安川变频器的常见故障开关电源损坏开关电源损坏是众多变频

安川变频器的常见故障开关电源损坏开关电源损坏是众多变频
安川变频器的常见故障开关电源损坏开关电源损坏是众多变频

2 安川变频器的常见故障

2.1 开关电源损坏

开关电源损坏是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,在众多变频器的开关电源线路设计上,安川变频器因该说是比较成功的。616G 3采用了两级的开关电源,有点类似于富士G5,先由第一级开关电源将直流母线侧500多伏的直流电压转变成300多伏的直流电压。然后再通过高频脉冲变压器的次级线圈输出5V、12V、24V等较低电压供变频器的控制板,驱动电路,检测电路等做电源使用。在第二级开关电源的设计上安川变频器使用了一个叫做TL431的可控稳压器件来调整开关管的占空比,从而达到稳定输出电压的目的。前几期我们谈到的LG变频器也使用了类似的控制方式。用作开关管的QM5HL-24以及TL431都是较容易损坏的器件。此外当我们在使用中如若听到刺耳的尖叫声,这是由脉冲变压器发出的,很有可能开关电源输出侧有短路现象。我们可以从输出侧查找故障。此外当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。

2.2 SC故障

SC故障是安川变频器较常见的故障。IGBT模块损坏,这是引起SC故障报警的原因之一。此外驱动电路损坏也容易导致SC故障报警。安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT 模块的损坏如负载发生短路,堵转等。其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。

2.3 OH—过热

过热是平时会碰到的一个故障。当遇到这种情况时,首先会想到散热风扇是否运转,观察机器外部就会看到风扇是否运转,此外对于30kW以上的机器在机器内部也带有一个散热风扇,此风扇的损坏也会导致OH的报警。

2.4 UV—欠压故障

当出现欠压故障时,首先应该检查输入电源是否缺相,假如输入电源没有问题那我们就要检查整流回路是否有问题,假如都没有问题,那就要看直流检测电路上是否有问题了。对于200V级的机器当直流母线电压低于190VDC,UV报警就要出现了;对于400V级的机器,当直流电压低于380VDC则故障报警出现。主要检测一下降压电阻是否断路。

2.5 GF—接地故障

接地故障也是平时会碰到的故障,在排除电机接地存在问题的原因外,最可能发生故障的部分就是霍尔传感器了,霍尔传感器由于受温度,湿度等环境因数的影响,工作点很容易发生飘移,导致GF报警。

变频器在运行的过程中,可能会出现种种问题,需要进行维修和检修; 而变频器在停机较长时间后,由于各种原因,也可能会造成故障。本文将介绍一种所遇到的变频器在停机4个月后,恢复运行时出现的故障。

2 故障现象

一台拖动潜污泵的安川616P5变频器,在线停机4个多月恢复运行时发现,自开机的整个运行过程中,屏显50Hz的频率,表显78A 电流。按照工艺要求泵机应在50Hz以下范围内运行变化。显然,变频器的变频功能失控。

3 故障分析与检测

变频器能运行在50Hz的工频中且输出380V的电压,泵机运行。这些现象表明功率模块输出正常,控制电路失常。616P5是通用型变频器,它的控制电路核心元件是一块内含CPU的产生脉宽调制信号的专用大规模集成电路L 7300526A 。该变频器通常处在远程传输控制中,从控制端子接受4~20mA的电流信号。根据通用型变频器工作原理,“频率设定不可调”故障现象,可能来自两个单元电路:

(1) A/D转换器

(2) PWM的调制信号。

本着先易后难的检修思路, 为排除A/D转换电路的隐患,采用排斥法检测, 即首先卸掉控制端子相关电缆, 改用键盘〈即数字操作器〉输入频率设定植, 屏显故障现象依旧。

第二步,采用比较法检测,即用MODEL100信号发生器分别从控制端子FI-FC,FV-FC输入4~2mA,0~10V模拟信号,结果屏显故障现象依旧。从键盘输入数码〈参数设定值〉,是通过编码扫描程序进入CPU 系统,控制端子输入的模拟信号则是经过A/D转换后并经逻辑电路处理进入CPU系统。通过排斥法和比较法的检测,可以确认A/D转换电路正常。芯片L 7300526A 采用数字双边沿调制载波方式产生脉宽调制信号,驱动晶体管功率模块构成的三相逆变器。载波频率等于输出频率和载波倍数的乘积。对于载波倍数的每个值,芯片内部的译码器都保存一组相应的δ值(δ值是一个可调的时间间隔量,用于调制脉冲边沿)。每个δ值都是以数字形式存储,与它相应的脉冲调制宽度由对应数值的计数速率所确定。

译码器根据载波频率和δ调制,最终得出控制信号。译码器总共产生3个控制信号,每个输出级分配1个,它们彼此相差120°相位角。616P5的载波参数n050设定的载波变化区间分别是[1、2、4~6]、[8]、[7~9]。

[1、2、4~6]载波频率=设定值×⒉5kHz(固定),(同理8、7~9省略)。输出频率=载波频率/载波倍数。根据616P5的载波参数n050的含义,重新核查载波设置值,结果发现屏显输出的是一个非有效值“ 10” 且不可调(616P5载波变化区间的有效值为1-9); 由此可见“屏显输出50Hz不可变”的故障显然与载波倍数的δ有关。

现以附图作进一步的分析,载波在一个周期内有9个脉冲,它的两个边沿都用一个可调的时间间隔量δ加以调制而且使δ∝sinθ。θ为未被调制时载波脉冲边沿所处的时间或称为相位角。sinθ为正值时,该处的脉冲变宽,sinθ为负值时,该处的脉冲变窄。输出的三相脉冲边沿及周期性显然为δ∝sinθ所调制。如附图三相输出电压所示。

从附图中可以看出变频器若在基频下运行,载波调制的脉冲个数必然要足够的多。附图中的VR-Y就是R相和Y相相减的线电压。这显然也表明了在一个周期内载波脉冲的个数越多,线电压平均值波形越接近正弦。综上所述,载波调制功能的正常与否直接影响功率晶体管开关频率的变化,从而影响输出电压(即频率)的变化。

4 结束语

该故障的根本原因是L 7300526A 的CPU 系统内部的译码器δ调制程序读出异常。像雷电的感应波、电网峰、谷浪涌、4~20mA 电流异常等,这些干扰性的因素冲击都有可能造成CPU 程序异常。( 限于资料方面的技术原因,笔者无法利用笔记本电脑手段诊断该变频器的CPU 程序,以作更为具体的查证) 。更换主控板ETC615162-S3013 。变频器恢复正常运行。

艾默生变频器常见故障及维修

艾默生CT变频器常见故障代码及维修方法 1、电流检测故障(如报E019,E001): (1)控制板Q1(15050026)坏。 (2)7840坏:在变频器通电时,用直流档,黑接5脚,红分别接6,7,8脚,值为2.5,2.5,5为正常,否则7840坏。 (3)小板坏:在变频器通电时,用直流档,黑接7840的5脚,红分别接小板的脚从左到右应为2.5,2.5,2.5,3.41.5,0,1.6。 如值不对,小板坏:此时可更换小板坏中的三个小IC(39030024LMV393),如还不好,更换小板。 2、显示POFF: 驱动板上电POFF,测CVD电压正常应为2.6-2.7,如测得1.9,可能R51,R52,C36,C37,排线中的某一个坏,其中的电解电容坏的最多。只在带电机运行时报POFF,驱动板变压器也有可能坏。 3、缓冲电阻坏: 缓冲电阻和滤波大电容是成对的。如果其一坏,另一个很可能也坏。缓冲电阻坏也有可能是继电器不吸合(继电器坏或控制板坏,或与二者相连的电路上元件坏)引起。单相输入(220V)的变频器,特别要注意:如果无显示或炸机,很可能是用户接入了三相电(380V)引起的(可察控制板的故障记录:母线电压是否由310变为了540)。此时不断IPM的整流桥已坏,滤波大电容也坏(或炸裂或顶面凸起变硬)。如果只更换IPM后就上电,会听到“啪,啪”的响声(电容内的声音),应立即掉电,否则IPM的整流桥又会坏。发现一个大电容坏,最好都换新的。因电容是易坏易老化的器件。 4、显示不稳: 先有显示,然后没有,风扇停下,电压只有12,此种现象一般是U1厚膜坏。报故障E015:通电指示灯亮,键盘不亮,拨了风扇就好--风扇短路。 5、不制动: 01180099,01180100,01180113,01180114的制动管不在IPM内部,变频器炸机和不显示很可能就是在变频器停机制动时引起的,所以更换IPM后,一定要检测制动电路的好坏:制动光耦,制动管(MOS管不好测,可测其串联的续流二极管,正常应为0.37左右),门极电阻(也就是MOS管的门极电阻,正常应为100欧姆)。修好上电后,TD900F093改为150,报E007,红接P(+),黑接PB,如电压在17-30跳动,制动正常。TD3200F133=150直流电压270-350V制动起作用。 6、炸整流桥:

变频器常见故障及处理

变频器常见故障 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5、5kW变频器时,客户送修時标明电机行抖动,此时第一反应就是输出电压不平衡、在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1、5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的就是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不就是参数问题,又怀疑就是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此瞧来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3、7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的就是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于就是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查瞧,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7、5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬

丹佛斯变频器的常见故障及维修对策

丹佛斯变频器的常见故障及维修对策 丹佛斯变频器的常见故障及维修对策 唐山三友集团兴达化纤股份有限公司张志远 摘要主要阐述我公司生产线中的丹佛斯变频器常见故障与处理方法, 并协住车间提出合理的解决方案,减少此类故障的发生。 关键词:变频器故障处理 一.引言 我公司共有粘胶五条生产线,主要产品为粘胶短纤维,扩建后生产能力为16万吨。生产线上大量使用了Danfoss公司的VLT5000系列变频器,变频器具有调速性能好、调速范围宽和运行效率高、使用操作方便等优点并得以广泛的推广,多年来,我们在生产实践中对变频器原理与故障现象不断探索与学习,总结出一套切实可行的变频器维护保养和维修经验。 二.变频器的组成: 变频器主要由整流电路、平波电路、控制电路、逆变电路等几大部分组成,以下是变频器主电路图。 变频器控制电路: 给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,称为控制电路。控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,驱动电路为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。 1、速度检测电路 装在异步电动机轴上的速度监测器(TG 、PLG等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。 2、保护电路 (1)电压检测:主要检测三相整流桥输出电压是否过压、欠压,它通过取样电路运算放大器(CPU)进行比较。 (2)电流检测:它通过检测IGBT三相输出,输出电缆穿过(2-3)个霍尔电流检测

元件到变频器的输出端子(U、V、W)。在运行时进行电流检测,如:电机过载、电机或电缆是否接地、缺相等。 (3)温度报警:主要检测变频器运行中的温度是否超过设定值,它通过变频器内的风扇、温度检测器来散热和检测 三、Danfoss 变频调速器故障及分析实例 首先在检修故障机时对变频器做静态的测试,一般通用型变频器大致包括以下几个部分:1整流电路,2直流中间电路,3逆变电路,4控制电路。静态测试主要是对整流电路、直流中间电路和逆变电路部分的大功率晶体管(功率模块)的一个测试,工具主要是数字万用表.整流电路主要是对整流二极管的一个正反向的测试来判断它的好坏,直流中间回路主要是对滤波电容的容量及耐压的测试,我们也可以观察电容是否出现鼓包或漏液等现象来判断它的好坏,耐压检测方法采用可调的直流电压进行充放电检测,功率模块的好坏判断主要是对功率模块内的续流二极管和绝缘栅双极型晶体管的检测。 1.开关电源损坏 此型号变频器最常见的故障,通常是由于开关电源电路各别元件性能发生变化或保护部分失控造成电源损坏,丹佛斯变频器采用了新型脉宽集成控制器UC3844来调整开关电源的输出,同时UC3844还带有电流检测,电压反馈等功能,当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。 2.ALARM 37—IGBT模块损坏 IGBT模块损坏,这也是变频器损坏的常见故障之一,电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些都是IGBT模块损坏的常见现象。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。其次驱动电路老化也有可能导致驱动波形失真或驱动电压波动太大而导致IGBT损坏,每一路驱动电路丹佛斯都使用了独立的带变压器隔离的电源,控制信号也是通过门极驱动变压器提供,所以可靠性相当高。 3. ALARM 14—接地报警 接地故障:主要检测到负载(电机)对地出现漏电流现象,致使变频器保护停机。而实际检测电机绝缘正常,在维修此类故障机时问题主要出在检测电路检测值出现偏差,导致变频器误报警。经分析电路为霍尔元件输出电压信号到电流取样板在送到运算放大器进行比较,检查发现电流取样板中的一路限流电阻断路造成变频器故障,用同规格的贴片电阻修复后,试验正常。

安川变频器的常见故障

2 安川变频器的常见故障 2.1 开关电源损坏 开关电源损坏是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,在众多变频器的开关电源线路设计上,安川变频器因该说是比较成功的。616G 3采用了两级的开关电源,有点类似于富士G5,先由第一级开关电源将直流母线侧500多伏的直流电压转变成300多伏的直流电压。然后再通过高频脉冲变压器的次级线圈输出5V、12V、24V等较低电压供变频器的控制板,驱动电路,检测电路等做电源使用。在第二级开关电源的设计上安川变频器使用了一个叫做TL431的可控稳压器件来调整开关管的占空比,从而达到稳定输出电压的目的。前几期我们谈到的LG变频器也使用了类似的控制方式。用作开关管的QM5HL-24以及TL431都是较容易损坏的器件。此外当我们在使用中如若听到刺耳的尖叫声,这是由脉冲变压器发出的,很有可能开关电源输出侧有短路现象。我们可以从输出侧查找故障。此外当发生无显示,控制端子无电压,DC12V,24V 风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。 2.2 SC故障 SC故障是安川变频器较常见的故障。IGBT模块损坏,这是引起SC故障报警的原因之一。此外驱动电路损坏也容易导致SC故障报警。安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动

电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。 2.3 OH—过热 过热是平时会碰到的一个故障。当遇到这种情况时,首先会想到散热风扇是否运转,观察机器外部就会看到风扇是否运转,此外对于30kW以上的机器在机器内部也带有一个散热风扇,此风扇的损坏也会导致OH的报警。 2.4 UV—欠压故障 当出现欠压故障时,首先应该检查输入电源是否缺相,假如输入电源没有问题那我们就要检查整流回路是否有问题,假如都没有问题,那就要看直流检测电路上是否有问题了。对于200V级的机器当直流母线电压低于190VDC,UV报警就要出现了;对于400V级的机器,当直流电压低于380VDC则故障报警出现。主要检测一下降压电阻是否断路。 2.5 GF—接地故障

变频器常见故障分析与处理

变频器常见故障分析与处理 本系列变频器具有过流、过热、过载、欠压多种保护功能。当发生故障时,变频器就会立即报警跳开,LED监视器上显示相应的故障类型,并且电动机自动停止转动。当排除故障后,按“STOP”键或输入控制电路端子复位命令,即能解除报警跳开状态。 故障代码表: 一过压:分别为加速时过电压(E002)、定速时过电压(E003)、停止时过电压(E00A)、减速时过电压(E00B) 分析:E002、E003、E00A、E00B故障出现的直接原因就是变频器本身检测到的电压过高。

而出现E002、E003、E00A根本原因有三个:1)外部实际电网电压过高,处理方法:降低电网电压(可采用稳压电源)。2)变频器检测到的电压(U)比外部实际的高,处理方法:重新检测电压(进入内部参数b123)。3)能量反馈,电机实际转速高于变频器输出(即电机被拖动);处理方法:去除电机拖动现象或加能耗电阻。4)变频器内部电压检测电路有故障,与办事处联系维修。 出现E00B则与下列几个因素有关:减速时间、制动器(制动电阻或制动单元)、负载惯性 减速时间过短会使变频器在减速过程中产生反馈电压(减速时间越短同样的负载产生的反馈电压越大),如果没有制动器或制动器过小,那就无法消耗这部分多余的电压,当电压高到一定值时(460)就会跳E00B报警,而负载惯性越大同样的减速时间产生的反馈电压就越高。所以,应适当的加长减速时间。 二欠压:E001 出现E001故障报警的原因有: 1)外部电网电压异常(缺相、三相不平衡、电压过低); 2)有大容量负载在同一线运行,处理方法:另选电源; 3)变频器检测到的电压(U)比实际低,处理方法:重新检测电压(进入内部参数b123); 4)变频器内部故障,继电器没吸合(现象是带负载时跳)。处理方法:检查继电器接口是否接触良好;否,则为变频器内部电压检测电路故障,与办事处联系。 三过流:分别为加速时过电流(E004)、定速时过电流(E005)、减速时过电流(E006)出现这三类故障的原因有: 1)电机连接端子相间短路,处理方法:检查输出线路及负载; 2)负载突变或过重,处理方法:减小线路负载,检查变频器与电机搭配是否适当; 3)加速时间过短,处理方法:加长加速时间;

英威腾变频器维修中遇到的故障代码及解决方法

英威腾变频器维修中遇到的故障代码及解决方法 内容来源网络,由深圳机械展收集整理! 更多变频器及自动化技术,就在深圳机械展-自动化展区! 1、逆变单元故障(OUT) 此故障包括OUT1、OUT2、OUT3,它们分别代表逆变单元U相、V相、W相故障。此故障一般只出现在驱动光耦使用PC929的机器中,代表驱动板有1270系列、1290AV03、1250AVS系列、1258AVS系列等。 【检修思路】OUT故障一般分有上电跳OUT;运行跳OUT;带载加载跳OUT。此原因一般都是因为检测电路检测到逆变管VCE电压异常输出告警信号,当控制板检测到此信号后马上停止驱动输出并显示出故障代码。当然不排除因保护电路本身异常导致的误保护。值得注意的是在某些情况下会因为开关电源输出不稳定影响驱动电路供电导致机器无规律跳OUT故障,如因散热风扇启动电流过大,每次运行风扇启动瞬间即跳OUT。检修时需注意区分。 (1)对于上电跳OUT故障:此问题一般都是因为保护电路本身不良或者驱动部分,模块门极有明显的短路、断路情况。可以通过屏蔽相应相OUT保护信号判断。如果屏蔽后其它一切正常,则说明问题是因保护电路本身不良引起。屏蔽后运行,如果有三相不平衡,则说明驱动电路或者模块有问题。 (2)对于运行跳OUT故障:此问题一般都是驱动电路和模块本身不良引起。首先可以用万用表电阻档测试驱动电路相关部位及模块门极有无明显短路、断路现象。屏蔽相关相OUT 保护信号运行,测试驱动波形是否正常(无示波器时可使用万用表交流电压档对比测试各路驱动波形)。重点关注波形的形状、幅度、死区时间等,最后检测IGBT是否损坏。对比其它相测试驱动门极结电容是否正常(万用表电容档)。 (3)对于带载加载跳OUT故障:此情况相对前两种来说检修难度稍大。首先,检测保护电路本身是否有元件性能不良。正确检测前提下,对怀疑有问题的二极管、贴片电容采取替换法代换之(注意判断控制板上OUT信号检测电路是否正常,可用替换法)。第二,对比检测驱动电路驱动光耦供电是否正常,门极驱动电阻是否变值。第三,不加载测试驱动波形是否正常。最后仔细判断,测试IGBT本身是否有问题。

安川变频器故障代码

故障代码故障现象/类 型 故障原因解决对策 oC 过电流 变频器的输 出电流超过 了过电流检 出值(约为额 定电流的20 0(%)) ·变频器输出侧发生了短路、接地短路(因 电机烧损、绝缘劣化、电缆破损所引起的 接触、接地短路等) ·负载过大 加减速时间过短 ·使用特殊电机和最大适用容量以上的电 机 ·在变频器输出侧开闭电磁接触器 ·控制回路端子+V、-V、AC短路 ·控制回路端子过载 调查原因、采取对策后复位 (注)再接通电源前,请务必 确认变频器输出侧没有短 路、接地短路 ·确认控制回路端子是否有 接线错误 ·确认频率设定用可变电阻 等的电阻值以及配线 (+V、-V电流应在20 mA以下) GF 接地短路 在变频器输 出侧的接地 短路电流超 过变频器额 定输出电流 的约50 (%) 变频器输出侧发生了接地短路(因电机烧 损、绝缘劣化、电缆破损所引起的接触、 接地短路等) ·控制回路端子+V、-V、AC短路 ·控制回路端子过载 调查原因、采取对策后复位 (注)再接通电源前,请务必 确认变频器输出侧没有短 路、接地短路 ·确认控制回路端子是否有 接线错误 ·确认频率设定用可变电阻 等的电阻值以及配线 (+V、-V电流应在20 mA以下) PUF 保险丝熔断 插入主回路 的保险丝熔 断 由于变频器输出侧的短路、接地短路,使 输出晶体管被破坏 确认以下的端子间是否短路 如短路则引起输出晶体管的损坏 B1(+3)←→U,V,W- ←→U,V,W 调查原因、采取对策后更换 变频器 ov 主回路过电 压 主回路直流 电压超过过 电压检出值 200V级:约 410V 400 V级:约72 0V(E1-01 <400V) 约 820V(E1-0 1≥400V) 减速时间过短,来自电机的再生能量过大 电机接地短路 (接地短路电流经由电源,对变频器内的 主回路电容充电 )有关速度搜索的参数设定值不当 (包括瞬时停电恢复时及故障重试时)PG 电缆的连接不良 (PG噪音、PG断线)加速结束后超调时 的再生能量过大 电源电压过高 延长减速时间或连接制动 电阻器(制动电阻器单元) 确认输出电缆、转接端子、 电机端子盒等部位,修正接 地短路部位 ·使用速度搜索重试功能 ·调整速度搜索动作电流(b 3-02)、速度搜索减速时 间(b3-03) ·使用速度推定形搜索功能 (实施电机线间电阻自学 习 )确认PG电缆的连接状态

AB变频器常见故障的原因及处理方法

AB变频器常见故障一、电动机不能启动 原因:没有输出电压送给电动机。 补救措施:检查电源电路,如电源电压、所有熔断器以及断路装置,检查电动机票,核查电动机连接是否正确,控制输入信号,起动信号是否存在。I/O端子01是否激活,核查P036与组态是否匹配。核查A095是否没有禁止转动。 AB变频器常见故障二、变频器不能从端子排连接线所送入的启动或运行输入启动 原因: 变频器存在故障。这类原因补救措施主要是清除故障,按停止键,重新上点,将A100设置为选项1“清除故障”。若A051—A052被设置为选项7“清除故障”,则重新送入数字量输入信号。 编程不正确。补救措施为检查参数设置。 输入接线不正确。补救措施:正确接线并/或安装跳线。 AB变频器常见故障三、变频器不能从集成式键盘启动 原因: 集成式键盘没被使能。将参数P036设置为选项0,将参数A051—A052设置为选项5,并激活输入。 I/O端子01的“停止”输入信号不存在。正确接线并/或安装跳线。 AB变频器常见故障四、变频器对速度命令不作响应 原因: 速度命令源中没有给定速度。检查参数D012,看控制信号来源是否正确。如果是模拟量输入,则检查接线并用表计检查信号是否存在。检查参数D002,核查命令是否正确。 通过远程设备或数字量输入选择了不正确的基准信号源。检查参数D012,检查参数D014,看输入是否选择交流电源。核查A051—A052的设置。检查P038中的速度基准来源。如果有必要就重新编程。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/6c9144714.html,/

丹佛斯变频器常见故障维修解读

3 变频器常见故障现象和故障处理 我公司使用的vlt5000系列变频器在运行中常见的故障有:多种故障错乱出现(报警5、6、7、8)接地故障(报警14)、电机uvw相丢失(报警31.32.33)、通讯故障等。 3.1 开关电源损坏 这是众多变频器常发生的故障,通常是由于开关电源的元器件损坏或负载发生短路造成的,丹佛斯变频器采用了新型脉宽集成控制器uc2844来调整开关电源的输出,同时 uc2844还带有电流检测,电压反馈等功能。当发生无显示,控制端子无电压,24v风扇不运转等现象时我们首先应该考虑开关电源是否损坏(一般为uc2844或电阻损坏)。如果不能判断是否电源故障,可以外接24v电源进行测试,测试结果一切正常可以判定为电源故障。 3.2 丹佛斯5011变频器的液晶显示屏上显示字母“14”报警 变频器液晶显示屏上出现“alarm 14”报警,变频器不能工作,重新送电后按reset 键能复位,再启动时再次报警,查操作手册为接地报警,检查电机和相关电缆并无接地故障,也就是说故障在变频器。分析电路导致接地报警的原因为霍尔传感器输出电压信号到电流取样板再送到运算放大器进行比较,结果数值过大,(见图2)查检测部分霍尔传感器正常,检测对陶瓷基薄膜集成电阻r501时测其中的一路阻值因腐蚀已变无穷大致使接地不良,造成信号过强,引起报警,无原件更换,在上面焊同阻值大功率贴片电阻,重新启动后运行正常。接地故障是平时经常遇到的故障,在排除电机接地存在问题的原因外,最可能发生故障的部分就是霍尔传感器和信号传输电阻,由于它们受温度、湿度、腐蚀气体等环境因素的影响较大,工作点很容易发生飘移,导致接地报警。

变频器常见故障代码及处理实例

一、过流(OC) 令狐采学 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,

更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。三、欠压(Uu)

变频器最常见的十大故障

变频器最常见的十大故障 一、过流(0C) 过流是变频器报警最为频繁的现象。 1.1现象 (1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检 测电路坏。重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流 上限设置太小、转矩补偿(V/F )设定较高。 1.2实例 (1)一台LG-IS3-43.7kW变频器一启动就跳“ 0C” 分析与维修:首先打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2)一台BELTR0-VERT2kW 变频通电就跳“ 0C ”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,再次将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(0U ) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单 元有问题。 (1)实例 一台台安N2系列3.kW变频器在停机时跳“ 0U”。

分析与维修:首先要搞清楚“ 0U ”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191 )时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电 电阻上面有可能导致欠压。还有就是电压检测电路发生故障而出现欠压问题。 3.1举例 (1)变频器上电跳“ Uu” 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触 器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳 压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。 (2)一台DANFOSSVLT5004 变频器,上电显示正常,但是加负载后跳 “ DCLINKUNDERVOLT ” (直流回路电压低)。 分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是 那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任 何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流 桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一 路桥臂开路,更换新品后问题解决。 四、过热(OH )。 过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。 举例:一台ABBACS50022kW 变频器客户反映在运行半小时左右跳“OH ”。 分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。 五、输出不平衡

安川变频器故障的查找、分析、排除

故障的查找&排除 故障检查 当变频器检测出故障时,在数字操作器上显示该故障内容,并使故障接点输出,切断输出,电机自由滑行停止。(但是在可选择停止方法的故障时,服从已设定的停止方法)。 ·发生了故障时,查找下表并采取纠正措施。 ·再起动了,请按如下的任意一个方法,进行故障复位。 ·异常复位信号为ON。 [ 多功能输入(H1-01~ H1-06),请设定为异常复位(设定值:14)] ·按下数字操作器的复位键。 ·一时间切断主回路电源,再投入。 安川变频器故障表示和对策

故障分析 系统起动时,由于参数设定及接线错误,变频器及电机未能按所想象的那样动作。这样的场合,请参照本项,实施适当的对策。

1. 参数不能设定 按了增加键和减小键,表示仍不变。 1.1 密码不一致(仅在已设定了密码的情况)。 ·A1-04( 密码) 和A1-05( 密码的设定) 的数值不一致时,环境设定方式的一部分参数能变更请再设定密码。 ·码被忘记时,在A1-04 的表示中,在按下RESET 键的同时,按一下MENU 键那么A1-05[密码(SET)] 被表示出来,请再设定密码。( 再设定的密码请输入到A1-04 中)。 1.2 参数写入的许可被输入了 ·在多功能输入,设定了[ 参数写入许可( 设定值:1B)]情况下发生。参数写入许可的输入为OFF时,参数不能变更,只有参数写入许可的输入为ON 时,才可设定参数。 1.3 变频器起动了(驱动方式) ·参数设定异常,参数的设定值有异常,参照9.1.3的操作出错。请修正。 ·数字操作器的通信异常,数字操作器和变频器之间的连接有异常,将操作器取下一次,再安装上去试一试。 2. 电机不转 按下操作器的运行键,电机也不转 2.1 运行方法的设定有错误 ·b1-02( 运行指令的选择) 的设定为“1”( 控制回路端子) 场合,按了RUN 键,电机仍不转。按下LOCAL/REMOTE,或切换操作器的操作(*),请在b1-02 参数设定为“0”( 数字操作器)。 ※ LOCAL/REMOTE键,请设定o2-01有效(“1”)/无效(“0”)。LOCAL/REMOTE键,在驱动模拟输入时有效。 2.2 未处在驱动模式 ·未处在驱动模式,变频器在准备状态,不能起动,请按下MENU 键,显示驱动模式,再按下DATA/ENTER键,进入驱动模式。 2.3 频率指令太低 ·频率指令低于最低输出频率(E1-09) 被设定的频率情况时,变频器不运行。请变更频率指令,使它大于最低输出频率( 相关参数:b1-05,E1-09)。 2.4 多功能模拟量输入的设定异常 ·多功能模拟量输入(H3-05,H3-09)设定了“1”(频率增益),电压( 电流) 没有输入,频率指令为零,请确认设定值及模拟量输入值是否适当。 2.5 在多段速运行状态,频率指令2,设定了,辅助频率指令未输入。 ·在多功能模拟量输入(H3-05),设定为“0”(辅助频率指令) 并使用多段速指令的场合,辅助频率指令作为频率指令2 使用。请确认设定值及多功能输入值( 端子16) 是否适当。2.6 在多段速运行状态,已有了频率指令2 的数字量设定,但多功能模拟量输入(H3-05) 未设定在“1F” ·在多功能模拟量输入(H3-05),设定为“0”( 辅助频率指令),并使用多段速指令的场合。辅助频率指令作为频率指令2使用。 ·请确认多功能模拟量输入(H3-05) 是否为“IF”及频率指令2的设定值是否适当 输入了外部运行信号,电机仍不转。 1.运行方法的选择有错。

变频器常见故障及处理方法

变频器常见故障及处理方法 1 引言 IGBT变频调速器,自研制开发投入市场以来,以其优越的调速性能,可观的节能量已为广大的电机用户所接受,正以每年大规模的销售量走向社会,为电力、建材、石油、化工、煤矿等各行业的发展提供了优质的服务,其用户群已遍布生产的各行各业,成为广大用户所喜爱的产品。 这里笔者结合自己在长期的售后服务工作中经历的一些常见故障及处理方法,提出来与广大的用户及维修工作者进行探讨,以期把该产品使用得更好,更切实的为顾客服务。 2 变频器运行中有故障代码显示的故障 在变频器的使用说明书中,有一栏具体阐述了变频器有故障代码显示的故障,具体如表1所示。 注:表1中Io、Vo分别是输出额定电流、输入额定电压;Vin是输入电压。 现就这几种情况作一下分析。 表1 故障代码显示的故障

2.1 短路保护 若变频器运行当中出现短路保护,停机后显示“0”,说明是变频器内部或外部出现了短路因素。这有以下几方面的原因: (1) 负载出现短路 这种情况下如果把负载甩开,即将变频器与负载断开,空开变频器,变频器应工作正常。这时我们用兆欧表(或称摇表)测量一下电机绝缘,电机绕组将对地短路,或电机线及接线端子板绝缘变差,此时应检查电机及附属设施。 (2) 变频器内部问题 如果上述检测后负载无问题,变频器空开仍出现短路保护,这是变频器内部出现问题,应予以排除。如图1所示。

图1 变频器主电路示意图 在逆变桥的模块当中,若IGBT的某一个结击穿,都会形成短路保护,严重的可使桥臂击穿,甚至于送不上电,前面的断路器将跳闸。这种情况一般只允许再送一次电,以免故障扩大,造成更大的损失,应联系厂家进行维修。 (3) 变频器内部干扰或检测电路有问题 有些机子内部干扰也易造成此类问题,此时变频器并无太大的问题,只是不间断的、无规律的出现短路保护,即所谓的误保护,这就是干扰造成的。 变频器的短路保护一般是从主回路的正负母线上分流取样,用电流传感器经主控板的检测传至主控芯片进行保护的,因此这些环节上任何一处出现问题,都可能造成故障停机。 对于干扰问题,现低压大功率的及中高压变频器都加了光电隔离,但也有出现干扰的,主要是电流传感器的控制线走线不合理,可将该线单独走线,远离电源线、强电压、大电流线及其他电磁辐射较强的线,或采用屏蔽线,以增强抗干扰能力,避免出现误保护。

变频器的常见故障及维修详解

变频器的常见故障及维修 变频器的发展应该说经历了一段很漫长的时间,中国变频器市场也经历了从80年代初--90年代中期日本变频器独领风骚,到现在的欧美变频器渐占主导地位的局面。在这中间我们不得不提到台湾产的变频器。作为一个半导体电子产品的集结地和加工中心,变频器这个和半导体IC业密切相关的行业在台湾也取得了巨大的发展。为台湾变频器在市场上也赢得了一席之地。并以其低廉的价格和较好的性能受到了中低档用户的青睐。处于领先地位的品牌主要有台达,台安,东元,其他我们还能碰到的品牌有爱德利,利佳,宁茂,欧林,九德松益等。 台湾变频器相对来说功能较简单,特别是早期的产品,像台安欧林主要功能就是调速,简单而实用。如台安早期的N1系列,和欧林的OL—2001系列OL—4001系列。但随着半导体技术的发展,以及用户客观使用场合使用要求的提高,变频器的功能也越来越丰富。台湾变频器也有了长足的发展,随着控制理论的成熟,控制方式也由原来的V/F控制提升至电压矢量控制,主要的功率器件也由大功率双极型晶体管GTR改善为绝缘栅双极型晶体管IGBT,变频器性能大为提高。 在功能上,台湾产变频器虽然无法和欧美及日本变频器相提并论,但功能上也越来越完善。台安,台达都有RS232/485通讯功能,内置PID功能,台达变频器还带有PG卡选件,参数里更带有电子齿轮设置,调速更精确。(VFD-V系列)。由于纺织行业的一些特殊性,台安变频器推出了内建摆频功能的SV300系列变频器。对于东元变频器来说由于采用了安川变频技术,东元无论从外形还是内部参数都和安川极为接近,功能也极其相近。由于是安川变频的成熟技术,质量还是相当可靠。分类也和安川变频接近。功能也十分强大,包括多种通讯方式

变频器常见故障分析和预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 变频器常见故障分析和预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8745-86 变频器常见故障分析和预防措施(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、变频器的主要故障原因及预防措施 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析显得尤为重要。 1、外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。以下几项措施是对噪声干扰实行“三

不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较长,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。 2、安装环境 变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。

普传变频器十大常见故障及各自排除方法

普传变频器十大常见故障及各自排除方法 一、电后键盘无显示: 1.检查输入电源是否正常,若正常,可测量直流母线P、N端电压是否正常:若没电压,可断电检查充电电阻是否损坏断路。 2.经查P、N端电压正常,可更换键盘及键盘线,如果仍无显示,则需断电后检查主控板与电源板连接的26P 排线是否有松脱现象或损坏断路。3.若上电后开关电源工作正常,继电器有吸合声音,风扇运转正常,仍无显示,则可判定键盘的晶振或谐振电容坏,此时可更换键盘或修理键盘。4.如果上电后其它一切正常,但仍无显示,开关电源可能未工作,此时需停电后拔下P、N端电源,检查IC3845的静态是否正常(凭经验进行检查)。如果IC3845静态正常,此时在P、N加直流电压后18V/1W稳压二极管两端约8V左右的电压,但开关电源并未工作,断电检查开关变压器副边的整流二极管是否有击穿短路。5.上电后18V/1W稳压二极管有电压,仍无显示,可除去外围一些插线,包括继电器线插头、风扇线插头,查风扇、继电器是否有短路现象。6. P、N端上电后,18V/1W稳压二极管两端电压为8V左右,用示波器检查IC3845的输入端④脚是否有锯齿波,输出端⑥脚是否有输出。7. 检查开关电源的输出端+5V、±15V、+24V及各路驱动电源对地以及极间是否有短路。 二、键盘显示正常,但无法操作: 1.若键盘显示正常,但各功能键均无法操作,此时应检查所用的键盘与主控板是否匹配(是否含有IC75179),对于带有内外键盘操作的机器,应检查一下你所设置的拨码开关位置是否正确。 2.如果显示正常,只是一部分按键无法操作,可检查按键微动开关是否不良。 三、电位器不能调速: 1. 首先检查控制方式是否正确。 2.检查给定信号选择和模拟输入方式参数设置是否有效。 3. 主控板拨码开关设置是否正确。 4.以上均正确,则可能为电位器不良,应检查阻值是否正常。 四、过流保护(OC): 1.当变频器键盘上显示“FO OC”时“OC”闪烁,此时可按“∧”键进入故障查询状态,可查到故障时运行频率、输出电流、运行状态等,可根据运行状态及输出电流的大小,判定其“OC”保护是负载过重保护还是Vce保护(输出有短路现象、驱动电路故障及干扰等)。 2.若查询时确定由于负载较重造成加速上升时电流过大,此时适当调整加速时间及合适的V/F特性曲线。 3.如果没接电机,空运行变频器跳“OC”保护,应断电检查IGBT是否损坏,检查IGBT的续流二极管和GE间的结电容是否正常。若正常,则需检查驱动电路:①检查驱动线插接位置是否正确,是否有偏移,是否虚插。②检查是否是因HALL 及线不良导致“OC”。③检查驱动电路放大元件(如IC33153 等)或光耦是否有短路现象。 ④检查驱动电阻是否有断路、短路及电阻变值现象。4.若在运行过程中跳“OC”,则应检查电机是否堵转(机械卡死),造成负载电流突变引起过流。5.在减速过程中跳“OC”,则需根据负载的类型及轻重,相应调整减速时间及减速模式等。

安川变频器故障代码

OCOver Cur- rent过电流变频器的输出电流超过过电流检出值(约额定电流的200%)·变频器输出侧发生短路、接地(由电机的烧毁、绝缘劣化、电缆破损引起的接触、接地等等)。·负载过大时,过大缩短加减速时间。·使用特殊电机或最大适用容量以上的电机。·在变频器输出侧,电磁开关器ON/OFF动作。原因调查,实施对策后进行复位。GFGroundFault接地在变频器输出侧的接地电流超过了变频器额定输出电流的约50%在变频器输出侧发生接地(由电机的烧损、绝缘劣化、电缆破损引起的接触、接地等等)原因调查,实施对策后进行复位。PUFMain IBGTFuseBlown保险丝熔断装在主回路的保险丝被熔断因变频器输出侧的短路、接地,输出晶体管损坏。在以下的端子之间确认是否短路,如短路则是输出晶体管被损坏。B1( + 3) ←→ U、V、W- ←→ U、V、W原因调查,实施对策后,更换变频器。OVDC BusFuse Open主回路过电压主回路直流电压超过过电压检出值200V级:约410V400V级:约820V减速时间太短,从电机产生的能量太大。延长减速时间或连接制动电阻器(制动电阻器单元)。电源电压太高。在电源规格范围内降低电压。U V1DC BusUndervolt主回路低电压主回路直流电压降到L2- 05(低电压检出值)的设定值以下。200V级:约190V400V级:约380V·输入电源发生缺相。·发生瞬时停电。·输入电源的接线端子松动。·输入电源的电压变动太大。原因调查、实施对策后进行复位。UV2CTL PSUndervolt控制电源异常控制电流的电压太低—·试拔电源的ON/OFF。·连续发生故障时更换变频器。UV3MC Answer-back防止冲击回路发生动作不良—·试拨电源的ON/OFF。·连续发生故障时更换变频器。PFInput PhaLoss主回路电压故障主回路直流电压在再生以外时发生故障振动·输入电源发生了缺相。·发生瞬时停电。·输入电源的接线端子松动。·输入电源的电压变动太大。·相电压的平衡不好。原因调查、实施对策后进行复位。LFOutput PhaLoss输出缺相在变频器输出侧发生缺相(设定为L8- 07有效时检出)·输出电线断线。·电机卷线断线。·输出端子松动。—使用变频器最大适用电机容量的1/20以下的电机。调整变频器容量或电机的容量。OH(OH1)HeatsnkOvertemp(HeatsnkMAXTemp)散热片过热变频器散热片的温度超过了L8- 02的设定值或105℃的温度周围温度过高。设置冷却装置。周围有发热体。清除发热体。变频器冷却风扇停止运行。变频器内部冷却风扇停止(18.5kw以更换冷却风扇(请与本公司联系)。上)变频器冷却风扇停止运行。OH3MotorOv erheat 1电机过热报警按照L1- 03的设定值,变频器停止或继续运行电机过热调整负载的大小,加减速时间,周期。调整V/f特性。确认E2-01(电机额定电流)的设定。OH4MotorOverheat2电机过热故障按照L1-04的设定值,变频器停止运行电机过热调整负载的大小,加减速时间,周期。修正V/f特性。确认E2-01(电机额定电流)的设定。RHDynBrkResistor安装型制动电阻器过热L8-01所设定的制动电阻器保护已动作减速时间太短,电机产生能量太大。·减小负载,延长减速时间,降低速度。·更换制动电阻器单元。RRDynBrkTransistr内置制动晶体管故障制动晶体管已动作故障—·试调电源ON/OFF。·连续发生故障时,更换变频器。OL1MotorOverloaded电机过负载因电子热敏器件引发电机过负载保护已动作负载太大,加减速时间、周期太短。调整负载的大小,加减速时间,周期。V/f 特性的电压高。调整V/f特性。E2-01(电机额定电流)的设定值不适当。确认E2-01(电机额定电流)的设定值。

相关文档
最新文档