乙酸解离度和解离常数的测定

乙酸解离度和解离常数的测定
乙酸解离度和解离常数的测定

乙酸解离度和解离常数的测定

pH 测定法

一、实验目的

1、 学习用pH 计测定乙酸解离常数的原理和方法;

2、 加深对弱电解质解离平衡等基本概念的理解;

3、学会酸度计、吸量管和容量瓶的正确使用。 二、实验原理

乙酸(以HOAc 表示)是弱电解质,在水溶液中存在以下解离平衡:

HOAc H++OAc ˉ 起始浓度 c 0 0

平衡浓度 c (HOAc ) c (H +) c (OAc ˉ) 解离常数表达式为:

K θ

(HOAc )为乙酸解离常数。

严格地说,离子浓度应该用活度来代替,但乙酸的稀溶液中,离子浓度与活度近似相等。如果在上式中忽略由水解离所提供的H +量,则达到平衡时溶液中c(H +)=c(OAc —

)(为了简便,式中c θ

省略),代入(1)中

)2()

H (c c )H (c HOAc (K 2 +

+-=)θ

解离度α:测定已知浓度HAc 溶液的pH 值,便可算出它的解离度。

c

)

H (c +=α 配制一系列已知浓度的乙酸溶液,在一定温度下,用酸度计测定其pH ,根据pH=-lgc (H +)求算c (H +)。实际上,酸度计所测得的pH 反映了溶液中H +的有效浓度,即H +的活度值,在本实验中忽略这种差别。将C(H +)代入(2)式中,即可求得一系列K θ

值,其平均值即为该温度下的解离常数。 三、仪器、药品及材料

仪器:pHS-3C 型pH 计,复合电极,烧杯(50mL ,5个),吸量管(20mL ,1只),容量瓶(50mL ,5只)

药品:HOAc(0.1000mol·L-1) 材料:碎滤纸

四、实验内容及步骤

(1)配制不同浓度的乙酸溶液

用吸量管分别取5.00mL ,10.00mL ,15.00m ,20.00,25.00mL 标准的0.1000 mol·L -1HOAc 溶液,加入编成1~5号的5个50mL 容量瓶中,再用去蒸馏水稀释至刻度,摇匀。算出此3瓶

)

1(c /)HOAc (c c

/)OAc (c ·c /)H (c )HOAc

(K a θ

θ

θθ-+=

HOAc 溶液的浓度。

(2)测定乙酸溶液的pH 值

把以上稀释的5种不同浓度的HOAc 溶液,分别放入编成1~5号的5个干燥的50mL 烧杯中,按由稀到浓的次序用酸度计分别测定它们的pH 值,记录数据和室温。计算解离度和解离常数。

实验数据处理表 四、数据处理

(1)根据)

H (c c )H (c HOAc (K 2+

+-=)θ

计算K θ值,及K θ的平均值。 (2)计算乙酸解离度,根据实验结果总结乙酸解离度、解离常数与其浓度的关系。

(3)要求写出一组数据的全部运算方法与过程。其他各组数据只要求将运算结果填入表中即可。

(4)求算相对误差并分析误差产生的原因(文献值:25℃时 K θ

(HAc) =1.76×10-5

)。

思考题

1. 不同浓度的HOAc 溶液的解离度α是否相同,为什么?

2. 若改变所测HOAc 溶液的浓度,其解离度和解离常数有无变化?

3.测定不同浓度HAc 溶液的pH 值时,为什么按由稀到浓的顺序?

4.若HAc 溶液浓度很稀,能否应用下列近似公式: )

H (c c )

H (c HOAc (K 2+

+-=)θ

求解离常数?为什么?

PHS-3C 型精密pH 计的使用方法

一、开机前准备

1、电极埂旋入电极梗插座,调节电极夹到适当位置;

2、复合电极夹在电极夹上,拉下电极前端的电极套;

3、拉下橡皮套,露出复合电极上端小孔;

4、用蒸馏水清洗电极。 二、开机

1、电源线插入电源插座;

2、按下电源开关,电源接通后,预热30min 接着进行标定。

三、标定

仪器使用前、先要标定。一般情况下仪器在连续使用时,每天要标定一次。

1、在测量电极插座处拔去短路插头;

2、在测量电极插座处插上复合电极;

3、把选择开关旋钮调到pH 档;

4、调节温度补偿旋钮,使旋钮白线对准溶液温度值;

5、把斜率旋钮顺时针旋到底;

6、把用蒸馏水清洗过的电极插入pH=6.86的缓冲溶液中;

7、调节定位旋钮,使仪器显示读数与该缓冲溶液当时温度下的pH值相一致;

8、用蒸馏水清洗电极,用滤纸擦干,再插入pH=4.00(或pH=9.18)的标准缓冲溶液中,调节斜率旋钮使仪器显示读数与该缓冲液中当时温度下的pH值一致;

9、重复6~8直至不用再调节定位或斜率两调节旋钮为止。

四、测量pH值

1、被测溶液与定位溶液温度相同时,测量步骤如下:

①用蒸馏水清洗电极头部,用滤纸擦干;

②把电极浸入被溶液中,用玻璃棒搅拌溶液,使溶液均匀,在显示屏上读出溶液的pH 值。

2、被测溶液与定位溶液温度不相同时,测量步骤如下:

①用蒸馏水清洗电极头部,用滤纸擦干;

②用温度计测出被测溶液的温度值;

③调节“温度”旋钮,使白线对准被测溶液的温度值;

④把电极插入被测溶液内,用玻璃棒搅拌溶液,使溶液均匀后读出该溶液的pH值。

注意事项:

1、取下电极护套后,应避免电极的敏感玻璃泡与硬物接触,因为任何破损或擦毛都会使电极失效;

2、电极不使用时,拉上橡皮套,防止补充液干涸;

3、电极使用完毕后从测量电极插座处拔去,将短路插头插入;

4、将使用后的电极置于3mol/L氯化钾溶液中浸泡;

5、关闭电源,将仪器擦拭干净。

实验六 醋酸电离度和电离常数的测定

实验六醋酸电离度和电离常数的测定—pH法 一、实验目的 1.测定醋酸的电离度和电离常数; 2.学习pH计的使用。 [教学重点] 醋酸的电离度、电离常数的测定 [教学难点] pH计的使用 [实验用品] 仪器:滴定管、吸量管(5mL)、容量瓶(50 mL)、pH计、玻璃电极、甘汞电极 药品:0.200 mol·L-1HAc标准溶液、0.200 mol·L-1NaOH标准溶液、酚酞指示剂、标准缓冲溶液(pH=6.86、pH=4.00) 二、基本原理 HAc → H+ + Ac- C:HAc的起始浓度;[H+]、[Ac-]、[HAc]:分别为平衡浓度; α:电离数;K:平衡常数 α = × 100% K a = = 当α小于5时,C - [H+] ≈C,所以K a≈ 根据以上关系,通过测定已知浓度HAc溶液的pH值,就可算出[H+],从而可以计算该HAc 溶液的电离度和平衡常数。(pH=-lg[H+],[H+]=10-pH) 三、实验内容 1.HAc溶液浓度的测定(碱式滴定管) 以酚酞为指示剂,用已知浓度的NaOH溶液测定HAc的浓度。 2.配制不同浓度的HAc溶液 用移液管或吸量管分别取2.50 mL 、5.00 mL 、25.00 mL已测得准确浓度的HAc溶液,分别加入3只50 mL容量瓶中,用去离子水稀释至刻度,摇匀,并计算出三个容量瓶中HAc溶液的准确浓度。将溶液从稀到浓排序编号为:1、2、3,原溶液为4号。 3.测定HAc溶液的pH值,并计算HAc的电离度、电离常数

把以上四种不同浓度的HAc溶液分别加入四只洁净干燥的50 L杯中,按由稀到浓的顺序在pH计上分别测定它们的pH值,并记录数据和室温。将数据填入下表(p.129.),计算HAc电离度和电离常数。 K值在1.0×10~ 2.0×10范围内合格(文献值25℃1.76×10) 四、提问 1.烧杯是否必须烘干?还可以做怎样的处理? 答:不需烘干,用待测溶液荡洗2~3次即可。 2.测定原理是什么? 五、思考题 1.若所用HAc溶液的浓度极稀,是否还能用近似公式K a=[H+]2/C来计算K,为什么? 答:若C HAc很小,则C酸/K a就可能不大于400,就不能用近似公式K a=[H+]2/C ,如用近似公式,会造成较大的误差。 2.改变所测HAc溶液的浓度或温度,则有无变化? 答:C HAc减小,α增大, K a不变; K a随T改变而变化很小,在室温范围内可忽略。 六、注意事项 1.测定HAc溶液的pH值时,要按溶液从稀到浓的次序进行,每次换测量液时都必须清洗电极,并吸干,保证浓度不变,减小误差。 2.PHs-PI酸度计使用时,先用标准pH溶液校正。 3.玻璃电极的球部特别薄,要注意保护,安装时略低于甘汞电极,使用前用去离子水浸泡48小时以上。 4.甘汞电极使用时应拔去橡皮塞和橡皮帽,内部无气泡,并有少量结晶,以保证KCl溶液是饱和的,用前将溶液加满,用后将橡皮塞和橡皮帽套好。 附:介绍PHs-PI酸度计的使用方法及注意事项。 pH电极的标定: 1.定位:将洗净的电极插入pH=7的缓冲溶液中,调节TEMP(温度)旋钮,使指示的温度与溶液温度一致。打开电源开关,再调节CALIB(校准)旋钮,使仪器显示的pH值与该缓冲溶液在此温度下的pH值相同。 2.调节斜率:把电极从缓冲溶液中取出,洗净,吸干,插入pH=4的缓冲溶液中,调SLOPE(斜率)旋钮,使仪器显示的pH值与该溶液在此温度下的pH值相同,标定结束(测量碱性溶液时,用pH=9的缓冲溶液调节斜率)。 pH值测定:调节好的旋钮就不要再动,将待测溶液分别进行测量,待读数稳定时记录pH值。

实验醋酸解离度和解离常数的测定

实验 醋酸解离度和解离常数的测定 一、实验目的 1、了解电导率法测定醋酸解离度和解离常数的原理和方法; 2、加深对弱电解质解离平衡的理解; 3、学习电导率仪的使用方法,进一步学习滴定管、移液管的基本操作。 二、提 要 醋酸CH 3COOH 即HA C ,在水中是弱电解质,存在着下列解离平衡: 或简写为 其解离常数为 {}{ } { } θ θ -θ+= αc )c HA (c c )c A (c c )H (c )c HA (K eq eq eq (2.1) 如果HAc 的起始溶度为c o ,其解离度为α,由于,)()(0a c Ac c H c eq eq ==-+代入式(2.1)得: θ θ αα-α =α-α=c )1(c c )c c ()c ()HAc (K 2 00020 (2.2) 某一弱电解质的解离常数K a 仅与温度有关,而与该弱电解质溶液的浓度无关;其解离度α则随溶液浓度的降低而增大 。可以有多种方法用来测定弱电解质的α和K a ,本实验采用的方法是用电导率测定HAc 的α和K a 。 电解质溶液是离子电导体,在一定温度时,电解质溶液的电导(电阻的倒数)λ为 l kA =λ (2.3) 式中,k 为电导率...(电阻率的倒数),表示长度l 为1m 、截面积A 为1m 2导体的电导;单位为S·m -1。电导的单位为S[西(门子)]。 在一定温度下,电解质溶液的电导λ与溶质的性质及其溶度c 有关。为了便于比较不同溶质的溶液的电导,常采用摩尔电导m λ。它表示在相距1cm 的两平行电极间,放置含有1单位物质的量电解质的电导,其数值等于电导率k 乘以此 溶液的全部体积。若溶液的浓度为)dm · mol (c 3-,于是溶液的摩尔电导为 k 10kV 3m -==λ (2.4) m λ的单位为12mol ·m ·S -。 根据式(2.2),弱电解质溶液的溶度c 越小,弱电解质的解离度α越大,无限稀释时弱电解质也可看作是完全解离的,即此时的%100=α。从而可知,一定温

报告示例:实验三__醋酸解离度和解离常数的测定

山东轻工业学院实验报告 成绩 课程名称 基础化学实验1 指导教师 周磊 实验日期 院(系) 专业班级 实验地点 实验楼A 座412 学生姓名 学号 同组人 实验项目名称 醋酸解离度和解离常数的测定 一、实验目的 1. 学习正确使用酸度计。 2. 进一步练习溶液的配制与酸碱滴定的基本操作。 3. 用 pH 法测定醋酸的解离度和解离常数。 二、实验原理 HAc 为一元弱酸,在水溶液中存在如下解离平衡: HAc = H + + Ac - K a 起始浓度 (mol ?L -1) c 0 0 平衡浓度 (mol ?L -1) c –c α c α c α K a 表示 HAc 的解离常数 , α 为解离度 , c 为起始浓度。根据定义: 醋酸溶液总浓度 c 可以用 NaOH 标准溶液滴定测定。配制一系列已知浓度的醋酸溶液,在一定温度下,用酸度计测出其 pH 值,求出对应的 [H + ],再由上述公式计算出该温度下一系列对应的 α 和K a 值。取所得的一系列K a 值的平均值,即为该温度下醋酸的解离常数。 三、主要仪器和试剂 仪器 :酸度计, 碱式滴定管 (50mL), 锥形瓶 (250mL), 移液管 (25mL), 吸量管 (5mL), 容量瓶 (50mL), 烧杯 (50mL) 试剂:HAc 溶液, NaOH 标准溶液, 酚酞 四、实验步骤(用简洁的文字、箭头或框图等表示) 1. 醋酸溶液浓度的测定 2. 配制不同浓度的醋酸溶液 2 [H ]1a c K c θ ααα += = -

3. 不同浓度醋酸溶液pH 值的测定 五、结果记录及数据处理 表1 醋酸溶液浓度的测定 表2 HAc解离度和解离常数的测定

实验二、醋酸解离常数的测定

醋酸解离常数的测定 目的要求 (1)了解对消法测电动势的基本原理,熟悉EM-3C 电子电位差计的使用方法; (2)学习电极及盐桥的使用方法,学会电池的装配方法; (3)掌握可逆电池电动势测定的应用。 基本原理 利用各种氢离子指示电极与参比电极组成电池,即可从测得的电池电动势算出溶液的pH 值,常用指示电极有:氢电极、醌氢醌电极和玻璃电极。今讨论醌氢醌(Q·H 2Q)电极。Q·H 2Q 为醌(Q)与氢醌(H 2Q)的等分子化合物,在水溶液中部分分解。 (Q·H 2Q) (Q) (H 2Q) 醌氢醌在水中溶解度很小。将待测pH 溶液用Q·H 2Q 饱和后,再插入一只光亮Pt 电极就构成了Q·H 2Q 电极,可用它构成如下电池: Hg(l)|Hg 2Cl 2(s)|饱和KCl 溶液‖由Q·H 2Q 饱和的待测pH 溶液(H +)|Pt(s) Q·H 2Q 电极反应为: Q +2H ++2e – →H 2Q 因为在稀溶液中+ +H H a c =,所以: ????=- 2 2 Q H Q Q H Q 2.303pH RT F

2 可见,Q·H 2Q 电极的作用相当于一个氢电极,电池的电动势为: 2 Q H Q 2.303pH RT E F ????+-?=-=- -饱和甘汞 2 Q H Q pH () 2.303F E RT ???=--? 饱和甘汞 (1) 其中2Q H Q ??=0.6994 – 7.4 × 10–4 (t – 25),?饱和甘汞=0.2412 – 6.6l×10–4 (t –25) – 1.75×10–6 (t –25)2。 在HAc 和NaAc 组成的缓冲溶液中,由于同离子效应,当达到解离平衡时, HAc 0, HAc c c ≈, 0, NaAc Ac c c -≈。根据酸性缓冲溶液pH 的计算公式为 0, HAc HAc a a 0, NaAc Ac pH pK (HAc)lg pK (HAc)lg c c c c -=-=- 对于由相同浓度HAc 和NaAc 组成的缓冲溶液,则有 a pH pK (HAc)= 本实验中,量取两份相同体积、相同浓度的HAc 溶液,在其中一份中滴加NaOH 溶液至恰好中和(以酚酞为指示剂),然后加入另一份HAc 溶液,即得到等浓度的HAc-NaAc 缓冲溶液,测其pH 即可得到a pK (HAc)及a K (HAc)。 一、仪器 EM-3C 电子电位差计1套;Pt 电极1支;饱和甘汞电极1只;烧杯;移液管。 二、试剂 盐桥;KCl 饱和溶液;醌氢醌(固体);未知浓度醋酸溶液;氢氧化钠溶液0.1mol·L –1;2g/L 酚酞乙醇溶液。 三、实验步骤

血清米氏常数的测定

实验四 碱性磷酸酶米氏常数的测定 一.实验目的 1.通过碱性磷酸酶米氏常数的测定,了解其测定方法及意义。 2.学会运用标准曲线测定酶的活性,加深对酶促反应动力学的理解。 二.实验原理 当温度、pH 及酶浓度恒定的条件下,酶促反应的初速度随作用物浓度[S]增大而增大,但增大到一定限度时,作用物浓度再增加,则反应速度不再增加。此时反应速度为最大速度(V max )。如图5-1所示。 Michaelis Menten 对酶促反应速度与作用物浓度之间的这种关系进行了大量实验研究,并于1913年提出了数学方程式,即著名的米一曼(Michaelis-Menten )方程式: 式中Km 即为米氏常数,Vmax 为最大反应速度,当v =Vmax/2时,则Km=[S]。Km 是酶的特征常数,测定Km 是研究酶的一种方法。由于用Michaeis-Menten 方程中的V 与[S]作图求Km ,不方便,Lineweaver-Burk 将上式变形,以1/v 对1/[S]作图,如图5-2: Vm 1/2Vm Km [S] 图5-1

图5-2 作图后,将各点连线延长,直线与横轴的交点为,根据在横轴上的截距,可以计算出该酶的Km。 本实验以碱性磷酸酶为例,用磷酸苯二钠为其作用物,碱性磷酸酶能分解磷酸苯二钠产生酚和磷酸,酚在碱性溶液中与4氨基安替比林作用,经铁氰化钾氧化生成红色的醌衍生物,根据红色深浅可测出酶活力高低。其反应式如下: 利用在不同作用物浓度的条件下,测定的酶活性(A),按Lieweaver-Burk二氏法作图,从 x 轴上的截距求得其Km值。 三.预习题 试说明米氏常数Km的物理意义和生物学意义。 四.实验器材与试剂

醋酸解离常数的测定缓冲溶液法

醋酸解离常数的测定(缓冲溶液法) 实验目的 1. 利用测缓冲溶液pH 的方法测定弱酸的pKa 。 2. 学习移液管、容量瓶的使用方法,并练习配制溶液。 实验原理 在HAc 和NaAc 组成的缓冲溶液中,由于同离子效应,当达到解离平衡时, ()()0c HAc c HAc ≈,()()0c Ac c NaAc -≈。酸性缓冲溶液pH 的计算公式为 ()() ()c HAc pH pKa HAc lg c Ac θ-=-()()()00c HAc pKa HAc lg c NaAc θ =- 对于由相同浓度HAc 和NaAc 组成的缓冲溶液,则有 ()pH pKa HAc θ= 本实验中,量取两份相同体积、相同浓度的HAc 溶液,在其中一份中滴加NaOH 溶液至溶液呈粉红色后,然后混合,即得到等浓度的HAc-NaAc 缓冲溶液,测其pH 即可得到()pKa HAc θ及()Ka HAc θ。 仪器、药品及材料 仪器:pHs-2C 型酸度计,容量瓶(50ml )3个(编号为1,2,3号),烧杯(50ml 编号为1,2,3,4,5号)5个,移液管(25ml )1支,吸量管(10ml )1支,洗耳球1个。 药品:HAc (0.10 mol ·L -1),NaOH (0.10 mol ·L -1),酚酞。 材料:碎滤纸。 实验步骤 1.用酸度计测定等浓度的HAc 和NaAc 混合溶液的pH (1)配制不同浓度的HAc 溶液 实验室备有标以编号的小烧杯和容量瓶。用4号烧杯盛已知浓度的HAc 溶液。用10ml 吸量管从烧杯中吸取5.00ml 、10.00ml 0.10 mol ·L -1 HAc 溶液分别放入1号、2号容量瓶中,用25ml 移液管从烧杯中吸取25.00ml 0.10 mol ·L -1 HAc 溶液放入3号容量瓶中,分别加入去离子水至刻度,摇匀。 (2)制备等浓度的HAc 和NaAc 混合溶液

1。醋酸解离常数的测定

实验一 醋酸解离常数的测定 一、实验目的 1.了解弱酸溶液pH 值测定原理、方法及解离常数的计算。 2.掌握pH 计的正确操作和使用。 二、实验原理 1.溶液的解离度 醋酸CH 3COOH 即HAc ,在水溶液中,存在下列解离平衡: HAc( aq ) + H 2O( l ) H 3O + (aq) + Ac - ( aq ) (1-1) 或简写为 HAc( aq ) H + ( aq ) + Ac -( aq ) 如果HAc 的起始浓度为c ,当达到解离平衡时 c eq (H +) = c eq (Ac -) (1-3) 其解离度 c c c c eq eq ) (Ac )(H -+== α (1-4) 其解离常数 }} { {()} { θ θ θc c c c c c eq eq eq HAc )(Ac )(H ) HAc Ka(-+= (1-5) 式中c θ为标准浓度,其值为1mol·dm -3。将( 1-3 )式代入( 1-5 ),得 ()()θ ααc c c c 2 -= ) HAc Ka( (1-6) 简化后得 () αα-=1c 2 ) HAc Ka( (1-7) 当解离度α< 5% 时,1-α≈1,对于一般的弱酸来说 K a ≈ cα2 (1-8) 则,解离度 c a K ≈ α (1-9)

K a 与α都可用来表示酸的强弱,但α随浓度c 而变。在一定温度时,K a 不随c 而变,是一个常数。 2.测量原理 pH 玻璃电极是一种应用广泛的离子选择性电极。将玻璃电极(作为指示电极)与饱和甘汞电极(作为参比电极)或由二者制成的复合电极(图1-1)插入溶液,组成测量电池(图1-2)。 该电池的电动势与溶液的pH x 值在25℃时存在下列关系, E x = K′+ 0.0592pH x (1-10) 在实际测量时,一般是用已知pH s 值的标准缓冲溶液对仪器进行定位校正: 图1-1pH 电极示意图 玻璃电极 电极帽 导线 玻璃电极 塑亮 插棒 球泡 参比电极(甘汞电极) 复合电极 电极帽 导线 参比电极 塑亮 插口 液接界 电极帽 导线 玻璃电极 参比电极 保护套 球泡 保护套 插口

碱性磷酸酶米氏常数测定

碱性磷酸酶米氏常数测定 P60 【实验原理】 在环境的温度、pH和酶的浓度一定时,酶促反应速度与底物浓度之间的关系表现在反应开始时,酶促反应的速度(V)随底物浓度(S)的增加而迅速增加。若继续增加底物浓度,反应速度的增加率将减少。当底物浓度增加到某种程度时,反应速度会达到一个极限值,即最大反应速度(V max),如图所示。 底物浓度与酶促反应速度的这种关系可用Michaelis-Menten方程式表示。 V = V max[S]/(K m+[S]) 上式中V max为最大反应速度,[S]为底物浓度,K m为米氏常数(Michaelis constant),而其中V则表示反应的起始速度。当V= V max/2时,K m=[S]。所以米氏常数是反应速度等于最大反应速度一半时底物的浓度。因此K m的单位以摩尔浓度(mol/L)表示。 K m是酶的最重要的特征性常数,测定K m值是研究酶动力学的一种重要方法,大多数酶的K m值在0.01-100(mmol/L)间。 酶促反应的最大速度V max实际上不易准确测定,K m值也就不易准确测出。林-贝(1ineweaver - Burk)根据Michaelis-Menten方程,推导出如下方程式,即:1/V = (K m +[S])/ V max[S]或1/V = K m/ V max·(1/[S])+1/ V max 此式为直线方程,以不同的底物浓度1/[S]为横坐标,以1/V为纵坐标,并将各点连成一直线,向纵轴方向延长,此线与横轴相交的负截距为-1/ K m,由此可以正确求得该酶的K m值,如图所示。

本实验以碱性磷酸酶为例,测定不同底物浓度的酶活性,再根据Lineweaver-Burk法作图,计算其K m值。 可以作为碱性磷酸酶底物的物质很多,底物反应的酶对于不同的底物有不同的K m值。本实验以磷酸苯二钠为底物,由碱性磷酸酶催化水解,生成游离酚和磷酸盐。酚在碱性条件下与4-氨基安替比林作用,经铁氰化钾氧化,生成红色的醌衍生物,颜色深浅和酚的含量成正比。故可以从标准曲线上查知酚的含量,从而计算化学反应速度。反应式如下: 【实验方法】 一.底物浓度对酶促反应速度的影响 (1) 取6支试管,作好标记,按下表操作。 管号123456 0.04mol/L 基质液/mL0.10 0.20 0.30 0.40 0.80 0.0 0.1mol/L碳酸盐缓冲液/mL0.70 0.70 0.70 0.70 0.70 0.70 蒸馏水/mL 1.10 1.00 0.90 0.80 0.40 1.20 37℃水浴5min 血清/mL0.10 0.10 0.10 0.10 0.10 0.10 最终基质浓度/mmol?L-1 2.00 4.00 6.00 8.00 16.00 0.00 (2) 加入血清后,各管混匀并且立即记录时间,将上述各管置37℃水浴中准确保温15 分钟。 (3) 保温结束,立即加碱性溶液1.1mL终止反应。 (4) 各管分别加入0.3%4-氨基安替比林1.0mL,0.5%铁氰化钾2.0mL,充分混匀,放置10分钟,以6号空白管作对照,于510nm波长处比色测定,根据酚标准曲线计算酚含量。 (5) 以各管基质浓度的倒数1/[S]为横坐标,以各管反应速度的倒数1/V(μmol.L-1.min-1为单位)作纵坐标,作图求出K m值。 二.酚标准曲线的绘制 (1) 取洁净干燥试管6支,按下表依次加入试剂。

醋酸电离常数的测定实验报告

醋酸电离常数的测定实验报告 篇一:实验四醋酸解离常数的测定 实验四醋酸解离常数的测定 (一) pH法 一. 实验目的 1. 学习溶液的配制方法及有关仪器的使用 2. 学习醋酸解离常数的测定方法 3. 学习酸度计的使用方法二. 实验原理 醋酸(CH3COOH,简写为HAc)是一元弱酸,在水溶液中存在如下解离平衡: HAc(aq) + H2O(l) ? H3O+(aq) + Ac- (aq) 其解离常数的表达式为 [c (H3O+)/cθ][c(Ac-)/ cθ] Kθa HAc(aq) = —————————————c(HAc)/ cθ 若弱酸HAc的初始浓度为C0 mol?L-1,并且忽略水的解离,则平衡时: c(HAc) = (C0 – x)mol?L-1 c (H3O+) = c(Ac-)= x mol?L-1 x Kθa HAc = ———— C0– x 在一定温度下,用pH计测定一系列已知浓度的弱酸溶液的pH。根据PH = -㏒[c (H3O+)/cθ],求出c (H3O+),

即x,代入上式,可求出一系列的Kθa HAc,取其平均值,即为该温度下醋酸的解离常数。 实验所测的4个p Kθa(HAc),由于实验误差可能不完全相同,可用下列方式处理,求p Kθa(HAc)平均和标准偏差s: n ∑ Kθai HAc i=1 θ Ka HAc = ———————— n S = 三.实验内溶(步骤) 1.不同浓度醋酸溶液的配制 2.不同浓度醋酸溶液pH的测定四.数据记录与处理 温度_18_℃ pH计编号____标准醋酸溶液浓度_0.1005_mol?L-1 实验所测的4个p Kθa(HAc),由于实验误差可能不完全相同,可用下列方式处理,求p Kθa(HAc)平均和标准偏差s: n ∑ Kθai HAc i=1 Kθa HAc = ————————

过氧化氢酶米氏常数的测定

过氧化氢酶米氏常数的测定 傅璐121140012 一、实验目的 1. 了解米氏常数的测定方法 2. 学习提取生物组织中的酶 二、实验原理 1.米氏反应动力学 (Michaelis-Menten Equation): 米氏方程 2.米氏常数的意义: ①反映酶的种类:Km是一种酶的特征常数,只与酶的种类有关,与酶浓度、 底物浓度无关。 ②米氏常数是酶促反应达到最大反应速度Vmax一半时的底物浓度。其数值大 小反映了酶与底物之间的亲和力:Km值越大,亲和力越弱,反之Km值越小,亲和能力越强。 ③Km可用来判断酶(多功能酶)的最适底物:Km值最小的酶促反应对应底物 就是该酶的最适底物。 3.米氏常数的求法: 该方法的缺点是难以确定最大 反应速度Vmax。

该作图法应用最广。但在低浓度是v值误差较大,在[S]等差值实验时作图点较集中于纵轴。因此在设计底物浓度时,最好将1/[S]配成等差数列,这样可使点距较为平均,再配以最小二乘回归法,就可以得到较为准确的结果。 此法优点是横轴上点分布均匀,缺点是1/v会放大误差,同时对底物浓度的选择有要求。[S]<>Km时直线将在原点附近与轴相交。 4.氧化酶:生物体内重要的三种氧化酶类,其作用均是消除体内自由基: ①POD:过氧化物酶 ②SOD:超氧化物歧化酶 ③CAT:;过氧化氢酶 5.过氧化氢酶的作用: 植物体内活性氧代谢加强而使过氧化氢发生积累。过氧化氢可进行一步生成氢氧自由基。氢氧自由基是化学性质最活泼的活性氧,可以直接或间接地氧化细胞内核酸、蛋白质等生物大分子,并且有非常高的速度常数,破坏性极强,可使细胞膜遭受损害,加速细胞的衰老和解体。过氧化氢酶(catalase,CAT)可以清除过氧化氢、分解氢氧自由基,保护机体细胞稳定的内环境及细胞的正常生活,因此CAT是植物体内重要的酶促防御系统之一,其活性高低与植物的抗逆性密切相关。 6.过氧化氢酶活力的测定方法:

醋酸电离常数的测定

大学化学实验报告 专业土木工程年级2012 班级08班姓名姚贤涌 实验项目名称醋酸电离常数的测定 实验原理: (1) 醋酸溶液浓度的标定 在容量分析中进行物质溶液浓度的标定计算,依据的是“反应的等物质的量规则”。该“规则”指出:在反应中所消耗的反应物A的物质的量n(A)等于反应中所消耗的反应物B的物质的量n(B)。 对于给定的反应 aA+bB=gG+dD 即n(A)=n(B) 在本实验中,是用Hac溶液去中和滴定NaOH的标准溶液,其反应式为 HAc(aq)+NaOH(aq)=NaAc(aq)+H2O(l) 在滴定刚刚达到终点时,则有 n(HAc)=n(NaOH) 即c(HAc)V(HAc)=c(NaOH)V(NaOH) 这样可以求出HAc溶液的尝试为: c(HAc)=c(NaOH)V(NaOH)/V(HAc) 这里物质溶液的浓度单位为mol·dm-3;物质溶液的体积单位为dm-3。 (2) pH值法测定醋酸电离常数 醋酸是弱酸,即弱电解质,它在溶液中存在下列电离平衡: HAc H++Ac-

溶液中各物质的原始浓度/mol ·dm -3 c 0 0 溶液中各物质的平衡浓度/mol ·dm -3 c-c α c α c α 其电离平衡常数表达式为: ()()()HAc c H c Ac c c K c HAc c c ααα +-==- 所以 21HAc c K c αα=- 式中 K HAc ——醋酸的电离常数; c ——醋酸溶液的原始浓度,单位为mol ·dm -3 α——醋酸的电离度。 在一定温度下,用pH 计(酸度计)(参见2.2酸度计)测得一系列已知不同浓度的醋酸溶液的pH 值,根据pH=-lg{c(H +)/c },换算出各不同浓度醋酸溶液中的c(H +);再根据c(H +)=c α,α={c(H +)/c}×100%,方可求得各不同浓度醋酸溶液的电离度α值;最后根据K HAc =c α2/(1-α),求得一系列对应的电离常数K HAc 值,取其平均值,即为该温度下的醋酸电离常数值。

实验6弱酸解离常数的测定

实验6 弱酸解离常数的测定 一.实验目的 1. 了解弱酸解离常数的测定方法 2. 加深对电离平衡基本理论的理解 二.背景知识及实验原理 1. 背景知识 在农业生产和科学实验中,人类与溶液有着广泛的接触,许多反应是在溶液中进行的,许多物质的性质也是在溶液中体现的。我们还会遇到许多存在于水溶液中的化学平衡,如电解质在溶液中的解离。强电解质在水溶液中是完全解离的;而弱电解质在水溶液中存在着分子与其解离离子之间的平衡,其平衡常数称为解离平衡常数。弱酸性电解质的解离平衡常数用K aΘ表示,弱碱性电解质解离平衡常数用K bΘ表示。与其它平衡常数一样,解离平衡常数是化学平衡理论中重要的概念之一。其值越大,表明平衡时离子的浓度越大,电解质解离程度越大,即弱电解质解离得越多,因此可根据解离常数值得大小比较相同类型的弱电解质解离度的大小,即弱电解质的相对强弱。 弱电解质的解离平衡常数应用较广。比如缓冲溶液的选择和配制,解离平衡常数值是选择和配制缓冲溶液的K aΘ或K bΘ值以及缓冲对的两种物质浓度比。因此在选择具有一定pH 值的缓冲溶液时,应选用弱酸(或弱碱)的K aΘ(或K bΘ)值等于或接近于所需[H+](或[OH-])的共轭酸碱对组成的混合溶液,即pH≈p K aΘ或pOH≈p K bΘ。 弱电解质解离常数的数值可以通过热力学数据计算求得,也可以通过一些物理化学实验方法测定。这些物理化学方法是借助物理和几何方法来研究化学平衡体系性质变化和组成关系的,通过组成性质的研究可以了解平衡体系所发生的化学变化。在研究电解质溶液的各种化学性质时,也可以采取这些方法。因为随着溶液组分发生变化,体系的某些性质也相应地发生变化。比如溶液的导电行为导电性质是一个能直接反映出电解质本性的重要理化性质,它随着溶液组成的变化发生相应变化。而通过直接测定溶液的电导值以确定溶液中被测离子的浓度的方法称为电导分析法。 2. 实验原理 一元弱酸弱碱的解离平衡常数KΘ与解离度α有一定的关系。例如醋酸(HAc)溶液: HAc(aq) H+(aq) + Ac-(aq)

实验二、醋酸解离常数的测定

百度文库 醋酸解离常数的测定 目的要求 (1)了解对消法测电动势的基本原理,熟悉EM-3C 电子电位差计的使用方法; (2)学习电极及盐桥的使用方法,学会电池的装配方法; (3)掌握可逆电池电动势测定的应用。 基本原理 利用各种氢离子指示电极与参比电极组成电池,即可从测得的电池电动势算出溶液的pH 值,常用指示电极有:氢电极、醌氢醌电极和玻璃电极。今讨论醌氢醌(Q·H 2Q)电极。Q·H 2Q 为醌(Q)与氢醌(H 2Q)的等分子化合物,在水溶液中部分分解。 (Q·H 2Q) (Q) (H 2Q) 醌氢醌在水中溶解度很小。将待测pH 溶液用Q·H 2Q 饱和后,再插入一只光亮Pt 电极就构成了Q·H 2Q 电极,可用它构成如下电池: Hg(l)|Hg 2Cl 2(s)|饱和KCl 溶液‖由Q·H 2Q 饱和的待测pH 溶液(H +)|Pt(s) Q·H 2Q 电极反应为: Q +2H ++2e – →H 2Q 因为在稀溶液中++H H a c =,所以: ????=- 2 2 Q H Q Q H Q 2.303pH RT F

百度文库 可见,Q·H 2Q 电极的作用相当于一个氢电极,电池的电动势为: 2 Q H Q 2.303pH RT E F ????+-?=-=- -饱和甘汞 2 Q H Q pH () 2.303F E RT ???=--? 饱和甘汞 (1) 其中2 Q H Q ??=0.6994 – 7.4 × 10–4 (t – 25),?饱和甘汞=0.2412 – 6.6l×10–4 (t –25) – 1.75×10–6 (t –25)2。 在HAc 和NaAc 组成的缓冲溶液中,由于同离子效应,当达到解离平衡时, HAc 0, HAc c c ≈, 0, NaAc Ac c c -≈。根据酸性缓冲溶液pH 的计算公式为 0, HAc HAc a a 0, NaAc Ac pH pK (HAc)lg pK (HAc)lg c c c c -=-=- 对于由相同浓度HAc 和NaAc 组成的缓冲溶液,则有 a pH pK (HAc)= 本实验中,量取两份相同体积、相同浓度的HAc 溶液,在其中一份中滴加NaOH 溶液至恰好中和(以酚酞为指示剂),然后加入另一份HAc 溶液,即得到等浓度的HAc-NaAc 缓冲溶液,测其pH 即可得到a pK (HAc)及a K (HAc)。 一、仪器 EM-3C 电子电位差计1套;Pt 电极1支;饱和甘汞电极1只;烧杯;移液管。 二、试剂 盐桥;KCl 饱和溶液;醌氢醌(固体);未知浓度醋酸溶液;氢氧化钠溶液0.1mol·L –1;2g/L 酚酞乙醇溶液。 三、实验步骤

碱性磷酸酶米氏常数的测定

碱性磷酸酶米氏常数的测定 [目的与要求] 通过碱性磷酸酶米氏常数的测定,了解其测定方法及意义。学会运用标准曲线测定酶的活性,加深对酶促反应动力学的理解。 [原理] 在环境的温度、pH和酶的浓度一定时。酶促反应速度与底物浓度之间的关系表现在反应开始时。酶促反应的速度(V)随底物浓度(S)的增加而迅速增加。若继续增加底物浓度,反应速度的增加率将减少。当底物浓度增加到某种程度时,反应速度会达到一个极限值,即最大反应速度(V max),如图37所示。 底物浓度与酶促反应速度的这种关系可用Michaelis-Menten方程式表示。 V = V max[S]/(K m+[S]) 上式中V max为最大反应速度,[S]为底物浓度,K m为米氏常数(Michaelis constant),而其中V则表示反应的起始速度。当V= V max/2时,K m =[S]。所以米氏常数是反应速度等于最大反应速度一半时底物的浓度。因此K m的单位以摩尔浓度(mol/L)表示。 K m是酶的最重要的特征性常数,测定K m值是研究酶动力学的一种重要方法,大多数酶的K m值在0.01-100(mmol/L)间。 酶促反应的最大速度V max实际上不易准确测定,K m值也就不易准确测出。林-贝(1ineweaver - Burk)根据Michaelis-Menten方程,推导出如下方程式,即: 1/V = (K m +[S])/ V max[S]或1/V = K m/ V max·(1/[S])+1/ V max 此式为直线方程,以不同的底物浓度1/[S]为横坐标,以1/V为纵坐标,并将各点连成 一直线,向纵轴方向延长,此线与横轴相交的负截距为-1/ K m,由此可以正确求得该酶的K m 值,如图38所示。 图37 底物浓度对反应速度的影响图38 Lineweaver-Burk作图法 本实验以碱性磷酸酶为例,测定不同底物浓度的酶活性,再根据Lineweaver-Burk法作图,计算其K m值。 可以作为碱性磷酸酶底物的物质很多,底物反应的酶对于不同的底物有不同的K m值。本实验以磷酸苯二钠为底物,由碱性磷酸酶催化水解,生成游离酚和磷酸盐。酚在碱性条件下与4-氨基安替比林作用,经铁氰化钾氧化,生成红色的醌衍生物,颜色深浅和酚的含量成正比。根据吸光度的大小可以计算出酶的活性,也可以从标准曲线上查知酚的含量,进而算出酶活性的大小。反应式如下:

醋酸电离度和电离平衡常数的测定

实验三 醋酸电离度和电离平衡常数的测定 一、实验目的 1.测定醋酸的电离度和电离平衡常数。 2.学会正确地使用pH 计。 3.练习和巩固容量瓶、移液管、滴定管等仪器的基本操作。 二、实验原理 醋酸CH 3COOH(简写为HAc)是一元弱酸,在溶液中存在下列电离平衡: 2HAc(aq)+H O(l) +-3H O (aq)+Ac (aq) 忽略水的电离,其电离常数: 首先,一元弱酸的浓度是已知的,其次在一定温度下,通过测定弱酸的pH 值,由pH = -lg[H 3O +], 可计算出其中的[H 3O +]。对于一元弱酸,当c /K a ≥500时,存在下列关系式: +3[H O ]c α≈ +23a [H O ]K c = 由此可计算出醋酸在不同浓度时的解离度(α)和醋酸的电离平衡常数(a K )。 或者也可由2a K c α=计算出弱酸的解离常数(a K )。 三、仪器和试药 仪器:移液管、吸量管、容量瓶、碱式滴定管、锥形瓶、烧杯、量筒、pHS-3C 型酸度 计。 试药:冰醋酸(或醋酸)、NaOH 标准溶液(0.1mol·L -1)、标准缓冲溶液(pH = 6.86, 4.00) 酚酞溶液(1%)。 四、实验内容 1.配置250mL 浓度为0.1mol·L -1的醋酸溶液 用量筒量取4mL 36%(约6.2 mol·L -1)的醋酸溶液置于烧杯中,加入250mL 蒸馏水稀释,混匀即得250mL 浓度约为0.1mol·L -1的醋酸溶液,将其储存于试剂瓶中备用。 2.醋酸溶液的标定 用移液管准确移取25.00mL 醋酸溶液(V 1)于锥型瓶中,加入1滴酚酞指示剂,用标准NaOH 溶液(c 2)滴定,边滴边摇,待溶液呈浅红色,且半分钟内不褪色即为终点。由滴定管读出所消耗的NaOH 溶液的体积V 2,根据公式c 1V 1 = c 2V 2计算出醋酸溶液的浓度c 1。平行做三份,计算出醋酸溶液浓度的平均值。 3.pH 值的测定 分别用吸量管或移液管准确量取2.50、5.00、10.00、25.00mL 上述醋酸溶液于四个50mL 的容量瓶中,用蒸馏水定容,得到一系列不同浓度的醋酸溶液。将四溶液及0.1mol·L -1原溶液按浓度由低到高的顺序,分别用pH 计测定它们的pH 值。 +-+2 33a [H O ][Ac ][H O ][HAc][HAc]K =≈

醋酸解离度和解离常数的测定(讲义)2011(1)

实验一 醋酸解离度和解离常数的测定 ㈠实验目的 1. 了解弱酸的解离度和解离常数的测定方法。 2. 学会刻度吸管、容量瓶、滴定管的洗涤和使用及滴定方法。 3. 了解pH 计的使用方法。 ㈡实验原理 醋酸(CH 3COOH 或简写为HAc )是弱电解质,在水溶液中存在下列质子解离平衡: HAc + H 2O H 3O + + Ac - K a = [HAc] ] ][Ac O H [3- + 或简写为K a = [HAc] ]][Ac H [- + 溶液中[H 3O +] ≈ [Ac -],可通过测定溶液的pH 值,根据pH==-lg[H 3O +]计算出来。 [HAc] = C HAc -[H 3O +] ,而C HAc 可以用NaOH 标准溶液通过滴定测得。这样,便可计算出该温度下的K a ,进而也可求得醋酸的解离度α。 ) HAc (]O H [3c + = α×100% ㈢实验器材 1.仪器 pH 计、50ml 碱式滴定管一支、25ml 移液管一支、10ml 刻度吸管一支、50ml 容量瓶3个、50ml 烧杯4个、250ml 锥形瓶3个、洗耳球 2.试剂 0.2 mol ·L -1HAc 溶液、0.20 mol ·L -1NaOH 标准溶液、酚酞指示剂 ㈣实验方法 1.醋酸溶液浓度的测定 用移液管吸取25.00ml0.2 mol ·L -1HAc 溶液,置于250 ml 锥形瓶中,加酚酞指示剂2~3滴。用NaOH 标准溶液滴定至溶液呈淡淡的粉红色,30秒内不褪色为止,即为终点。记录所用NaOH 标准溶液的体积。平行测定三次,求取平均值,计算c (HAc)(注意保留四位有效数字)。 把相关数据和实验结果填入下表:

米氏常数的测定

底物浓度对酶促反应速度的影响 ——米氏常数的测定 一.目的要求 1.1了解底物浓度对酶促反应的影响。 1.2掌握测定米氏常数K m 的原理和方法。 二.实验原理 酶促反应速度与底物浓度的关系可用米氏方程来表示: 式中: v ——反应初速度(微摩尔浓度变化/min ); V ——最大反应速度(微摩尔浓度变化/min ); [s]——底物浓度(mol/L ); K m ——米氏常数(mol/L )。 这个方程表明当已知K m 及V 时,酶促反应速度与底物浓度之间的定量关系。K m 值等于酶促反应速度达到最大反应速度一半时所对应的底物浓度,是酶的特征常数之一。不同的酶,K m 值不同,同一种酶与不同底物反应K m 值也不同,K m 值可以近似地反应酶与底物的亲和力大小:K m 值越大,表明亲和力小;K m 值小,表明亲和力大。则测K m 值是酶学研究的一个重要方法。大多数纯酶的K m 值在0.01~100mmol/L 。 Linewaeaver-Burk 作图法(双倒数作图法)是用实验方法测K m 值的最常用的简便方法: 实验时可选择不同的[s],测定对应的v ,以 对 作图,得到一个斜率为V K m 的直线,其截距 ][1s 则为m K 1,由此可求出K m 的值(截距的负倒数)。 本实验以胰蛋白酶消化酪蛋白为例,采用Linewaeaver-Burk 双倒数作图法测定双倒数作图法。胰蛋白酶催化蛋白质中碱性氨基酸(L-精氨酸和L-赖氨酸)的羧基所形成的肽键水解。水解时有自由氨基生成,可用甲醛滴定法判断自由氨基增加的数量而跟踪反应,求得初速度。 ] [][s K s V v m += V s V K v m 1 ][1.1+ =v 1][1s

醋酸电离度和电离常数的测定

实验题目 醋酸电离度和电离常数的测定(教材p57-59) 一、实验目的 1、测定醋酸的电离度和电离常数; 2、掌握滴定原理,滴定操作及正确判断滴定终点; 3、练习使用pH 计、滴定管、容量瓶的使用方法。 二、实验原理 醋酸(CH3COOH 或写出HAc )是弱电解质,在溶液中存在下列电离平衡: HAc H+ + Ac- 起始浓度/ mol·dm -3 c 0 0 平衡浓度 / mol·dm - 3 c-cα cα cα θ a K = ][]][[HAc Ac H -+=ααc c c -2)(=α α-12c ,当α<5%时,1-α ≈ 1 故θ a K =c α2 而[H +]= cα →α=[H +]/c 。 c 为HAc 的起始浓度,通过已知浓度的NaOH 溶液滴定测出, HAc 溶液的pH 值由数显 pH 计测定,然后根据pH=-log[H +],→[H +]=10-pH ,把[H +]、c 带入上式即可求算出电离度α和电离平衡常数θ a K 。 三、仪器和药品 数显pH 计,酸式滴定管,碱式滴定管,烧杯,温度计,移液管,洗耳 球;0.1 mol·dm - 3左右的NaOH 溶液,未知浓度的HAc 溶液。 四、实验步骤 1、醋酸溶液浓度的标定 用移液管移取25.00cm 3 HAc 溶液于锥形瓶中,加入纯水25cm 3,再加入2滴 酚酞指示剂,立即用NaOH 溶液滴定至呈浅粉红色并30秒钟不消失即为终点。再重复滴定2次,并记录数据。 2、配制不同浓度的醋酸溶液,并测定pH 值 把1中已标定的醋酸溶液,配制成c/2、c/4,并测定其pH 。 五、数据记录和处理 表一 醋酸溶液浓度的标定

弱酸电离度与电离常数的测定实验报告

弱酸电离度与电离常数的测定实验报告 Ac-、HAc的平衡浓度;c为醋酸的起始浓度;Ka 为醋酸的电离平衡常数。通过对已知浓度的醋酸的pH值的测定,按pH=-lg[H+]换算成[H+],[H] 根据电离度,计算出电离度α,再代入上式即可求得电离平衡常数Ka。 三、仪器和药品 仪器:移液管,吸量管,容量瓶,烧杯,锥形瓶,碱式滴定管,铁架,滴定管夹,吸气橡皮球,Delta320-S pH计。 药品:HAc,标准缓冲溶液,酚酞指示剂,标准NaOH溶液。 四、实验内容 1.醋酸溶液浓度的标定 用移液管吸取25mL约0、2mol·L-1 HAc溶液三份,分别置于三个250mL锥形瓶中,各加2~3滴酚酞指示剂。分别用标准氢氧化钠溶液滴定至溶液呈现微红色,半分钟不褪色为止,记下所用氢氧化钠溶液的体积。从而求得HAc溶液的精确浓度。 2.配制不同浓度的醋酸溶液 用移液管和吸量瓶分别取25mL,5mL,2、5mL已标定过浓度的HAc 溶液于三个50mL容量瓶中,用蒸馏水稀释至刻度,摇匀,并求出各

份稀释后的醋酸溶液精确浓度的值。 3.测定醋酸溶液的pH值 用四个干燥的50mL烧杯分别取30~40mL上述三种浓度的醋酸溶液及未经稀释的HAc溶液,由稀到浓分别用pH计测定它们的pH值,并纪录室温。 4.计算电离度与电离平衡常数 根据四种醋酸的浓度pH值计算电离度与电离平衡常数。 五、数据纪录和结果 1、醋酸溶液浓度的标定 滴定序号 标准NaOH溶液的浓度/ mol·L-1 所取HAc溶液的量/mL 标准NaOH溶液的用量/ mL 实验测定HAc 测定值 溶液精确浓度/ mol·L-1 平均值 2、醋酸溶液的pH值测定及平衡常数、电离度的计算 t

实验六 醋酸离解度及离解平衡常数的测定

实验六 醋酸离解度及离解平衡常数的测定 一、目的要求 1、掌握用酸度计法测定醋酸离解度和离解平衡常数的原理和方法。 2、掌握移液管、容量瓶的使用。 3、了解酸度计的构造及测定pH 值的原理。 二、实验原理 醋酸是弱电解质,在溶液中存在如下离解: HAc = H + + Ac - 离解达平衡时,标准离解平衡常数K a θ表示为 θ θθθc c c c c c K HAc Ac H a /) /)(/(-+= (1) 式中各浓度均为平衡浓度,θc 为标准浓度。以c 代表HAc 的起始浓度,则 +-=H HAc c c c ,而-+=Ac H c c 将此代入式(1)得 θ θθ c c c c c K H H a /)()/(2++-= (2) 当离解度小于5%,c c c H ≈-+,θc =?L -1 (2)式可写作:c c K H a 2+ = θ (3) HAc 的离解度α可以表示为 %100?= +c c H α (4) 醋酸溶液的起始浓度c 可以用标准NaOH 溶液滴定测得。在一定温度下用酸度计测定醋酸溶液的pH 值,代入(3) 、 (4)式即可求得离解平衡常数和离解度。 三、实验用品 仪器:酸度计,碱式滴定管,移液管,吸量管,50mL 容量瓶,。 试剂: ·L -1HAc , ·L -1NaOH 标准溶液[1],酚酞指示剂。 四、实验步骤 1. 标定HAc 溶液浓度

用移液管移取mL ·L-1HAc溶液于250 mL锥形瓶中,加入2滴酚酞指示剂。用NaOH标准溶液滴定此溶液至呈微红色,30s不褪色即为终点。记下所用的NaOH溶液体积。平行测定3份,数据填入表1中。 2. 配制不同浓度HAc溶液 用吸量管分别取、、溶液于三个洁净的50mL容量瓶中(分别标为1、2、3号),加去离子水稀释到刻度,摇匀。 3. 测定HAc溶液pH值 用四只洁净干燥的50mL烧杯(标为1、2、3、4号),分别取上述三种浓度的HAc溶液(分别对应标号为1、2、3号烧杯))及一份未稀释的HAc标准溶液(对应4号烧杯),按浓度由稀至浓顺序测定它们的pH值,数据填入表2。 五、数据记录与结果处理 根据表1的数据,计算HAc溶液的浓度。完成表2. 表2 HAc溶液pH的测定及K aθ和α计算 六、思考与讨论 1.根据实验结果讨论HAc离解度和离解平衡常数与其浓度的关系,如果改变温度和浓度,对HAc的离解度和离解平衡常数有何影响? 2.在测定一系列同一种电解质溶液的pH时,测定的顺序按浓度由稀到浓和由浓到稀,结果有何不同? 注释 [1] ·L-1NaOH标准溶液实验室已标定。若没有标定,根据实验室准备的基准物,参照实验五标定。

相关文档
最新文档