微积分讲义

微积分讲义
微积分讲义

非常好的定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义[备考方向要明了] 考什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所

示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)| b a,即∫b a f(x)d x=F(x) |b a=F(b)-F(a). 课前预测: 1.∫421 x d x等于( ) A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 2

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

高等数学基础知识点大全(94页完美打印版)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A

高等数学讲义(一)

高等数学基础 高等数学基础课程的学习内容微积分学,它是创建于十七世纪的一门数学学科,创始人是英国数学家牛顿(Newton )和德国数学家莱布尼茨(Leibniz )。用著名学者的话来形容“微积分、或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具”。“微积分的创立,与其说是数学史上,不如说是人类历史上的一件大事。时至今日,它对工程技术的重要性就像望远镜之于天文学,显微镜之于生物学一样。 第1讲 函数 1.2 函数 要知道什么是函数,需要先了解几个相关的概念。 一、常量与变量 先看几个例子: 圆的面积公式 2πr S = 自由活体的下落距离 202 1gt t v s + = 在上述讨论的问题中,g v ,,π0是常量,t s r S ,,,是变量。变量可以视为实属集合(不止一个元素)。 二、函数的定义 定义1.1 设D 是一个非空数集。如果有一个对应规则f ,使得对每一D x ∈,都能对应于唯一的一个数y ,则此对应规则f 称为定义在集合D 上的一个函数,并把数x 与对应的数y 之间的对应关系记为 )(x f y = 并称x 为该函数的自变量,y 为函数值或因变量,D 为定义域。 实数集合 },)(;{D x x f y y Z ∈== 称为函数f 的值域。 看看下面几个例子中哪些是函数: }6,3,1{=X f

}9,8,6,2{=Y f 是函数,且 2)1(=f ,8)3(=f ,6)6(=f 定义域}6,3,1{=D ,值域}8,6,2{=Z ,一般地Y Z ?。 }7,6,3,1{=X }9,8,6,2{=Y f 不是函数。 }6,3,1{=X }9,8,6,2{=Y f 是函数,且 2)1(=f ,8)3(=f ,8)6(=f 定义域}6,3,1{=D ,值域}8,2{=Z 。 }6,3,1{=X }9,8,6,2{=Y f 不是函数。 由函数定义可以得出,函数的对应规则和定义域是确定函数的两个要素,用解析法表示的函数的对应规则就是由表达式确定的,而定义域就是使表达式有意义的所有x 轴上的点。 例1 求函数x y -=1的定义域。 解 在实数范围内要使等式有意义,有 01≥-x 即 f f f

从极限到微积分

从极限到微积分 第一部分:极限 一、极限概念的发展 分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率□的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础。 之上,从而得到举世一致的公认。 凡本质上与极限概念有关的数学分支统称为分析数学,以区别于完全不用这一概念的代数学。几何学的各分支绝大部分也直接或间接地与极限概念密切相关。 极限可分为数列极限和函数极限,分别定义如下。 首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式 An+10,存在正数M(>=a),使得当x>M时有: |f(x)-A|<ε, 则称函数f当x趋于+∞时以A为极限,记作 lim f(x) = A 或 f(x)->A(x->+∞) 举两个例子说明一下 1、0.999999 (1) 谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。 2、“无理数”算是什么数? 我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。 结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。 类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移

高等数学辅导讲义

第一部分函数极限连续

历年试题分类统计及考点分布 本部分常见的题型 1.求分段函数的复合函数。 2.求数列极限和函数极限。 3.讨论函数连续性,并判断间断点类型。 4.确定方程在给定区间上有无实根。

一、 求分段函数的复合函数 例1 (1988, 5分) 设2 (),[()]1x f x e f x x ?==-且()0x ?≥,求()x ?及其定义 域。 解: 由2 ()x f x e =知2 () [()]1x f x e x ? ?==-,又()0x ?≥, 则()0 x x ?= ≤. 例2 (1990, 3分) 设函数 1,1 ()0,1 x f x x ?≤?=?>??,则[()]f f x =1. 练习题: (1)设 1,1, ()0,1,(),1,1, x x f x x g x e x ??求[()]f g x 和[()]g f x , 并作出这 两个函数的图形。 (2) 设 20,0,0,0, ()(), ,0,,0, x x f x g x x x x x ≤≤??==??>->??求 [()],[()],[()],[()]f f x g g x f g x g f x . 二、 求数列的极限 方法一 利用收敛数列的常用性质 一般而言,收敛数列有以下四种常用的性质。 性质1(极限的唯一性) 如果数列{}n x 收敛,那么它的极限唯一。 性质2(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界。 性质3(收敛数列的保号性) 如果lim n n x a →∞ =,且0a >(或0a <),那么存在 0n N + ∈,使得当0n n >时,都有0n x >(或0n x <). 性质4(数列极限的四则运算法则) 如果,, lim lim n n n n x a y b →∞ →∞ ==那么 (1)()lim n n n x y a b →∞ ±=±; (2)lim n n n x y a b →∞ ?=?; (3)当0()n y n N + ≠∈且0 b ≠时,lim n n n x a y b →∞ = .

微积分-求极限的方法

求极限方法一:直接代入法 例一:()=24 例二:()= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。类似=() 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:()=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大) 例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) ) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数 分母最高次数项系数 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

微积分大一基础知识经典讲解

Chapter1 Functions(函数) 1.Definition 1)A function f is a rule that assigns to each element x in a set A exactly one element, called f (x ), in a set B. 2)The set A is called the domain(定义域) of the function. 3)The range(值域) of f is the set of all possible values of f (x ) as x varies through out the domain. ? =)()(x g x f :N ote 1)(,1 1)(2 +=--= x x g x x x f Example )()(x g x f ≠? 2.Basic Elementary Functions(基本初等函数) 1) constant functions f (x )=c 2) power functions 0,)(≠=a x x f a 3) exponential functions 1,0,)(≠>=a a a x f x domain: R range: ),0(∞ 4) logarithmic functions 1,0,log )(≠>=a a x x f a domain: ),0(∞ range: R 5) trigonometric functions f (x )=sin x f (x )=cos x f (x )=tan x f (x )=cot x f (x )=sec x f (x )=csc x Given two functions f and g , the composite function(复合函数) g f is defined by )) (())((x g f x g f = Note )))((())((x h g f x h g f =

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划 课次序号: 03 一、课 题:§1.3 函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果 分析: 第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞ f (x )?A . 若?ε>0,?X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞ f (x )?A . 例1 证明lim x 0. 证 0 -,故?ε>00-<εε, 即x >21 ε.因此,?ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 lim x ?0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞ 10x ?0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )?A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞). 注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞ ===或或,则称y A =为曲线()y f x =的水 平渐近线. 由定义1、定义2及绝对值性质可得下面的定理. 定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞ f (x )?A . 例3 证明2lim 1 x x x →∞--?1.

知识讲解_微积分基本定理

微积分基本定理 编稿:赵雷 审稿:李霞 【学习目标】1.理解微积分基本定理的含义。 2.能够利用微积分基本定理求解定积分相关问题。 【要点梳理】 要点一、微积分基本定理的引入 我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 (1)导数和定积分的直观关系: 如下图:一个做变速直线运动的物体的运动规律是s=s (t ),由导数的概念可知,它在任意时刻t 的速度v (t )=s '(t )。设这个物体在时间段[a ,b]内的位移为s ,你能分别用 s (t )、v (t )表示s 吗? 一方面,这段路程可以通过位置函数S (t )在[a ,b]上的增量s (b )-s (a )来表达, 即 s=s (b )-s (a )。 另一方面,这段路程还可以通过速度函数v (t )表示为 ()d b a v t t ? , 即 s = ()d b a v t t ? 。 所以有: ()d b a v t t =? s (b )-s (a ) (2)导数和定积分的直观关系的推证: 上述结论可以利用定积分的方法来推证,过程如下: 如右图:用分点a=t 0<t 1<…<t i -1<t i <…<t n =b , 将区间[a ,b]等分成n 个小区间: [t 0,t 1],[t 1,t 2],…,[t i ―1,t i ],…,[t n ―1,t n ], 每个小区间的长度均为

1i i b a t t t n --?=-= 。 当Δt 很小时,在[t i ―1,t i ]上,v (t )的变化很小,可以认为物体近似地以速度v (t i ―1)做匀速运动,物体所做的位移 111()'()'()i i i i i b a s h v t t s t t s t n ----?≈=?=?= 。 ② 从几何意义上看,设曲线s=s (t )上与t i ―1对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于s '(t i ―1),于是 1tan '()i i i s h DPC t s t t -?≈=∠??=??。 结合图,可得物体总位移 111 1 1 1 ()'()n n n n i i i i i i i i s s h v t t s t t --=====?≈=?=?∑∑∑∑。 显然,n 越大,即Δt 越小,区间[a ,b]的分划就越细,1 11 1 ()'()n n i i i i v t t s t t --==?=?∑∑与s 的近似程度就越好。由定积分的定义有 11lim ()n i n i b a s v t n -→∞=-=∑11 lim '()n i n i b a s t n -→∞=-=∑()d '()d b b a a v t t s t t ==??。 结合①有 ()d '()d ()()b b a a s v t t s t t s b s a ===-??。 上式表明,如果做变速直线运动的物体的运动规律是s=s (t ),那么v (t )=s '(t )在 区间[a ,b]上的定积分就是物体的位移s (b )―s (a )。 一般地,如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么 ()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理。 要点二、微积分基本定理的概念 微积分基本定理: 一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式。 其中,()F x 叫做()f x 的一个原函数。为了方便,我们常把()()F b F a -记作()b a F x ,即 ()d ()()()b b a a f x x F x F b F a ==-? 。

大学微积分练习题1函数与极限

一、 极限与连续 一、填空题 1、极限=-+∞→x x x x 1sin 2357lim 2 2、若b x a x x =??? ? ?---→421lim 22,则=ab 3、21sin(1)lim 1 x x x →-=- 4、设1,0,(),ln(1),0x e x f x x x x +?≤?=?+>??0x =为)(x f 间断点 5、若03sin()2lim ,23 x mx x →=,则m = 二、选择题 1、“)(x f 在点0x x =处有定义”是“0x x →时,)(x f 有极限”的( ) A .必要条件 B .充分条件 C .充分必要条件 D .无关条件 2、下列函数中,( )在点0=x 补充定义可成为连续函数 A .2sin 2)(x x x f = B .x e x f 1)(= C .x x f 1sin )(= D .211)(x x x x f +-= 3、若1619 12)(lim 23-=-+-→x x x f x ,则=)(x f ( ) A .2+x B .5+x C .13+x D .6+x 4、下列极限中( )正确 A .1sin lim =∞→x x x B .11sin lim =∞→x x x

C .11sin 1lim =∞→x x x D .1sin 1lim =∞→x x x 5、当0→x 时,下列变量( )与x 为等价无穷小 A .x x sin B .x x sin C .x x --+11 D .x x 1cos 三、计算题 1、 221lim ++∞→??? ??-x x x 2 、1lim 1x x →+∞?- ??? 3、 111lim x x x -→ 4、 1 0lim 1+)x x x xe →( 5、0tan sin lim x x x x →- 6、30tan sin lim sin x x x x →- 7、1 1lim 31--→x x x 8 、4x → 9、3131lim 11x x x →??- ?--? ? 10、已知21lim 51x x ax b x →++=-,求,a b 的值。 四、应用题 1、 设函数1 11)(--=x e x x f ,补充定义)0(f ,使)(x f 在0=x 处连续。 2、求下列函数的间断点,并判断间断点的类型。 1)20 1()21, 121, 2x f x x x x x ??? 3、下列函数中,问k 为何值时,函数()f x 在其定义域内连续。 1) 1sin 0 () 01sin 1 0x x x f x k x x x x ??2) 2sin 2 0()32 0x x f x x x x k x ?

微积分求极限的方法

求极限 方法一:直接代入法 例一:=24 例二:= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0 的问题。类似= 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六: 知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大)

例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为 ) 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

微积分-函数、极限和连续

《微积分初步》单元学习辅导一(函数极限连续) 微积分初步学习辅导(一) ——函数、极限和连续部分 学习重难点解析 (一)关于函数的概念 1.组成函数的要素: (1)定义域:自变量的取值范围D ; (2)对应关系:因变量与自变量之间的对应关系f . 函数的定义域确定了函数的存在范围,对应关系确定了自变量如何对应到应变量.因此,这两个要素一旦确定,函数也就随之确定.所以说,两个函数相等(即)()(x g x f =)的充分必要条件是两个函数的定义域和对应关系都相等.若两者之一不同,就是两个不同的函数. 2.函数定义域的确定 对于初等函数,一般要求它的自然定义域,具体说来通过下面的途径确定: (1) 函数式里如果有分式,则分母的表达式不为零; (2) 函数式里如果有偶次根式,则根式里的表达式非负; (3) 函数式里如果有对数式,则对数式中真数的表达式大于零; (4)如果函数表达式是由若干表达式的代数和的形式,则其定义域为各部分定义域的公共部分; (5)对于分段函数,其定义域为函数自变量在各段取值的之并集. (6)对于实际的应用问题,应根据问题的实际意义来确定函数的定义域. 3.函数的对应关系 函数的对应关系f 或f ( )表示对自变量x 的一个运算,通过f 或f ( )把x 变成了y ,例如152)(3 +-==x x x f y ,则f 代表算式 1)(5)(2)(3+-=f 括号内是自变量的位置,运算的结果得到因变量的值. (二)关于函数的基本属性 函数的基本属性是指函数的单调性、奇偶性、周期性和有界性.了解函数的属性有助于我们对函数的研究. 理解函数属性中需要注意下面的问题: 1.关于函数的奇偶性:讨论函数的奇偶性,其定义域必须是关于原点对称的的区间,函数奇偶性的判别方法是函数奇偶性定义和奇偶函数的运算性质,即

专题13 定积分与微积分基本定理知识点

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

()d b a f x x ? =1 lim ()n i n i b a f n ξ→∞ =-∑ . (2)在 ()d b a f x x ? 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被 积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d b b a a kf x x k f x x =??(k 为常数); (2)[()()]d ()d ()d b b b a a a f x g x x f x x g x x ±=±? ??; (3) ()d =()d +()d b c b a a c f x x f x x f x x ? ??(其中a

微积分基础知识总结以及泰勒公式

§3.3 泰勒公式 常用近似公式 ,将复杂函数用简单的一 次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当 较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“ 心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数 ,想找多项式来近似表示它。自然地,我们希望 尽可能多地反映出函数 所具有的性态 —— 如:在某点处的值与导 数值;我们还关心 的形式如何确定; 近似 所产生的误差 。 【问题一】 设 在含的开区间内具有直到阶的导数,能否找出一个关于 的 次多项式 近似 ? e x x x x x ≈+≈1,sin ()充分小 x f x ()p x n ()p x n () f x ()p x n () p x n () f x ()R x f x p x n n ()()() =-f x ()x 0n +1() x x -0n ) ,,1,0()()() 1()()()()(0)(0) (0202010n k x f x p x x a x x a x x a a x p k k n n n n ==-++-+-+=且f x ()

【问题二】 若问题一的解存在,其误差 的表达式是什么? 一、【求解问题一】 问题一的求解就是确定多项式的系数 。 …………… 上述工整且有规律的求系数过程,不难归纳出: R x f x p x n n ()()() =-a a a n 01,,, p x a a x x a x x a x x n n n ()()()()=+-+-++-0102020 ∴=a p x n 00() '=+-+-++--p x a a x x a x x na x x n n n ()()()()1203020123 ∴ ='a p x n 10() ''=??+???-+???-++?-??--p x a a x x a x x n n a x x n n n ()()()()()213243123040202 ∴ ??=''2120a p x n () '''=???+????-+????-++?-?-??--p x a a x x a x x n n n a x x n n n ()()()()()()3214325431234050203 ∴???='''32130a p x n ()

关于高等数学B上复习资料归纳

华南理工大学网络教育学院 《高等数学(上)》辅导 一、 求函数值 例题: 1、若2()f x x =,()x x e ?=,则(())f x ?= . 解:() 2 2(())()x x x f x f e e e ?=== 2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+ 即 ()23f x x =+ 二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小: 无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无 穷小替换 例题: 1、320sin 3lim x x x →=? 解:当0sin3~3x x x →, , 原式=3 200(3)lim lim270x x x x x →→== 2、0sin3lim x x x →=? 解:原式=03lim 3x x x →=

3、201-cos lim x x x →=? 解:当2 10cos ~2x x x →,1- 原式=220112lim 2 x x x →= 4、0ln(13) lim x x x →+=? 解:当03)~3x x x →,ln(1+ 原式=.03lim 3x x x →=. 5、201 lim x x e x →-=? 解:当201~2x x e x →-, 原式=.02lim 2x x x →=. 三、 多项式之比的极限 2lim 03x x x x →∞=+,22 11lim 33x x x x →∞-=+,23lim x x x x →∞+=∞ 四、 导数的几何意义(填空题) 0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率 曲线..()y f x =..在点00(,())M x f x 处的切线方程为: 曲线()y f x =在点00(,())M x f x 处的法线方程为: 例题: 1、曲线44x y x += -在点(2,3)M 的切线的斜率.

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 限是否存在在: (i )数列{} n x a 的 (ii )x f x ∞ →lim )( (iii) x f x x =→lim )( (iv)单调有界准则 (v (vi )柯西收必要条件是: ε?>?,01.2.洛必达(L ’ x 趋近告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()()(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; 3211253)! 32(cos )1()!12()1(!5!3sin ++++-++-+-+-=m m m m x m x m x x x x x θ cos=221242)!22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ 1132+-n n n n x x x x 4.5.6.1)设0>>>c b a , n x =n n ∞ →∞ →a x n n =∞ → (2)求??????++++∞→222)2(1)1(11lim n n n n 解:由n n n n n n n 1 111)2(1)1(1102222 22 =+++<++++< ,以及01 0lim lim ==∞ →∞ →n n n 可知,原式=0 (3)求???? ??++ ++++∞→n n n n n 2 22 1 2 11 1 lim 解 : 由 n n n n n n n n n n n n n n n n +=+++++<++++++<=++222222111121111111 , 以 及

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

相关文档
最新文档