【高中数学】秒杀秘诀---直线系和圆系方程

【高中数学】秒杀秘诀---直线系和圆系方程
【高中数学】秒杀秘诀---直线系和圆系方程

直线系和圆系方程

定义:如果两条曲线方程是f 1(x ,y)=0和f 2(x ,y)=0,它们的交点是P (x 0,y 0),方程f 1(x ,y)+λf 2(x ,y )=0的曲线也经过点P (λ是任意常数)。由此结论可得出:经过两曲线f 1(x ,y)=0和f 2(x ,y )=0交点的曲线系方程为:f 1(x ,y )+λf 2(x ,y )=0。利用此结论可得出相关曲线系方程。

一.直线系

概念:具有某种共同属性的一类直线的集合,称为直线系。它的方程称直线系方程。

几种常见的直线系方程:

(1)过已知点P (x 0,y 0)的直线系方程y -y 0=k (x -x 0)(k 为参数)

(2)斜率为k 的直线系方程y =kx +b (b 是参数)

(3)与已知直线Ax +By +C =0平行的直线系方程Ax +By +λ=0(λ为参数)

(4)与已知直线Ax +By +C =0垂直的直线系方程Bx -Ay +λ=0(λ为参数)

(5)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ为参数)

例1:已知直线l 1:x +y +2=0与l 2:2x -3y -3=0,求经过的交点且与已知直线3x +y -1=0平行的直线

分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得m(x +2y -1)-(x +y -5)=0,①即?

??-==???=-+=-+4y 9x 05y x 01y 2x 解得,∴直线过定点P (9,-4)例3:求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程.

概念:具有某种共同属性的圆的集合,称为圆系。

几种常见的圆系方程:

(1)同心圆系:(x -x 0)2+(y -y 0)2=r 2,x 0、y 0为常数,r 为参数。

(2)过两已知圆C 1:f 1(x ,y )=x 2+y 2+D 1x +E 1y +F 1=0。和C 2:f 2(x ,y )=x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程为:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1)

若λ=-1时,变为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0,则表示过两圆的交点的直线。

其中两圆相交时,此直线表示为公共弦所在直线,当两圆相切时,此直线为两圆的公切线,当两圆相离时,此直线表示与两圆连心线垂直的直线。

(3)过直线与圆交点的圆系方程:设直线L :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0相交,则过直线L 与圆C 交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0。

4:求过圆:2x +2y 2x -+2y +1=0与圆:2x

+2

y +4x 2y -4-=0的交点,圆心在直线:2+50x y -=的

例6:求过直线2x +y +4=0和圆01y 4x 2y x =+-++的交点,且过原点的圆方程。

例7:已知圆O :C 、

例8:求过点(14)

P -,圆例9:平面上有两个圆,它们的方程分别是x +y =16和x +y -6x+8y+24=0,求这两个圆的内公切线方程。解:∵x 2+y 2-6x+8y+24=0?(x -3)2+(y+4)2=1∴这两圆是外切∴(x 2+y 2-6x+8y+24)-(x 2+y 2-16)=0?3x -4y -20=0∴所求的两圆内公切线的方程为:3x -4y -20=0

例10:已知圆2260x y x y m ++-+=与直线230x y +-=相交于P ,Q 两点,O 为坐标原点,若OP OQ ⊥,

1.求证:无论m 取何实数时,直线(m-1)x-(m+3)y-(m-11)=0恒过定点,并求出定点的坐标.

2.求过两直线x -2y+4=0和x+y-2=0的交点,且满足下列条件的直线L 的方程.

(1)过点(2,1)(2)和直线3x-4y+5=0垂直.

3.过点P (3,1)作曲线C :x 2+y 2﹣2x=0的两条切线,切点分别为A ,B ,则直线AB 的方程为(

)A .2x+y ﹣3=0B .2x ﹣y ﹣3=0C .4x ﹣y ﹣3=0D .4x+y ﹣3=0

4.对于任意实数λ,曲线(1+λ)x 2+(1+λ)y 2+(6﹣4λ)x ﹣16﹣6λ=0恒过定点

5.求经过两圆22y x ++3x -y -2=0和2233y x ++2x +y +1=0交点和坐标原点的圆的方程.

6.求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程.

.

)0,2(),3,1(02024.722的圆的方程且过切于求与圆B A y x y x --=---+8.求过两圆225x y +=和22

(1)(1)16x y -+-=的交点且面积最小的圆的方程。

9.求经过直线l :2x +y +4=0与圆C:2

2y x +2x -4y +1=0的交点且面积最小的圆的方程.10.在平面直角坐标系xOy 中,圆C 过点(0,﹣1),(3+,0),(3﹣,0)(Ⅰ)求圆C 的方程;(Ⅱ)是否存在实数a ,使得圆C 与直线x+y+a =0交于A ,B 两点,且OA ⊥OB ,若存在,求出a 的值,若不存在,请说明理由.

11.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).

(1)证明:不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时l 的方程.

12.已知圆C :x 2+y 2+4x ﹣2y+a =0,直线l :x ﹣y ﹣3=0,点O 为坐标原点.(1)求过圆C 的圆心且与直线l 垂直的直线m 的方程;(2)若直线l 与圆C 相交于M 、N 两点,且OM ⊥ON ,求实数a 的值.

13.已知圆C 的圆心为原点O ,且与直线相切.(1)求圆C 的方程;(2)点P 在直线x=8上,过P 点引圆C 的两条切线PA 、PB ,切点为A 、B ,试问,直线AB 是否过定点,若过定点,请求出;若不过定点,请说明理由.

1.??

? ??25,27 2.(1)x+2y-4=0,(2)4x+3y-6=0;

3.解:方程x 2+y 2﹣2x=0①可化为(x ﹣1)2+y 2=1,即曲线C 是一个圆,记圆心为C .

因为PA ,PB 分别切圆C 于A ,B ,所以P ,A ,B ,C 四点在以PC 为直径的圆

即x 2+y 2﹣4x ﹣y+3=0②上,两圆公共弦所在直线即为所求,由①﹣②,得直线AB 的方程为2x+y ﹣3=0.故选:A .

4.解:曲线(1+λ)x 2+(1+λ)y 2+(6﹣4λ)x ﹣16﹣6λ=0可化为(x 2+y 2+6x ﹣16)+λ(x 2+y 2﹣4x ﹣6)=0,∴x 2+y 2+6x ﹣16=0且x 2+y 2﹣4x ﹣6=0,可得恒过定点.故答案为:.

5.解:由题可设所求圆的方程为:(22y x ++3x -y -2)+λ(2233y x ++2x +y +1)=0∵(0,0)在所求的圆上,∴有-2+λ=0.

从而λ=2故所求的圆的方程为:0)1233(2)23(2222=+++++--++y x y x y x y x 即2277y x ++7x +y =0。6.解:构造方程x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0即(1+λ)x 2+(1+λ)y 2+6x+6λy -(4+28λ)=0

此方程的曲线是过已知两圆交点的圆,且圆心为13,13(λλλ+-+-

当该圆心在直线x -y -4=0上时,即.7,041313-==-+++-λλ

λλ得∴所求圆方程为x 2+y 2-x+7y -32=0.

02018477,7

8)0,2(0)1543(202401543)3,1(.72222=-+-+==+++---+=++--y x y x y x y x y x y x A 所以所求圆方程为得,代入。与已知圆构造圆系

的圆的切线为解:过λλ8.解:圆225x y +=和22(1)(1)16x y -+-=的公共弦方程为22110x y +-=过直线22110x y +-=与圆225x y +=的交点的圆系方程为2225(2211)0x y x y λ+-++-=,即

2222(1125)0x y x y λλλ+++-+=依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心(,)λλ--必在公共弦所在直线22110x y +-=上。即22110λλ--+=,则

114λ=-代回圆系方程得所求圆方程22111179(()448x y -+-=9.解:设圆的方程为:22y x ++2x -4y +1+λ(2x +y +4)=0即22y x ++y

x )4()1(2-++λλ+(1+4λ)=0则[]

5458(45)41(4)4()1(4412222+-=+--++=λλλλr ,当λ=58时,2r 最小,从而圆的面积最小,故所求圆的方程为:2255y x ++26x -12y +37=010.解:(Ⅰ)设圆的方程为x 2+y 2+Dx+Ey+F=0,把点(0,﹣1),(3+,0),(3﹣,0)分别代入,得:

,解得D=﹣6,E=8,F=7,∴圆C 的方程为x 2+y 2﹣6x+8y+7=0.

(Ⅱ)过直线+0x y a +=与圆22

6870x y x y +-++=的交点的圆系方程为:22687()0x y x y x y a λ+-+++++=,即22(6)(8)7+0x y x y a λλλ++-+++=①

依题意,O 在以AB 为直径的圆上,则圆心68(,)22λλ-+--显然在直线0x y a ++=上,则68022

a λλ-+--+=,解之可得+1a λ=,又(0,0)O 满足方程①,07=+a λ,故072=+-a a 无解,故不存在a ,使得OA ⊥OB 。

【参考答案】

11.解:(1)证明:l 的方程可化为(x +y -4)+m (2x +y -7)=0.∵m ∈R ,∴27040x y x y +-=??+-=?,得31x y =??=?

,即l 恒过定点A (3,1).∵圆心C (1,2),|AC |=5<5(半径),∴点A 在圆C 内,从而直线l 恒与圆C 相交于

两点.(2)弦长最小时,l ⊥AC ,由k AC =-12

,∴l 的方程为2x -y -5=0.12.解:(1)由题意得,C (﹣2,1),k l =1,由m ⊥l 得,k m ?k l =﹣1,∴k m =﹣1.∵直线过圆心(﹣2,1),∴直线m 的方程为x+y+1=0.

(2)过直线30x y --=与圆22

420x y x y a ++-+=的交点的圆系方程为:2242(3)0x y x y a x y λ++-++--=,即22(4)(2)30x y x y a λλλ+++-++-=①

依题意,O 在以MN 为直径的圆上,则圆心4+2(,)22λλ+-显然在直线30x y --=上,则423022

λλ++---=,解之可得6λ=-,又(0,0)O 满足方程①,则30a λ-=,故18a =-。13.解:(1)依题意得:圆心(0,0)到直线的距离d=r ,∴r=d==2,∴圆C 的方程为x 2+y 2=24①;

(2)连接OA ,OB ,∵PA ,PB 是圆C 的两条切线,∴OA ⊥AP ,OB ⊥BP ,∴A ,B 在以OP 为直径的圆上,设点P 的坐标为(8,b ),b ∈R ,则线段OP 的中点坐标为(4,),∴以OP 为直径的圆方程为(x ﹣

4)+(y ﹣)2=16+,②∵AB 为两圆的公共弦,∴①﹣②得:直线AB 的方程为8x+by=24,b ∈R ,即8(x ﹣3)+by=0,则直线AB 恒过定点(3,0).

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

(推荐)高中数学直线与方程知识点总结

直线与方程 1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x 轴平行或重合时, 规定α= 0°. 2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,

如果它们的斜率互为负倒数,那么它们互相垂直,即

直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211 y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0) 2、各种直线方程之间的互化。 3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标 1、给出例题:两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 3420 2220x y x y +-=??++=? 得 x=-2,y=2

高中数学-必修二-圆与方程-经典例题

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )() (r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心 ),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B ))12,12( +- (C))12,12(+-- (D))12, 0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

人教版高中数学《直线和圆的方程》教案全套

人教版高中数学《直线和圆的方程》教案全套 直线的倾斜角和斜率 一、教学目标 (一)知识教学点 知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式. (二)能力训练点 通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力. (三)学科渗透点 分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想. 二、教材分析 1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫. 2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了. 3.疑点:是否有继续研究直线方程的必要? 三、活动设计 启发、思考、问答、讨论、练习. 四、教学过程 (一)复习一次函数及其图象 已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上. 初中我们是这样解答的:

∵A(1,2)的坐标满足函数式, ∴点A在函数图象上. ∵B(2,1)的坐标不满足函数式, ∴点B不在函数图象上. 现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.) 讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系. (二)直线的方程 引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗? 一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是. 一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应. 以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线. 上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的. 显然,直线的方程是比一次函数包含对象更广泛的一个概念. (三)进一步研究直线方程的必要性 通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如 y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究. (四)直线的倾斜角 一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

新高中数学直线方程公式

欢迎阅读 直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ? =≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。 (2)两直线斜率存在时,斜率不等是两直线相交的充要条件。 (3)两直线倾斜角不相等是两直线相交的充要条件。

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学直线方程公式电子教案

高中数学直线方程公 式

直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ? =≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

圆的标准方程与一般方程教案

圆的标准方程 【自主预习】 1、在平面直角坐标系中,确定一个圆的要素有哪些? 2、①若一个圆的圆心是(0,0),半径是2,圆的方程是什么? ②若一个圆的圆心是(-2,1),半径是3,圆的方程是什么? ③若一个圆的圆心是(a ,b ),半径是r(y>0),圆的方程是什么? 3、分析圆的标准方程有何特点? 4、写出下列圆的方程 ⑴圆心在原点,半径为3 ⑵圆心在点C(3,4),半径为5 ⑶经过点P (5,1),圆心在点C(8,-3) ⑷已知点A(-4,-5),B(6,-1),求以AB 为直径的圆的方程。 特殊的:过直径两端点A (x 1,y 1)、B(x 2,y 2)的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0 5、根据圆的方程写出圆心和半径 ⑴ 5)3()222=-+-y x ( ⑵2 222()2)(-=++y x 【典例探究】 (点与圆的位置关系)例题1 已知圆心在C(-3,-4),且经过原点,求该圆的标准方程,并判 断点)4,3(),1,1(),0,1(321---p p p 和圆的位置关系。

的条件呢?的条件是什么?在圆外内 在圆(思考:点)0()()),(22200>=-+-r r b y a x y x M 判定方法 1、几何法 2、代数法 (三角形外接圆)例题2、△ABC 的三个顶点的坐标分别是A(-2,4),B(-1,3),C(2,6),求 它的外接圆的方程。 变式:已知四点A (0,1)、B (2,1)、C (3,4)、D (-1,2),这四点是否在同一个圆上,为什 么? (圆的标准方程)例题3 已知一个圆C 经过两个点A (2,-3),B (-2,-5),且圆心在直线 032:=--y x l 上,求此圆的方程。

高中数学直线方程公式21447

1.斜率公式 ①若直线的倾斜角为α, 则k=tan α (α2π ≠) ②若直线过点111(,)P x y 和222 (,)P x y 两点. 则21 21 y y k x x -=- 2.方向向量坐标 : ( )()k y y x x x x p p x x ,1,1 11 2 121 22112=---=- 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111 12222 ||A B C l l A B C ? =≠ ; ②1212120l l A A B B ⊥?+= 4..直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 11 2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 5.“到角”及“夹角”公式 : 设 l 1 :b k x y 11+= ; l 2 :b k x y 22 += () (1)当121-≠k k 时 ??? ? ???+ -=+-=k k k k l l k k k k l l 212 1212 11 2 2 11tan 1tan θθθθ,则的角为与,则的角为到 (2)当121-=k k 时,两直线的夹角为 2 π 6.两点间的距离公式 若点()y x A 21, , ()y x B 2 2 , 则 ()y y x x AB 1 2 1 2 ,--= 即 终点坐标-始点坐标 ()()y y x x 1 2122 2--+=

高中数学圆与方程讲义练习及答案

第四章 圆方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2 (1 点00(,)M x y 与圆2 2 2 ()()x a y b r -+-=的位置关系: 当22 00()()x a y b -+->2r ,点在圆外 当22 00()()x a y b -+-=2r ,点在圆上 当22 00()()x a y b -+-<2r ,点在圆内 (2当04>-+F E D 时,方程表示圆,此时圆心为? ? ? ? ?--2,2 E D ,半径为 F E D r 42 122-+= 当0422 =-+F E D 时,表示一个点; 当042 2<-+F E D 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为 相离与C l r d ?>;相切与C l r d ?=;相交与C l r d ?< (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 设圆()()221211:r b y a x C =-+-,()()22 2222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点

新人教版必修二高中数学 《圆的标准方程》 教学设计-2019最新整理

新人教版必修二高中数学《圆的标准方程》教学设计-2019 最新整理 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径

为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点 间的距离公式让学生写出点M 适合的条件 ①r 化简可得: ②222()()x a y b r -+-= 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的 标准方程。 总结出点与圆的关系的判断方法:00(,)M x y 222()()x a y b r -+-= (1)=点在圆上 2200()()x a y b -+-2r ? (2)<点在圆内220 0()()x a y b -+-2r ? (3)>点在圆外 2200()()x a y b -+-2r ? 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1); 222=+y x (2); 5)1()3(22=-+-y x (3)()。222)1()2(a y x =+++0≠a 2、写出下列圆的标准方程:(P120-121练习1、3、4) (1)圆心在C(-3,4),半径长为;5 (2)圆心在C(8,-3),且经过点M(5,1); (3)圆心在(-1,2),与y 轴相切 (4)以P1(4,9)、P2(6,3)为直径的圆; (5)已知△ABC的顶点坐标分别是A(4,0),B(0,3),

高中数学直线方程公式

直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ?=≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。 (2)两直线斜率存在时,斜率不等是两直线相交的充要条件。 (3)两直线倾斜角不相等是两直线相交的充要条件。

高中数学圆与方程知识点

高中数学圆与方程知识点分析 1. 圆的方程:(1)标准方程:2 22()()x a y b r -+-=(圆心为A(a,b),半径为r ) (2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 圆心(-2D ,-2 E )半径 F E D 421 22-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法 (1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。 d=r 为相切,d>r 为相交,d0为相交,△<0为相离。利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。 4.圆与圆的位置关系判断方法 (1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: 1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切; 3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含; (2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。△=0为外切 或内切,△>0为相交,△<0为相离或内含。若两圆相交,两圆方程相减得公共弦所在直线方程。 5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系 题型一 求圆的方程 例1.求过点A( 2,0),圆心在(3, 2)圆的方程。 变式1求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。 解:设所求的圆的方程为:02 2=++++F Ey Dx y x (也可设圆的标准方程求) ∵(0,0),(11A B φ,),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组. 即??? ??=+++=+++=02024020F E D F E D F 解此方程组,可得:0,6,8==-=F E D 王新敞 ∴所求圆的方程为: 0682 2=+-+y x y x 王新敞

高中数学人教A版必修2 第四章 圆与方程辅导教案

教案 学生姓名性别年级学科 授课教师上课时间年月日 第()次课 共()次课 课时:2课时教学课题人教版必修2第四章圆与方程 教学目标 知识目标:明确圆的基本要素,能用定义推导圆的标准方程;正确理解圆的一般方程及其特点. 理解直线与圆三种位置关系、掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解 的个数判断直线与圆位置关系的方法,能说出空间直角坐标系的构成,会自己画出空间直角坐标 系、能够在空间直角坐标系下表示点。 教学重点 与难点 教学重点: 1、圆的标准方程及一般方程的求法及其应用. 2、会根据不同的已知条件,利用待定系数法求圆的标准方程及一般方程. 3、比较直线到圆心距离与圆半径的大小关系,判定直线与圆的位置关系。 4、通过解直线与圆方程组成的方程,根据解的个数,判定直线与圆的位置关系。 5、空间直角坐标系的建立过程 教学难点: 1、学生体会和理解解析法解决几何问题的数学思想。 2、位置关系《=》大小关系式《=》解的个数 3、根据弦长求直线方程 4、空间任意点的坐标如何表示 (一)圆的方程 知识梳理 1、圆的标准方程 基本要素:当圆心的位置与半径的大小确定后,圆就唯一确定了,因此,确定一个圆的基本要素是_____和______标准方程: 圆心为C(a,b),半径为r的圆的标准方程是___________________ 图示: 说明: 若点M(x,y)在圆C上,则点M的_______适合方程(x-a)2+(y-b)2=r2;反之,若点M(x,y)的坐标适合方程(x-a)2+(y-b)2=r2,则点M在_____ 上 [拓展] 特殊位置圆的标准方程 如下表所示. 条件方程形式 圆过原点(x-a)2+(y-b)2=a2+b2(a2+b2≠0)

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

教师资格证面试教案模板:高中数学《圆的一般方程》(Word版)

教师资格证面试教案模板:高中数学《圆的 一般方程》 (2021最新版) 作者:______ 编写日期:2021年__月__日 一、教学目标 【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径。掌握方程表示圆的条件。 【过程与方法】通过对方程表示圆的条件的探究,学生探索发现

及分析解决问题的实际能力得到提高 【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。 二、教学重难点 【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。 【难点】二元二次方程与圆的一般方程及标准圆方程的关系。 三、教学过程 (一)复习旧知,引出课题 1.复习圆的标准方程,圆心、半径。 2.提问1:已知圆心为(1,-2)、半径为2的圆的方程是什么? (二)交流讨论,探究新知 1.提问2:方程是什么图形?方程表示什么图形?任何圆的方程都

是这样的二元二次方程吗?(通过此例分析引导学生使用配方法) 2.方程什么条件下表示圆?(配方和展开由学生相互讨论交流完成,教师最后展示结果) 将配方得: 3.学生在教师的引导下对方程分类讨论,最后师生共同总结出3种情况,即圆的一般方程表示圆的条件。从而得出圆的一般方程式: 4.由学生归纳圆的一般方程的特点,师生共同总结。 (三)例题讲解,深化新知 例1.判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。 (1)(2) 例2.求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。

相关文档
最新文档