EOS应用程序进程的具体步骤如下:

1. 在EOS应用程序项目的“项目管理器”窗口中双击Floppy.img文件,使用FloppyImageEditor工具打开此软盘镜像文件。

2. 将本实验文件夹中的Hello.exe文件拖动到FloppyImageEditor工具窗口的文件列表中释放,Hello.exe文件即被添加到软盘镜像文件中。Hello.exe一个EOS应用程序,其源代码可以参见本实验文件夹中的Hello.c源文件。

3. 在FloppyImageEditor中选择“文件”菜单中的“保存”后关闭FloppyImageEditor。

4. 按F7生成EOS应用项目。

5. 按F5启动调试。OS Lab会弹出一个调试异常对话框,并中断应用程序的执行。

6. 在调试异常对话框中选择“否”,忽略异常继续执行应用程序。

7. 激活虚拟机窗口,待该应用程序执行完毕后,在EOS的控制台中输入命令“A:\Hello.exe”后回车。

8. Hello.exe应用程序开始执行,观察其输出。

9. 待Hello.exe执行完毕后可以重复第7步,或者结束此次调试。

4.3 练习通过编程的方式让应用程序创建另一个应用程序的进程

使用OS Lab打开本实验文件夹中的NewProc.c文件(将此文件拖动到OS Lab窗口中释放即可),仔细阅读此文件中的源代码和注释。

按照下面的步骤查看应用程序创建另一个应用程序的进程的执行结果:

1. 使用NewProc.c文件中的源代码替换之前创建的EOS应用程序项目中的EOSApp.c文件内的源代码。

2. 按F7生成修改后的EOS应用程序项目。

3. 按F5启动调试。OS Lab会首先弹出一个调试异常对话框。

4. 在调试异常对话框中选择“否”,继续执行。

5. 激活虚拟机窗口查看应用程序输出的内容。可以看到父进程(EOSApp.exe)首先开始执行并输出内容,父进程创建了子进程(Hello.exe)后,子进程开始执行并输出内容,待子进程结束后父进程再继续执行。

6. 结束此次调试。

4.4 调试CreateProcess函数

按照下面的步骤调试CreateProcess函数创建进程的过程:

1. 按F5启动调试EOS应用程序,OS Lab会首先弹出一个调试异常对话框。

2. 选择“是”调试异常,调试会中断。

3. 在main函数中调用CreateProcess函数的代码行(第57行)添加一个断点。

4. 按F5继续调试,在断点处中断。

5. 按F11调试进入CreateProcess函数。此时已经开始进入EOS内核进行调试。

当EOS应用程序eosapp.exe存储在软盘上的时候,它是静态的,只包含应用程序的指令和数据。而创建进程后,进程不但包含应用程序的指令和数据,也会包含操作系统内核(kernel.dll)的指令和数据(参见图5-1)。同时,图11-4也说明了一个进程可以包含多个程序,该进程包含了eosapp.exe和kernel.dll两个程序。

可以按照下面的步骤来分别验证应用程序和操作系统内核在进程的4G虚拟地址空间中所处的位置:

1. 由于此时在内核的CreateProcess函数内中断执行,所以在“调试”菜单的“窗口”中选择“反汇编”,会在“反汇编”窗口中显示CreateProcess函数的指令对应的反汇编代码。“反汇编”窗口的左侧显示的是指令所在的虚拟地址。可以看到所有指令的虚拟地址都大于

0x80000000,说明内核(kernel.dll)处于高2G的虚拟地址空间中。

2. 在“调用堆栈”窗口中双击main函数项,设置main函数的调用堆栈帧为活动的。在“反汇编”窗口中查看main函数的指令所在的虚拟地址都是小于0x80000000,说明应用程序(eosapp.exe)处于低2G的虚拟地址空间中。

3. 在“调用堆栈”窗口中双击CreateProcess函数项,重新设置CreateProcess函数的调用堆栈帧为活动的。关闭“反汇编”窗口。

接下来观察eosapi.c文件中CreateProcess函数的源代码,可以看到此函数只是调用了EOS 内核函数PsCreateProcess并将创建进程所用到的参数传递给了此函数。所以,按F11可以调试进入create.c文件中的PsCreateProcess函数,在此函数中才开始执行创建进程的各项操作。

4.5 调试PsCreateProcess函数

创建进程最主要的操作就是创建进程控制块(PCB),并初始化其中的各种信息(也就是为进程分配各种资源)。所以在PsCreateProcess函数中首先调用了PspCreateProcessEnvironment 函数来创建进程控制块。

调试PspCreateProcessEnvironment函数的步骤如下:

1. 在PsCreateProcess函数中找到调用PspCreateProcessEnvironment函数的代码行(create.c文件的第163行),并在此行添加一个断点。

2. 按F5继续调试,到此断点处中断。

3. 按F11调试进入PspCreateProcessEnvironment函数。

由于PspCreateProcessEnvironment函数的主要功能是创建进程控制块并初始化其中的部分信息,所以在此函数的开始,定义了一个进程控制块的指针变量NewProcess。在此函数中查找到创建进程控制块的代码行(create.c文件的第418行)

Status = ObCreateObject( PspProcessType,

NULL,

sizeof(PROCESS) + ImageNameSize + CmdLineSize,

0,

(PVOID*)&NewProcess ); 这里的ObCreateObject函数会在由EOS内核管理的内存中创建了一个新的进程控制块(也就是分配了一块内存),并由NewProcess返回进程控制块的指针(也就是所分配内存的起始地址)。

按照下面的步骤调试进程控制块的创建过程:

1. 在调用ObCreateObject函数的代码行(create.c文件的第418行)添加一个断点。

2. 按F5继续调试,到此断点处中断。

3. 按F10执行此函数后中断。

4. 此时为了查看进程控制块中的信息,将表达式*NewProcess添加到“监视”窗口中。

5. 将鼠标移动到“监视”窗口中此表达式的“值”属性上,会弹出一个临时窗口,在临时窗口中会按照进程控制块的结构显示各个成员变量的值(可以参考PROCESS结构体的定义)。由于只是新建了进程控制块,还没有初始化其中成员变量,所以值都为0。

接下来调试初始化进程控制块中各个成员变量的过程:

1. 首先创建进程的地址空间,即4G虚拟地址空间。在代码行(create.c文件的第437行)NewProcess->Pas = MmCreateProcessAddressSpace(); 添加一个断点。

2. 按F5继续调试,到此断点处中断。

3. 按F10执行此行代码后中断。

4. 在“监视”窗口中查看进程控制块的成员变量Pas的值已经不再是0。说明已经初始化了进程的4G虚拟地址空间。

根据执行的源代码,查看“监视”窗口中*NewProcess表达式的值,观察进程控制块中哪些成员变量是被哪些代码初始化的,哪些成员变量还没有被初始化。

6. 当从PspCreateProcessEnvironment函数返回到PsCreateProcess函数后,停止按F10。此时“监视”窗口中已经不能再显示表达式*NewProcess的值了,在PsCreateProcess函数中是使用ProcessObject指针指向进程控制块的,所以将表达式*ProcessObject添加到“监视”窗口中就可以继续观察新建进程控制块中的信息。

7. 接下来继续使用F10一步步调试PsCreateProcess函数中的代码,同样要注意观察执行后的代码修改了进程控制块中的哪些成员变量。当调试到PsCreateProcess函数的最后一行代码时,查看进程控制块中的信息,此时所有的成员变量都已经被初始化了(注意观察成员ImageName的值)。

8. 按F5继续执行,EOS内核会为刚刚初始化完毕的进程控制块新建一个进程。激活虚拟机窗口查看新建进程执行的结果。

9. 在OS Lab中选择“调试”菜单中的“停止调试”结束此次调试。

10. 选择“调试”菜单中的“删除所有断点”。

4.6 练习通过编程的方式创建应用程序的多个进程

使用OS Lab打开本实验文件夹中的参考源代码文件NewTwoProc.c,仔细阅读此文件中的源代码。使用NewTwoProc.c文件中的源代码替换EOS应用程序项目中EOSApp.c文件内的源代码,生成后启动调试,查看多个进程并发执行的结果。

多个进程并发时,EOS操作系统中运行的用户进程可以参见图11-5。验证一个程序(hello.exe)可以同时创建多个进程。

二、实验环境

操作系统集成实验环境OS Lab

EOS 操作系统

三、实验过程

1. 设计思路和流程图

2. 需要解决的问题及解答

在PsCreateProcess函数中调用了PspCreateProcessEnvironment函数后又先后调用了PspLoadProcessImage和PspCreateThread函数,学习这些函数的主要功能。能够交换这些函数被调用的顺序吗?思考其中的原因。

答:PspCreateProcessEnvironment的主要功能是创建进程控制块并且为进程创建了地址空间和分配了句柄表。PspLoadProcessImage是将进程的可执行映像加载到了进程的地址空间中。PspCreateThread创建了进程的主线程。这三个函数被调用的顺序是不能够改变的就向上面描述的加载可执行映像之前必须已经为进程创建了地址空间这样才能够确定可执行映像可以被加载到内存的什么位置在创建主线程之前必须已经加载了可执行映像这样主线程才能够知道自己要从哪里开始执行,执行哪些指令。因此不能交换他们的顺序。

3. 源程序代码

int main(int argc, char* argv[])

{

STARTUPINFO StartupInfo;

PROCESS_INFORMATION ProcInfo[11];

ULONG ulExitCode; // 子进程退出码

INT nResult = 0; // main 函数返回值。0 表示成功,非0 表示失败。

#ifdef _DEBUG

__asm("int $3\n nop");

#endif

printf("Create 10 processes and wait for the process exit...\n\n");

StartupInfo.StdInput = GetStdHandle(STD_INPUT_HANDLE);

StartupInfo.StdOutput = GetStdHandle(STD_OUTPUT_HANDLE);

StartupInfo.StdError = GetStdHandle(STD_ERROR_HANDLE);

int i,j,n=10,num[11];

for(i=1;i<=n;i++)

if (CreateProcess("A:\\Hello.exe", NULL, 0, &StartupInfo, &ProcInfo[i])) {num[i]=1;}

else {for(j=1;j<=i-1;j++)

{CloseHandle(ProcInfo[i].ProcessHandle);

CloseHandle(ProcInfo[i].ThreadHandle);}

printf("CreateProcess Failed, Error code: 0x%X.\n", GetLastError());

nResult = 1;

return nResult;}

for(i=1;i<=n;i++) if(num[i]==1)

WaitForSingleObject(ProcInfo[i].ProcessHandle, INFINITE);

// 得到并输出子进程的退出码。

for(i=1;i<=n;i++) if(num[i]==1)

GetExitCodeProcess(ProcInfo[i].ProcessHandle, &ulExitCode);

for(i=1;i<=n;i++) if(num[i]==1)

printf("\nThe process %d exit with %d.\n",i,ulExitCode);

// 关闭不再使用的句柄。

for(i=1;i<=n;i++) if(num[i]==1)

CloseHandle(ProcInfo[i].ProcessHandle);

for(i=1;i<=n;i++) if(num[i]==1)

CloseHandle(ProcInfo[i].ThreadHandle);

return nResult;

}

4. 程序运行时的初值和运行结果

4.1 准备实验

4.2 练习使用控制台命令创建EOS应用程序的进程

4.3 练习通过编程的方式让应用程序创建另一个应用程序的进程

4.4 调试CreateProcess函数

4.5 调试PsCreateProcess函数

4.6 练习通过编程的方式创建应用程序的多个进程

四、实验体会

通过本次实验,学会了多个进程的创建,

程中的代码编译过程较为复杂,在此期间花费时间较多,而且在编译过程中经常出现问题,比如每个语句有没有“;”,比如数组定义的容量问题,足以见得我C语言的基础并不是很好,希望在接下来的时间了能够巩固编程基础,尽快将代码编译出来。

操作系统实验报告

操作系统实验报告 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

实验二进程调度1.目的和要求 通过这次实验,理解进程调度的过程,进一步掌握进程状态的转变、进程调度的策略,进一步体会多道程序并发执行的特点,并分析具体的调度算法的特点,掌握对系统性能的评价方法。 2.实验内容 阅读教材《计算机操作系统》第二章和第三章,掌握进程管理及调度相关概念和原理。 编写程序模拟实现进程的轮转法调度过程,模拟程序只对PCB进行相应的调度模拟操作,不需要实际程序。假设初始状态为:有n个进程处于就绪状态,有m个进程处于阻塞状态。采用轮转法进程调度算法进行调度(调度过程中,假设处于执行状态的进程不会阻塞),且每过t个时间片系统释放资源,唤醒处于阻塞队列队首的进程。 程序要求如下: 1)输出系统中进程的调度次序; 2)计算CPU利用率。 3.实验环境 Windows操作系统、VC++6.0 C语言 4设计思想: (1)程序中进程可用PCB表示,其类型描述如下:

structPCB_type { intpid;//进程名 intstate;//进程状态 2——表示“执行”状态 1——表示“就绪”状态 0——表示“阻塞”状态 intcpu_time;//运行需要的CPU时间(需运行的时间片个数) } 用PCB来模拟进程; (2)设置两个队列,将处于“就绪”状态的进程PCB挂在队列ready中;将处于“阻塞”状态的进程PCB挂在队列blocked中。队列类型描述如下: structQueueNode{ structPCB_typePCB; StructQueueNode*next; } 并设全程量: structQueueNode*ready_head=NULL,//ready队列队首指针 *ready_tail=NULL,//ready队列队尾指 针

操作系统实验三

计算机操作系统实验报告 实验内容: P、V原语的模拟实现 实验类型:验证型 指导教师:毕国堂 专业班级: 姓名: 学号: 实验地点:东6E507 实验时间:2017/10/23

一、实验目的 1.理解信号量相关理论 2.掌握记录型信号量结构 3.掌握P、V原语实现机制 二、实验内容 1.输入给定的代码 2.进行功能测试并得出证正确结果 三、实验要求 1.分析signal和wait函数功能模块 ●Signal函数 在进行资源增加时,首先判断增加的资源是否存在,如果不存在则报错 并结束函数;如果存在则将需要增加的资源数量加一,然后再判断增加 后的资源数是否大于0,如果大于0则表示之前等待队列为空,没有需 要分配的进程;如果增加后的资源不大于0,表示之前等待队列中存在 进程,则将队首的进程取出并将资源分给该进程。 ●Wait 函数 在执行wait函数时,先判断请求的资源和进程是否存在,如果不存在则 报错提示;如果存在则将对应资源的资源数减一,然后判断减少后的资 源数是否小于0,如果小于0,表示该资源等待队列为空,可直接将资源 分配给请求的进程;如果不小于0则表示之前资源的等待队列不为空, 则将请求的进程插在等待队列最后。 2.画出signal和wait函数流程图

3.撰写实验报告 四、实验设备 1.PC机1台安装visual c++ 6.0 五、测试

1.首先将所有的资源分配完 2.这时再请求资源时就会出现等待现象 3.此时增加一个资源s0,则进程1对s0的等待结束直接获取资源s0 4.当再增加资源s0、s1时则进程1也结束对资源s1的等待,并且s0资源 为有空闲状态 六、实验思考 1.如何修改wait操作,使之能一次申请多个信号量? wait函数传入一个进程号和多个资源名,在wait函数中使用循环依

操作系统实验报告三

课程实验报告 课程名称姓名实验名称实验目的及要求 实验3进程并发与同步 1、加深对进程概念的理解,区分进程并发执行与串行执行; 2、掌握进程并发执行的原理,理解进程并发执行的特点; 3、了解fork()系统调用的返回值,掌握用fork()创建进程的方法;熟悉wait、exit等系统调用; 4、能利用相应的系统调用实现进程树与进程间的同 步。 实 验操作系统:linux Un bu ntu 11.10 环 境实验工具:Vmware 实验内容 1、编写一C语言程序,实现在程序运行时通过系统调用fork()创建两个子进程,使父、子三进程并发执行,父亲进程执行时屏幕显示“I am father ”,儿子进 程执行时屏幕显示“ I am son ",女儿进程执行时屏幕显示“ I am daughter ”。 要求多次连续反复运行这个程序,观察屏幕显示结果的顺序,直至出现不一样的情况为止。要求有运行结果截图与结果分析 2、连续4个fork()的进程家族树,family1-1.c 程序清单如下: #in clude main () { fork(); fork(); fork(); fork(); printf( A\n ”); } 请根据程序运行结果,画出进程家族树,并分析原 因。

3、 修改程序1,在父、子进程中分别使用 wait 、exit 等系统调用“实现”其同 步推进,父进程必须等待儿子进程与女儿进程结束, 才可以输出消息。 写出相应的同 步控制,并分析运行结果。 4、 创建一个子进程,并给它加载程序,其功能是调用键盘命令“ ls -I ”,已知 该键盘命令的路径与文件名为: /bin/ls 。父进程创建子进程, 并加载./child2 程序。 写出相应的程序代码并分析程序运行结果。 1、编写一 C 语言程序,实现在程序运行时通过系统调用 fork()创建两个子进 程,使父、子三进程并发执行,父亲进程执行时屏幕显示“ I am father ”, 儿子进程执行时屏幕显示“ I am son ”,女儿进程执行时屏幕显示“ I am daughter "。并且反复的测试,观察每一次的执行的顺序有什么不同 2、修改程序1,在父、子进程中分别使用 wait 、exit 等系统调用“实现”其同 步推进,父进程必须等待儿子进程与女儿进程结束,才可以输出消息。 4、创建一个子进程,并给它加载程序,其功能是调用键盘命令“ ls -I ”,已知 该键盘命令的路径与文件名为: /bin/ls 。父进程创建子进程, 并加载./child2 程序。 法 描 述 及 实 验 步 骤 调 试过 程及实 验结果

操作系统实验页面置换算法C++代码

#include #include #include /*全局变量*/ int mSIZE; /*物理块数*/ int pSIZE; /*页面号引用串个数*/ static int memery[10]={0}; /*物理块中的页号*/ static int page[100]={0}; /*页面号引用串*/ static int temp[100][10]={0}; /*辅助数组*/ /*置换算法函数*/ void FIFO(); void LRU(); void OPT(); /*辅助函数*/ void print(unsigned int t); int main() { int i,k,code; printf(" ╔═══════════════╗\n"); printf(" ║页面置换算法║\n"); printf(" ╚═══════════════╝\n"); printf("请输入物理块的个数(M<=10):"); scanf("%d",&mSIZE); printf("请输入页面号引用串的个数(P<=100):"); scanf("%d",&pSIZE); puts("请依次输入页面号引用串(连续输入,无需隔开):"); for(i=0;i

操作系统实验实验1

广州大学学生实验报告 1、实验目的 1.1、掌握进程的概念,明确进程的含义 1.2、认识并了解并发执行的实质 2.1、掌握进程另外的创建方法 2.2、熟悉进程的睡眠、同步、撤消等进程控制方法 3.1、进一步认识并发执行的实质 3.2、分析进程竞争资源的现象,学习解决进程互斥的方法 4.1、了解守护进程 5.1、了解什么是信号 5.2、INUX系统中进程之间软中断通信的基本原理 6.1、了解什么是管道 6.2、熟悉UNIX/LINUX支持的管道通信方式 7.1、了解什么是消息 7.2、熟悉消息传送的机理 8.1、了解和熟悉共享存储机制 二、实验内容 1.1、编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统 中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。试观察记录屏幕上的显示结果,并分析原因。 1.2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及 'son ……',父进程显示'parent ……',观察结果,分析原因。 2.1、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容 2.2、利用wait( )来控制进程执行顺序 3.1、修改实验(一)中的程序2,用lockf( )来给每一个进程加锁,以实现进程之间的互斥 3.2、观察并分析出现的现象 4.1、写一个使用守护进程(daemon)的程序,来实现: 创建一个日志文件/var/log/Mydaemon.log ; 每分钟都向其中写入一个时间戳(使用time_t的格式) ; 5.1、用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按^c键);捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child process1 is killed by parent! Child process2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 5.2、用软中断通信实现进程同步的机理

操作系统实验指导_源码参考资料

华东交通大学 软件学院 操作系统实验报告 专业: 计算机科学与技术 姓名: 林庆达 学号: 3103005138 2005-6

试验一进程调度 一、实验目的: 编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解。 二、实验内容:以两种典型算法为例说明实现的算法 (一)、最高优先数优先的调度算法 1、实验原理 进程调度算法:采用最高优先数优先 的调度算法(即把处理机分配给优先数最 高的进程)和先来先服务算法。 每个进程有一个进程控制块(PCB) 表示。进程控制块可以包含如下信息:进 程名、优先数、到达时间、需要运行时间、 已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以 事先人为地指定(也可以由随机数产生)。 进程的到达时间为进程输入的时间。 进程的运行时间以时间片为单位进 行计算。 每个进程的状态可以是就绪W (Wait)、运行R(Run)、或完成F(Finish) 三种状态之一。 就绪进程获得CPU后都只能运行一 个时间片。用已占用CPU时间加1来表示。 如果运行一个时间片后,进程的已占 用CPU时间已达到所需要的运行时间, 则撤消该进程,如果运行一个时间片后进 程的已占用CPU时间还未达所需要的运 行时间,也就是进程还需要继续运行,此 时应将进程的优先数减1(即降低一级), 然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运 行进程、就绪队列、以及各个进程的PCB, 以便进行检查。 重复以上过程,直到所有进程都完成为止。 2、源代码: #include "stdio.h" #include #include #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0

操作系统-实验三

操作系统-实验三 文件系统的用户界面 一、实验目的 进一步理解、使用和掌握文件的系统调用、文件的标准子例程,能利用和选择这些基本的文件操作完成复杂的文件处理工作。 二、实验题目 1.编写一个文件复制的C语言程序:分别使用文件的系统调用read(fd, buf, nbytes), write(fd, buf, nbytes)和文件的库函数fread(buf, size, nitems, fp), fwrite(buf, size, nitems, fp),编写一个文件的复制程序(文件大小>1M ),文件可以编一个C 程序来生成,或使用/usr/bin下的二进制执行文件。 调用格式例如: copy file1 file2 #include main(int argc, char*argv[]) { … fd1=open(argv[1], O_RDONLY); //系统调用 creat (argv[2], 0660); fd2=open(argv[2], O_WRONL Y); while((n=read(fd1, buf, BUFSIZE))>0) write(fd2, buf, n); … main带参的调用方法例(含测试时间): time ./mycp infile outfile 流文件的实验程序请参考该程序完成。

上述函数中nbytes, size和nitems都取值为1时(即一次读写一个字节),比较系统调用和流文件两种程序的执行效率。当nbytes取4096字节,size取1字节且nitems取4096时(即一次读写4096字节),再次比较这两种程序的执行效率(文件大小>1M)。如: 创建大文件的方法之一,比如用creat 创建一个新文件,用open写打开该文件,用lseek将写指针移到很远处,写入随便一个字符。比如移动0x100000,用write写个“1”,就会得到一个1M大小的文件。也可到Linux的/usr/bin找一个1~3M左右的大的执行文件。 对于单独使用的速度较快的计算机,文件要10M~100M。 2.编写一个父子进程之间用无名管道进行数据传送的C程序。父进程逐一读出一个文件的内容,并通过管道发送给子进程。子进程从管道中读出信息,再将其写入一个新的文件。程序结束后,对原文件和新文件的内容进行比较。 3.在两个用户的独立程序之间,使用有名管道,重新编写一个C程序,实现题2的功能。 三、源代码 1.编写一个文件复制的C语言程序:分别使用文件的系统调用read(fd, buf, nbytes), write(fd, buf, nbytes)和文件的库函数fread(buf, size, nitems, fp), fwrite(buf, size, nitems, fp),编写一个文件的复制程序。 程序一 #define BUFSIZE 4096 #include #include #include #include int main(int argc, char *argv[]) { printf("这个是一次4096个字节的运行结果:\n");

Windows操作系统实验三实验报告

Windows操作系统C/C++ 程序实验 姓名:___________________ 学号:___________________ 班级:___________________ 院系:___________________ ______________年_____月_____日

实验三Windows 2000/xp线程同步 一、背景知识 二、实验目的 在本实验中,通过对事件和互斥体对象的了解,来加深对Windows 2000/xp线程同步的理解。 1) 回顾系统进程、线程的有关概念,加深对Windows 2000/xp线程的理解。 2) 了解事件和互斥体对象。 3) 通过分析实验程序,了解管理事件对象的API。 4) 了解在进程中如何使用事件对象。 5) 了解在进程中如何使用互斥体对象。 6) 了解父进程创建子进程的程序设计方法。 三、工具/准备工作 在开始本实验之前,请回顾教科书的相关内容。 您需要做以下准备: 1) 一台运行Windows 2000/xp Professional操作系统的计算机。 2) 计算机中需安装V isual C++ 6.0专业版或企业版。 四、实验内容与步骤 1. 事件对象 清单4-1程序展示了如何在进程间使用事件。父进程启动时,利用CreateEvent() API创建一个命名的、可共享的事件和子进程,然后等待子进程向事件发出信号并终止父进程。在创建时,子进程通过OpenEvent() API打开事件对象,调用SetEvent() API使其转化为已接受信号状态。两个进程在发出信号之后几乎立即终止。 步骤1:登录进入Windows 2000/xp Professional。 步骤2:在“开始”菜单中单击“程序”-“Microsoft V isual Studio 6.0”–“Microsoft V isual C++ 6.0”命令,进入V isual C++窗口。 步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序3-1.cpp。 步骤4:单击“Build”菜单中的“Compile 3-1.cpp”命令,并单击“是”按钮确认。系统

操作系统实验六磁盘调度算法正确C代码

操作系统实验六磁盘调度算法正确C代码 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

《操作系统》实验报告 【实验题目】:磁盘调度算法 【实验目的】 通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN算法的实现方法。【实验内容】 问题描述: 设计程序模拟先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN算法的工作过程。假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。 程序要求如下: 1)利用先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN算法模拟磁道访问过程。 2)模拟四种算法的磁道访问过程,给出每个磁道访问的磁头移动距离。 3)输入:磁道个数n和磁道访问序列,开始磁道号m和磁头移动方向(对SCAN和循环SCAN算法有效),算法选择1-FCFS,2-SSTF,3-SCAN,4-循环SCAN。 4)输出:每种算法的平均寻道长度。 实验要求:

1) 上机前认真复习磁盘调度算法,熟悉FCFS,SSTF,SCAN和循环SCAN算法的过程; 2) 上机时独立编程、调试程序; 3) 根据具体实验要求,完成好实验报告(包括实验的目的、内容、要求、源程序、实例运行结果截图)。 实验代码: #include #include #include<> using namespace std; const int MaxNumber=100; int TrackOrder[MaxNumber]; int MoveDistance[MaxNumber];//移动距离 int FindOrder[MaxNumber];//寻好序列 double AverageDistance;//平均寻道长度 bool direction;//方向 true时为向外,false为向里 int BeginNum;//开始磁道号 int M=500;//磁道数 int N;//提出磁盘I/O申请的进程数 int SortOrder[MaxNumber];//排序后的序列 bool Finished[MaxNumber]; void Inith() { cout<<"请输入提出磁盘I/O申请的进程数: "; cin>>N; cout<<"请依次输入要访问的磁道号: "; for(int i=0;i>TrackOrder[i]; for(int j=0;j

操作系统实验报告

操作系统实验报告 实验名称: 系统的引导 所在班级: 指导老师: 老师 实验日期: 2014年3 月29 日

一、实验目的 ◆熟悉hit-oslab实验环境; ◆建立对操作系统引导过程的深入认识; ◆掌握操作系统的基本开发过程; ◆能对操作系统代码进行简单的控制,揭开操作系统的神秘面纱。 二、实验容 1. 阅读《Linux核完全注释》的第6章引导启动程序,对计算机和Linux 0.11的引导过程进行初步的了解。 2. 按照下面的要求改写0.11的引导程序bootsect.s。 3. 有兴趣同学可以做做进入保护模式前的设置程序setup.s。 4. 修改build.c,以便可以使用make BootImage命令 5. 改写bootsect.s主要完成如下功能: bootsect.s能在屏幕上打印一段提示信息XXX is booting...,其中XXX是你给自己的操作系统起的名字,例如LZJos、Sunix等。 6. 改写setup.s主要完成如下功能: bootsect.s能完成setup.s的载入,并跳转到setup.s开始地址执行。而setup.s 向屏幕输出一行"Now we are in SETUP"。setup.s能获取至少一个基本的硬件参数(如存参数、显卡参数、硬盘参数等),将其存放在存的特定地址,并输出到屏幕上。setup.s不再加载Linux核,保持上述信息显示在屏幕上即可。 三、实验环境

本实验使用的系统是windows系统或者是Linux系统,需要的材料是osexp。 四、实验步骤 1. 修改bootsect.s中的提示信息及相关代码; 到osexp\Linux-0.11\boot目录下会看到图1所示的三个文件夹,使用UtraEdit 打开该文件。将文档中的98行的mov cx,#24修改为mov cx,#80。同时修改文档中的第246行为图2所示的情形。 图1图2 图3 2. 在目录linux-0.11\boot下,分别用命令as86 -0 -a -o bootsect.obootsect.s和 ld86 -0 -s -obootsectbootsect.o编译和bootsect.s,生成bootsect文件; 在\osexp目录下点击MinGW32.bat依此输入下面的命令: cd linux-0.11 cd boot as86 -0 -a -o bootsect.obootsect.s ld86 -0 -s -o bootsectbootsect.o

操作系统B2-上机实验-进程

实验二Linux 进程实验 姓名:段叶叶班级:信息1302 学号:07131052 地点:东区实验室FF109 时间:2014年10月13日星期一 成绩: 一、实验内容 1.创建进程的系统调用fork(); 2.创建进程的系统调用vfork(); 3.执行新程序的系统调用exec(); 4.等待进程结束的系统调用wait()或waitpid()。 前三题必做,最后一题选做。 二、实验目的 熟悉进程的系统调用。 三、实验环境 登陆Linux虚拟机,进入Linux shell,提示符为$,表示普通用户提示符。 四、实验题目 1. 【题目】:编写程序forkgrandchild.c,用来创建孙子进程。 【要求】:在读懂程序forktest.c的基础上,编写程序 forkgrandchild.c(forkgrandchild.c创建在用户名(如wm)目录下的process 目录下),所创建的程序forkgrandchild.c可实现创建孙子进程,并显示孙子进程的pid,其父进程的pid,forkgrandchild.c要求可读性好,用户界面友好。 【预备知识】: 1)Linux进程状态 ●运行状态:程序正在运行或在运行队列中等待运行。 ●可中断等待状态:进程正在等待某个事件完成,等待过程可被信号或定时器 唤醒。 ●不可中断等待状态:进程正在等待某个事件完成,不可被信号或定时器唤醒, 必须等待事件的发生,才可唤醒。 ●僵死状态:进程已终止,但进程描述符依然存在,直到父进程调动wait()函 数后释放。 ●停止状态:进程因收到SIGSTOP SIGSTP SIGTIN SIGTOU信号后停止运行 或该进程正在被跟踪(调式程序时)。

操作系统实验报告

操作系统实验报告 学生学院计算机学院 专业班级计算机科学与技术3班学号3213005910 学生姓名林虹 指导教师丁国芳 2015 年12月15 日

目录 1 实验一进程调度 (1) 2 实验二银行家算法 (16) 3 实验三动态分区分配方式的模拟 (20) 4 实验四仿真各种磁盘调度算法 (26)

实验一进程调度 1. 实验目的 编写并调试一个模拟的进程调度程序,分别采用“短进程优先”、“时间片轮转”、“高响应比优先”调度算法对随机产生的五个进程进行调度,并比较算法的平均周转时间。以加深对进程的概念及进程调度算法的理解。 2. 实验要求 1.每个进程由一个进程控制块(PCB)表示,进程控制块可以包含如下信息:进程 名、优先数(响应比)、到达时间、需要运行时间(进程的长度)、已运行时间、进 程状态等等(可以根据需要自己设定)。 2.由程序自动生成进程(包括需要的数据,要注意数据的合理范围),第一个进程到 达时间从0开始,其余进程到达时间随机产生。 3.采用时间片轮转调度算法时,进程的运行时间以时间片为单位进行计算。 4.每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种 状态之一。 5.每进行一次调度,程序都要输出一次运行结果:正在运行的进程、就绪队列中的进 程、完成的进程以及各个进程的PCB,以便进行检查。 6.最后计算各调度算法的平均周转时间,并进行比较、分析。 3. 实验内容 a.算法原理 (1)短进程优先调度算法 “短进程优先”调度算法的基本思想是把CPU分配给就绪队列中需要时间最短的进程。 (2)时间片轮转算法 将系统中所有的就绪进程按照FCFS原则,排成一个队列。每次调度时将CPU 分派给队首进程,让其执行一个时间片。时间片的长度从几个ms到几百ms。在一个时间片结束时,发生时钟中断。调度程序据此暂停当前进程的执行,将其送到就绪队列的末尾,并通过上下文切换执行当前的队首进程。进程可以未使用完一个时间片,就出让CPU。 (3)高响应比优先算法 HRRN调度策略同时考虑每个作业的等待时间长短和估计需要的执行时间长短,从中选出响应比最高的作业投入执行。 每个作业完成后要打印该作业的开始运行时刻、完成时刻、周转时间和带权周转时间,这一组作业完成后要计算并打印这组作业的平均周转时间、带权平均周转时间。

操作系统实验

操作系统实验报告

实验一进程控制与描述 一、实验目的 通过对Windows 2000编程,进一步熟悉操作系统的基本概念,较好地理解Windows 2000的结构。通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解Windows 2000中进程的“一生”。 二、实验环境 硬件环境:计算机一台,局域网环境; 软件环境:Windows 2000 Professional、Visual C++ 6.0企业版。 三、实验内容和步骤 第一部分(共三个程序): Windows 2000 Professional下的GUI应用程序,使用Visual C++编译器创建一个GUI 应用程序,代码中包括了WinMain()方法,该方法GUI类型的应用程序的标准入口点。 程序1-1 # include # pragma comment(lib, “user32.lib” ) int APIENTRY WinMain(HINSTANCE /* hInstance */ , HINSTANCE /* hPrevInstance */, LPSTR /* lpCmdLine */, int /* nCmdShow */ ) { :: MessageBox( NULL, “Hello, Windows 2000” , “Greetings”, MB_OK) ; return(0) ; } 实验结果 然后改变参数,运行结果如下:

1-2显示了当前进程的优先级: 1-3进一步显示进程的具体情况: 第二部分:进程的“一生”(共三个程序) 1、创建进程 本程序展示的是一个简单的使用CreateProcess() API函数的例子。首先形成简单的命令行,提供当前的EXE文件的指定文件名和代表生成克隆进程的号码。大多数参数都可取缺省值,但是创建标志参数使用了:BOOL bCreateOK标志,指示新进程分配它自己的控制台,这使得运行示例程序时,在任务栏上产生许多活动标记。然后该克隆进程的创建方法关闭传

操作系统实验报告

操作系统实验报告 银行家算法 班级:计算机()班 姓名:李君益 学号:(号) 提交日期: 指导老师: 林穗 一、设计题目 加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。 二、设计要求

内容: 编制银行家算法通用程序,并检测思考题中所给状态的安全性。 要求: (1)下列状态是否安全?(三个进程共享个同类资源) 进程已分配资源数最大需求数 (状态) (状态) (2)考虑下列系统状态 分配矩阵最大需求矩阵可用资源矩阵 问系统是否安全?若安全就给出所有的安全序列。若进程请求(),可否立即分配? 三、设计分析 一.关于操作系统的死锁 .死锁的产生 计算机系统中有许多独占资源,他们在任一时刻只能被一个进程使用,如磁带机,绘图仪等独占型外围设备,或进程表,临界区等软件资源。两个进程同时向一台打印机输出将导致一片混乱,两个进程同时进入临界区将导致数据库错误乃至程序崩溃。正因为这些原因,所有操作系统都具有授权一个进程独立访问某一辞源的能力。一个进程需要使用独占型资源必须通过以下的次序: ●申请资源 ●使用资源 ●归还资源 若申请施资源不可用,则申请进程进入等待状态。对于不同的独占资源,进程等待的方式是有差别的,如申请打印机资源、临界区资源时,申请失败将一位这阻塞申请进程;而申请打开文件文件资源时,申请失败将返回一个错误码,由申请进程等待一段时间之后重试。只得指出的是,不同的操作系统对于同一种资源采取的等待方式也是有差异的。 在许多应用中,一个进程需要独占访问多个资源,而操作系统允许多个进程并发执行共享系统资源时,此时可能会出现进程永远被阻塞的现象。这种现象称为“死锁”。 2.死锁的定义 一组进程处于死锁状态是指:如果在一个进程集合中的每个进程都在等待只能由该集合中的其他一个进程才能引发的时间,则称一组进程或系统此时发生了死锁。 .死锁的防止 .死锁产生的条件: ●互斥条件

操作系统实验报告

操作系统教程实验报告 专业班级 学号 姓名 指导教师

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows “命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序:E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) : 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环:

操作系统实验全(五个)

操作系统试验指导 —. 课程的性质、目的和任务 操作系统在整个计算机系统软件中占有中心地位。其作用是对计算机系统进行统一的调度和管理,提供各种强有力的系统服务,为用户创造既灵活又方便的使用环境。本课程是计算机及应用专业的一门专业主干课和必修课。通过本课程的学习,使学生掌握操作系统的基本概念、设计原理及实施技术,具有分析操作系统和设计、实现、开发实际操作系统的能力。 二. 实验的意义和目的 操作系统是计算机专业学生的一门重要的专业课程。操作系统质量对整个计算机系统的性能和用户对计算机的使用有重大的影响。一个优良的操作系统能极大地扩充计算机系统的功能,充分发挥系统中各种设备的使用效率,提高系统工作的可靠性。由于操作系统涉及计算机系统中各种软硬件资源的管理,内容比较繁琐,具有很强的实践性。要学好这门课程,必须把理论与实践紧密结合,才能取得较好的学习效果。培养计算机专业的学生的系统程序设计能力,是操作系统课程的一个非常重要的环节。通过操作系统上机实验,可以培养学生程序设计的方法和技巧,提高学生编制清晰、合理、可读性好的系统程序的能力,加深对操作系统课程的理解。使学生更好地掌握操作系统的基本概念、基本原理、及基本功能,具有分析实际操作系统、设计、构造和开发现代操作系统的基本能力。 三.实验运行环境及上机前的准备 实验运行环境: C语言编程环境 上机前的准备工作包括: ●按实验指导书要求事先编好程序; ●准备好需要输入的中间数据; ●估计可能出现的问题; ●预计可能得到的运行结果。 四. 实验内容及安排 实验内容包括进程调度、银行家算法、页式地址重定位模拟,LRU算法模拟和先来先服务算法五个实验。每个实验介绍了实习的目的要求、内容和方法。

操作系统实验报告1

操作系统 实验报告 班号:1303107 学号:1130310726 姓名:蔡鹏

1.请简述head.s 的工作原理。 head.s实在32位保护模式下运行的。我认为这段程序主要包括两个部分:1.初始化设置。2.任务执行与切换。 初始设置主要包括了:1.设置GDT表2.设置系统定时芯片3. 设置IDT表(0x08时钟中断和0x80系统调用中断)4.切换到任务0执行 任务切换和执行包括了:1.任务0和任务1 , 2.时钟中断, 3.系统中断 两个任务的在LDT中代码段和数据段描述符的内容都设置为:基地址0x0000;段限长值为0x03ff,实际段长度为4MB。因此在线性地址空间中这个?内核?的代码和数据段与任务的代码和数据段都从线性地址0开始并且由于没有采用分页机制,所以他们都直接对应物理地址0开始处。 为了每隔10毫秒切换运行的任务,head.s程序中把定时器芯片8253的通道0设置成每隔10毫秒就向中断控制芯片8259A发送一个时钟中断请求信号。PC机的ROM BIOS开机时已经在8259A中把时钟中断请求信号设置成中断向量8,因此我们需要在中断8的处理过程中执行任务切换操作。任务切换的实现是查看current变量中的当前运行的任务号,如果为0,就利用任务1的TSS选择符作为操作数执行远跳转指令,从而切换到任务1中,否则反之。

每个任务在执行时,会首先把一个字符的ASCII码放入寄存器AL中,然后调用系统中断调用int 0x80,而该系统调用处理过程则会调用一个简单的字符写屏子程序,把寄存器AL中的字符显示在屏幕上,同时把字符显示的屏幕的下一个位置记录下来,作为下一次显示字符用。在显示过一个字符后,任务代码会使用循环语句延迟一段时间,然后又跳转到任务代码开始处继续循环执行,直到运行了10毫秒而发生了定时中断,从而代码会切换到另一个任务执行。对于任务A,寄存器AL中始终存放字符‘A’,而任务B运行时AL中始终存放字符‘B’。因此程序运行时我们将看到一连串的‘A’和一连串的‘B’间隔的连续不断的显示在屏幕上。若出现了一个‘C’,是由于PC机偶然产生了一个不是时钟中断和系统调用中断的其他中断。因为我们已经在程序中给所有其他中断安装了一个默认中断处理程序。当出现一个其他中断时,系统就会运行这个中断处理程序,于是就会在屏幕上显示一个‘C’,然后退出中断。 4.请记录head.s 的内存分布状况,写明每个数据段,代码段,栈段 的起始与终止的内存地址。

操作系统实验三 进程的创建#(精选.)

操作系统 实验报告 哈尔滨工程大学 软件学院

第一讲实验环境的使用 一、实验概述 1. 实验名称 进程的创建 2. 实验目的 练习使用EOS API函数CreateProcess创建一个进程,掌握创建进程的方法,理解进程和程序的区别。 调试跟踪CreateProcess函数的执行过程,了解进程的创建过程,理解进程是资源分配的单位。 3. 实验类型(验证、设计) 验证 4. 实验内容

二、实验环境 操作系统:windows xp 编译环境:OS Lab 语言:汇编语言、C语言 三、实验过程(每次实验不一定下面6条都写,根据实际情况定) 1.设计思路和流程图

main函数流程图 2. 需要解决的问题及解答 (1)在源代码文件NewTwoProc.c提供的源代码基础上进行修改,要求使用hello.exe同时创建10个进程。提示:可以使用PROCESS_INFORMATION类型定义一个有10个元素的数组,每一个元素对应一个进程。使用一个循环创建10个子进程,然后再使用一个循环等待10个子进程结束,得到退出码后关闭句柄。 答:后文中,有此题解决方案。 尝试根据之前对PsCreateProcess函数和PspCreateProcessEnvironment函数执行过程的跟踪调试,绘制一幅进程创建过程的流程图。

PspCreateThread创建 了进程的主线程 结束 (3)在PsCreateProcess函数中调用了PspCreateProcessEnvironment函数后又先后调用了PspLoadProcessImage和PspCreateThread函数,学习这些函数的主要功能。能够交换这些函数被调用的顺序吗?思考其中的原因。 答:PspCreateProcessEnvironment 的主要功能是创建进程控制块并且为进程创建了地址空间和分配了句柄表。PspLoadProcessImage是将进程的可执行映像加载到了进程的地址空间中。PspCreateThread创建了进程的主线程。这三个函数被调用的顺序是不能够改变的就向上面描述的加载可执行映像之前必须已经为进程创建了地址空间这样才能够确定可执行映像可以被加载到内存的什么位置在创建主线程之前必须已经加载了可执行映像这样主线程才能够知道自己要从哪里开始执行,执行哪些指令。因此不能交换他们的顺序。 3.主要数据结构、实现代码及其说明 主要定义一个有10个元素的数组,每一个元素对应一个进程。使用一个循环创建10个子进程,然后再使用一个循环等待10个子进程结束,得到退出码后关闭句柄 4.源程序并附上注释 #include "EOSApp.h" // // main 函数参数的意义: // argc - argv 数组的长度,大小至少为1,argc - 1 为命令行参数的数量。 // argv - 字符串指针数组,数组长度为命令行参数个数+ 1。其中argv[0] 固定指向当前 // 进程所执行的可执行文件的路径字符串,argv[1] 及其后面的指针指向各个命令行 // 参数。

计算机操作系统内存分配实验源代码

#include #include #define OK 1 //完成 #define ERROR 0 //出错 typedef int Status; typedef struct free_table//定义一个空闲区说明表结构{ int num; //分区序号 long address; //起始地址 long length; //分区大小 int state; //分区状态 }ElemType; typedef struct Node// 线性表的双向链表存储结构 { ElemType data; struct Node *prior; //前趋指针 struct Node *next; //后继指针 }Node,*LinkList; LinkList first; //头结点 LinkList end; //尾结点 int flag;//记录要删除的分区序号 Status Initblock()//开创带头结点的内存空间链表 { first=(LinkList)malloc(sizeof(Node)); end=(LinkList)malloc(sizeof(Node)); first->prior=NULL; first->next=end; end->prior=first; end->next=NULL; end->data.num=1; end->data.address=40; end->data.length=600; end->data.state=0; return OK; } void sort()//分区序号重新排序 { Node *p=first->next,*q;

相关文档
最新文档