全等三角形和角平分线专题讲解

全等三角形和角平分线专题讲解
全等三角形和角平分线专题讲解

C

E O D B

A

2

1C E D

B

A 2143

C O B A

全等三角形专题讲解

专题一 全等三角形判别方法的应用

专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”)

而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等.

三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?

(1)条件充足时直接应用

在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.

例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对.

分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o,

∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又

∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO .

所以图中全等的三角形一共有4对.

(2)条件不足,会增加条件用判别方法

此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.

例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC .

要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE

即可;

根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E .

故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E .

(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.

例3 已知:如图,AB=AC ,∠1=∠2.

求证:AO 平分∠BAC .

G

A B F D E C O

D

A C

B 要证∠BAO=∠BCO ,只需证∠BAO 和∠BCO 所在的两

个三角形全等.而由已知条件知,只需再证明BO=CO 即可.

证明:连结BC .

因为AB=AC ,所以∠ABC =∠ACB .

因为∠1=∠2,所以∠ABC -∠1=∠ACB -∠2. 即∠3=∠4,所以BO=CO .

因为AB=AC ,BO=CO ,AO=AO , 所以△ABO ≌△ACO .

所以∠BAO=∠CAO ,即AO 平分∠BAC .

(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法

有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.

例4 已知:在Rt △ABC 中,∠ACB=90o,AC=BC ,D 为BC 的中点,CE ⊥AD 于E ,交AB 于F ,连接

DF .

求证:∠ADC=∠BDF . 证明:过B 作BG ⊥BC 交CF 延长线于G , 所以BG ∥AC .所以∠G=∠ACE .因为AC ⊥BC , CE ⊥AD ,所以∠ACE=∠ADC .所以∠G=∠ADC .

因为AC=BC ,∠ACD =∠CBG=90o,所以

△ACD ≌△CBG .所以BG=CD=BD .因为∠CBF=∠GBF=45o,BF=BF ,所以△GBF ≌△DBF .所以∠G=∠BDF .所以∠ADC =∠BDF .所以∠ADC =∠BDF .

说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.

(5)会在实际问题中用全等三角形的判别方法

新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.

例5 要在湖的两岸A 、B 间建一座观赏桥,由于条件 限制,无法直接度量A ,B 两点间的距离﹒请你用学过的数 学知识按以下要求设计一测量方案﹒

(1)画出测量图案﹒

(2)写出测量步骤(测量数据用字母表示)

(3)计算A 、B 的距离(写出求解或推理过程,结果用字母表示)﹒

分析:可把此题转化为证两个三角形全等.第(1)题,测量图案如图5所示.第(2)题,测量步骤:先在陆地上找到一点O ,在AO 的延长线上取一点C ,并测得OC=OA ,在BO 的延长线上取一点D ,并测得OD=OB ,这时测得CD 的长为a ,则AB 的长就是a .第(3)题易证△AOB ≌△COD ,所以AB=CD ,测得CD 的长即可得AB 的长.

解:(1)如右图示.

(2)在陆地上找到可以直接到达A 、B 的一点O ,在AO 的延长线上取一点C ,并测得OC =OA ,在BO 的

延长线上取一点D ,并测

得OD =OB ,这时测出CD 的长为a ,则AB 的长就是a .

(3)理由:由测法可得OC=OA ,OD=OB .

又∠COD=∠AOB ,∴△COD ≌△AOB . ∴CD=AB=a .

评注:本题的背景是学生熟悉的,提供了一个学生

F

C

E

D

B

A C

E

D

B

A

A O

Q M C

P

B

N A D C P

B

H

F E

G

A

D C

B

A

学生用数学的意识﹒

练习:

1.已知:如图,D 是△ABC 的边

AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE=FE . 求证:AE=CE .

2.如图,在△ABC 中,点E 在BC 上,点

D 在A

E 上,已知∠ABD=∠ACD ,∠BDE=∠CDE . 求证:BD=CD .

3.用有刻度的直尺能平分任意角吗?下面是一种 方法:如图所示,先在∠AOB 的两边上取OP=OQ , 再取PM=QN ,连接PN 、QM ,得交点C ,则射线OC 平分∠AOB .你能说明道理吗?

4.如图,△ABC 中,AB=AC ,过点A 作 GE ∥BC ,角平分线BD 、CF 相交于点H ,它们的 延长线分别交GE 于点E 、G .试在图中找出3

对全等三角形,并对其中一对全等三角形给出证明.

5.已知:如图,点C 、D 在线段

AB 上,PC=PD .请你添加一个条件,使图 中存在全等三角形,并给予证明.

所添条件为__________,你得到的一 对全等三角形是△_____≌△_____.

6.如图,∠A=∠D ,BC=EF ,那么需要 补充一个直接条件_____(写出一个即可),才能

A

D C

B

A

O

D

C

B

A

F

C

G

B

E

A

F D

C

B E

7.如图,在△ABD和△ACD中,

AB=AC,∠B=∠C.

求证:△ABD≌△ACD.

8.如图,直线AD与BC相交于点O,

且AC=BD,AD=BC.

求证:CO=DO.

9.已知△ABC,AB=AC,E、F分别

为AB和AC延长线上的点,且BE=CF,EF

交BC于G.求证:EG=GF.

10.已知:如图,AB=AE,BC=ED,

点F是CD的中点,AF⊥CD.

求证:∠B=∠E.

11.如图,某同学把一把三角形的玻璃

打碎成了三块,现在要到玻璃店去配一块大小

形状完全一样的玻璃,那么最省事的办法是()

(A)带①和②去 (B)带①去

(C)带②去 (D)带③去

12.有一专用三角形模具,损坏后,只剩下如图中的阴影部分,你对图中做哪些数据度量后,就可以重新制作一块与原模具完全一样的模具,并

4

3O E D

C B A 21F E

D C B

A 21

13.如图,将两根钢条AA'、BB'的中点O 连在一起,使AA'、BB'可以绕着点O 自由转动,就做成了一个测量工件,则A' B'的长等于内槽宽AB ,那么判定△OAB ≌△OAB 的理由是( )

(A )边角边 (B )角边角 (C )边边边 (D )角角边

专题二 角的平分线

从一个角的顶点出发,把一个角分成相等的两个角的射线,叫做这个角的平分线.角的平分线有着重要的作用,它不仅把角分成相等的两部分,而且角的平分线上的点到角两边的距离相等,到一个角的两边距离相等的点在这个角的平分线上,再加上角的平分线所在的直线是角的对称轴.因此当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路.

(1)利用角的平分线的性质证明线段或角相等

例6 如图,∠1=∠2,AE ⊥OB 于E ,

BD ⊥OA 于D ,交点为C .

求证:AC=BC .

证法:∵AE ⊥OB ,BD ⊥OA ,∴∠ADC=∠BEC=?90. ∵∠1=∠2,∴CD=CE . 在△ACD 和△BCE 中,

∠ADC=∠BEC ,CD=CE ,∠3=∠4. ∴△ACD ≌△BCE(ASA),∴AC=BC .

说明:本题若用全等方法证明点C 到OA 、OB 距离相等,浪费时间和笔墨,不如直接应用角平分线性质证明,原因在于同学们已经习惯了用全等的方法,不善于直接应用定理,仍去找全等三角形,结果相当于重新证

明了一次定理,以后再学新定理,应用时要注意全等定势的干扰,注意采用简捷证法.

例7 已知:如图,△ABC 中,BD=CD ,∠1=∠2. 求证:AD 平分∠BAC .

证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F . 在△BED 与△CFD 中,∠1=∠2,∠BED =∠CFD =?90,BD=CD ,

∴△BED ≌△CFD(AAS).

∴DE =DF ,∴AD 平分∠BAC . 说明:遇到有关角平分线的问题时,可引角的两边的垂线,先证明三角形全等,然后根据全等三角形的性质得出垂线段相等,再利用角的平分线性质得出两角相等.

(2)利用角的平分线构造全等三角形 ①过角平分线上一点作两边的垂线段

例8 如图,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD . 求证:AE=ED .

A F

H D C

G B E

A D C

B E A F D

C B E C

E

B

A D

点E 分别作AB 、BC 、CD 的垂线段.

证明:过点E 作EF ⊥AB ,交BA 的延长线于点F ,作EG ⊥BC ,垂足为G ,作EH ⊥CD ,垂足为H . ∵BE 平分∠ABC ,EF ⊥AB ,EG ⊥BC , ∴EF=EG .同理EG =EH .∴EF=EH . ∵AB ∥CD ,∴∠FAE=∠D . ∵EF ⊥AB ,EH ⊥CD ,∴∠AFE=∠DHE=90o.

在△AFE 和△DHE 中,∠AFE=∠DHE ,EF=EH ,∠FAE=∠D . ∴△AFE ≌△DHE .∴AE=ED .

②以角的平分线为对称轴构造对称图形

例9 如图,在△ABC 中,AD 平分∠BAC ,∠C=2∠B . 求证:AB=AC+CD .

分析:由于角平分线所在的直线是这个角的对称轴,因此在AB 上截取AE=AC ,连接DE ,我们就能构造出一对全等三角形,从而将线段AB 分成AE 和BE 两段,只需证明BE=CD 就可以了.

证明:在AB 上截取AE=AC ,连接DE . ∵AD 平分∠BAC ,∴∠EAD=∠CAD . 在△EAD 和△CAD 中,∠EAD=∠CAD ,AD=AD ,AE=AC , ∴△EAD ≌△CAD .∴∠AED=∠C ,CD=DE .

∵∠C=2∠B ,∴∠AED=2∠B .

∵∠AED=∠B+∠EBD ,∴∠B=∠EDB . ∴BE=ED .∴BE=CD .

∵AB=AE+BE ,∴AB=AC+CD .

③延长角平分线的垂线段,使角平分线成为垂直平分线

例10 如图,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .

分析:注意到AD 平分∠BAC ,CE ⊥AD ,于是可延长CE 交AB 于点F , 即可构造全等三角形.

证明:延长CE 交AB 于点F .

∵AD 平分∠BAC ,∴∠FAE=∠CAE . ∵CE ⊥AD ,∴∠FEA=∠CEA=90o.

在△FEA 和△CEA 中,

∠FAE=∠CAE ,AE=AE ,∠FEA=∠CEA .

∴△FEA ≌△CEA .∴∠ACE=∠AFE .

∵∠AFE=∠B+∠ECD ,∴∠ACE=∠B+∠ECD .

(3)利用角的平分线构造等腰三角形

如图,在△ABC 中,AD 平分∠BAC ,过点D 作

DE ∥AB ,DE 交AC 于点E .易证△AED 是等腰三角形. 因此,我们可以过角平分线上一点作角的一边的平行线, 构造等腰三角形.

例11 如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .

求证:CD=

2

1

BE . 1

C

F E B

A

D

Q

P

C

B

A

C

B A

D 然后再证明CD 与这两条线段都相等. 证明:过点D 作DF ∥AB 交BC 于点F . ∵BD 平分∠ABC ,∴∠1=∠2.

∵DF ∥AB ,∴∠1=∠3,∠4=∠ABC . ∴∠2=∠3,∴DF=BF .

∵DE ⊥BD ,∴∠2+∠DEF=90o,∠3+∠5=90o. ∴∠DEF=∠5.∴DF=EF . ∵AB=AC ,∴∠ABC=∠C . ∴∠4=∠C ,CD=DF . ∴CD=EF=BF ,即CD=

2

1

BE .

练习:1.如图,在△ABC 中,∠B=90o, AD 为∠BAC 的平分线,DF ⊥AC 于F ,DE=DC .

求证:BE=CF .

2.已知:如图,AD 是△ABC 的中线,

DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF .求证:

(1)AD 是∠BAC 的平分线; (2)AB=AC .

3.在△ABC 中,∠BAC=60o,∠C=40o,

AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q .

求证:AB+BP=BQ+AQ .

4.如图,在△ABC 中,AD 平分 ∠BAC ,AB=AC+CD .

求证:∠C=2∠B .

C

E

B

A D C

B A

D

43

2

1C E

B

A

D

C

E

B

A

D

C

B

A

D

5.如图,E 为△ABC 的∠A 的平分线 AD 上一点,AB >AC .

求证:AB -AC >EB -EC .

6.如图,在四边形ABCD 中,BC >BA , AD=CD ,BD 平分∠ABC . 求证:∠A+∠C=180o.

7.如图所示,已知AD ∥BC ,∠1=∠2, ∠3=∠4,直线DC 过点E 作交AD 于点D ,交 BC 于点C .

求证:AD+BC=AB .

8.已知,如图,△ABC 中,∠ABC=90o, AB=BC ,AE 是∠A 的平分线,CD ⊥AE 于D .

求证:CD=

2

1

AE .

9.△ABC 中,AB=AC ,∠A=100o, BD 是∠B 的平分线.

求证:AD+BD=BC .

A

C

B D A

C

F E B M

D

10.如图,∠B 和∠C 的平分线相交于点F , 过点F 作DE ∥BC 交AB 于点D ,交AC 于点 E ,若BD+CE=9,则线段DE 的长为( ) A .9 B .8 C .7 D .6

11.如图,△ABC 中,AD 平分∠BAC , AD 交BC 于点D ,且D 是BC 的中点. 求证:AB=AC .

12.已知:如图,△ABC 中,AD 是∠BAC 的平分线, E 是BC 的中点,EF ∥AD ,交AB 于M , 交CA 的延长线于F . 求证:BM=CF .

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

人教版八年级数学上全等三角形专题讲解

初中数学试卷 全等三角形专题讲解 (一)知识储备 1、全等三角形的概念: (1)能够重合的两个图形叫做全等形。 (2)两个三角形是全等形,就说它们是全等三角形。两个全等三角形,经过运动后一定重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。 (3)全等三角形的表示: 如图,△ABC和△DEF是全等三角形,记作△ABC≌△DEF,符号“≌”表示全等,读作“全等于”。 注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 2、全等三角形的性质: 全等三角形的对应边相等,对应角相等。【例1】 如图,△ABC≌△DEF,则有:AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F。 3、全等三角形的判定定理: S.A.S “边角边”公理: 两边和它们的夹角对应相等的两个三角形全等。【例2】

A.S.A “角边角”公理: 两角和它们的所夹边对应相等的两个三角形全等。【例3】 A.A.S “角角边”公理: 两个角和其中一个角的对边对应相等的两个三角形全等。【例4】 S.S.S “边边边”公理: 三边对应相等的两个三角形全等。【例5】 H.L “斜边直角边“公理 斜边和一条直角对应相等的两个直角三角形全等。【例6】 (二)双基回眸 1、下列说法中,正确的个数是() ①全等三角形的周长相等②全等三角形的对应角相等 ③全等三角形的面积相等④面积相等的两个三角形全等 A.4 B.3 C.2 D.1 2、如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____, ∠DEF的对应角是_____. 3、如图,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD =6,AD=4, 那么BC等于() A.6 B.5 C.4 D.无法确定 4、如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC 的度数 为() A.40°B.35°C.30°D.25° 5、能确定△ABC≌△DEF的条件是() A.AB=DE,BC=EF,∠A=∠E B.AB=DE,BC=EF,∠C=∠E C.∠A=∠E,AB=EF,∠B=∠D D.∠A=∠D,AB=DE,∠B=∠E

【精品】三角形角平分线专题讲解

【关键字】精品 二由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是笔直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。 例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

全等三角形知识点讲解经典例题含答案

全等三角形 一、目标认知 学习目标: 1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素; 2.探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式。 重点: 1. 使学生理解证明的基本过程,掌握用综合法证明的格式; 2 .三角形全等的性质和条件。 难点: 1.掌握用综合法证明的格式; 2 .选用合适的条件证明两个三角形全等 经典例题透析 类型一:全等三角形性质的应用 1、如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角. 思路点拨:AB=AC,AB和AC是对应边,∠A是公共角,∠A和∠A是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解. 解析:AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠AEC和∠ADB是对应角. 总结升华:已知两对对应顶点,那么以这两对对应顶点为顶点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边. 已知两对对应边,第三对边是对应边,对应边所对的角是对应角.

举一反三: 【变式1】如图,△ABC≌△DBE.问线段AE和CD相等吗?为什么? 【答案】证明:由△ABC≌△DBE,得AB=DB,BC=BE, 则AB-BE=DB-BC,即AE=CD。 【变式2】如右图,,。 求证:AE∥CF 【答案】 ∴AE∥CF 2、如图,已知ΔABC≌ΔDEF,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数与EC的长。 思路点拨:由全等三角形性质可知:∠DFE=∠ACB,EC+CF=BF+FC,所以只需求∠ACB的度数与BF的长即可。 解析:在ΔABC中, ∠ACB=180°-∠A-∠B, 又∠A=30°,∠B=50°, 所以∠ACB=100°. 又因为ΔABC≌ΔDEF, 所以∠ACB=∠DFE, BC=EF(全等三角形对应角相等,对应 边相等)。 所以∠DFE=100° EC=EF-FC=BC-FC=FB=2。 总结升华:全等三角形的对应角相等,对应边相等。 举一反三: 【变式1】如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,

三角形角平分线专题讲解(精选.)

二由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这 种尝试与猜想是在一定的规律基本之图1-1 B

上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠∠,如取,并连接、,则有△≌△,从而为我们证明线段、角相等创造了条件。 例1. 如图 1-2,,平分∠,平分∠, 点E 在上,求证:。 分析:此题中就涉及到角平分线, 可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。 简证:在此题中可在长线段上截取,再证明,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长与的延长线交于一点来证明。自已试一试。 例2. 已知:如图 1-3,2,∠∠,,求证⊥ 图1-2 D B C

全等三角形专题讲解

C E O D B A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图1,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 图1 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图2,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____.

三角形中线与角平分线专题(二)

.. 三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

.. 应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交 与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形 状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点, BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A , =∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于 点P ,若∠BPC=40°,则∠CAP=_______.

用角平分线构造全等三角形

善于构造 活用性质 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例1 三角形的三条角平分线交于一点,你知道这是为什么吗 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB ,IG ⊥AC ,IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH =IG (角平分线上的点到角的两边距离相等) 同理 IH =IF ∴IG =IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 例2 已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P , PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. D C B A E H I F G

【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证.【证明】过P作PE⊥AC于E. ∵PA,PC分别为∠MAC与∠NCA的平分线.且PD⊥BM,PF⊥BN ∴PD=PE,PF=PE,∴PD=PF 又∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线上, 即BP是∠MBN的平分线. 2.构距离,造全等 有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题. 例3 △ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB?上确定一点E使△BDE的周长等于AB的长.请说明理由. 解:过D作DE⊥AB,交AB于E点,则E点即可满足要求. 因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB. ∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE. 由“H L”可证Rt△ACD≌Rt△AED.∴AC=AE. ∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB. 例4 如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB. 求证:AD=CD+AB.

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形专题讲解

C E O D B A 21C E D B A 全等三角形专题讲解 专题一、全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图1,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图2,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可;根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E .

三角形角平分线部分经典题型

1.如图1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2 cm,则点D到BC的距离为________cm. 图1图2 2.如图2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是() A .mn 3 1 B. mn 2 1 C.mn D.2mn 3.如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶ DB=3∶5,则点D到AB的距离是。 4.如图,已知BD是∠ABC的角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。 5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2, 则两平行线间AB、CD的距离等于。 6.AD是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( ) A、DE=DF B、AE=AF C、BD=CD D、∠ADE=∠ADF 7.到三角形三条边的距离都相等的点是这个三角形的() A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点 8.已知△ABC中,∠A=80°,∠B和∠C的角平分线交于O点,则∠BOC= 。 9.如图,已知相交直线AB和CD,及另一直线EF。如果要在EF上找出与AB、CD距离相等的点,方法是,这样的点至少有个,最多有个。 3题图 D C B A z .. ..

z .. .. D C B A 10.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。 A.9 cm B.5 cm C.6 cm D.不能确定 11.如图,AB //CD ,CE 平分∠ACD ,若∠1=250 ,那么∠2的度数是 . 12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP 13.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠ABD ,CD 过点E ,则AB 与AC+BD?相等吗?说明理由. 14、如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90° 求证:AB =AC +CD . 15、如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180° 16、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE. O B A P A B C D E D C A B E

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

三角形 角平分线部分经典题型

1.如图1所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离为________cm . 图1 图2 2.如图2所示,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( ) A . B . C .mn D .2mn 3.如图,在△ABC 中,∠C =900 ,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。 4.如图,已知BD 是∠ABC 的内角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到BC 、AC 和AB 的垂线DE 、DF 和DG ,垂足分别为E 、F 、G ,则DE 、DF 、DG 的关系是 。 5.如图,已知AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC 于E ,且OE=2,则两平行线间AB 、CD 的距离等于 。 6.AD 是△BAC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下列结论中错误的是( ) A 、DE=DF B 、AE=AF C 、BD=CD D 、∠ADE=∠ADF 7.到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点 8.已知△ABC 中,∠A=80°,∠B 和∠C 的角平分线交于O 点,则∠BOC= 。 9.如图,已知相交直线AB 和CD ,及另一直线EF 。如果要在EF 上找出与AB 、CD 距离相等的点,方法是 ,这样的点至少有 个,最多有 个。 mn 31mn 2 13题图 D C B A

全等三角形与角平分线专题讲解

C E O D B A 2 1C E D B A 214 3 O A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可; 根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E . (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC ,∠1=∠2.

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 A B C D E F N 1 图1234 2图A B C D E F M 1234A B C D E

练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC A B C D E F 4图A B C D N M P 5图12 A B C D E 6图O

六、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 例如:如图7:AB ∥CD ,AD ∥BC 求证:AB=CD 。 七有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证: BD =2CE 图8 八、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 A B C D 7图1 234D C B A 110 图O

全等三角形专题练习(解析版)

全等三角形专题练习(解析版) 一、八年级数学轴对称三角形填空题(难) 1.如图,在等边ABC ?中取点P 使得PA ,PB ,PC 的长分别为3, 4, 5,则APC APB S S ??+=_________. 【答案】936 【解析】 【分析】 把线段AP 以点A 为旋转中心顺时针旋转60?得到线段AD ,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS 证得△ADB ≌△APC ,连接PD ,根据旋转的性质知△APD 是等边三角形,利用勾股定理的逆定理可得△PBD 为直角三角形,∠BPD =90?,由△ADB ≌△APC 得S △ADB =S △APC ,则有S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD ,根据等边3S △ADP +S △BPD =332+12×3×4=936+. 【详解】 将线段AP 以点A 为旋转中心顺时针旋转60?得到线段AD ,连接PD ∴AD =AP ,∠DAP =60?, 又∵△ABC 为等边三角形, ∴∠BAC =60?,AB =AC , ∴∠DAB +∠BAP =∠PAC +∠BAP , ∴∠DAB =∠PAC , 又AB=AC,AD=AP ∴△ADB ≌△APC ∵DA =PA ,∠DAP =60?, ∴△ADP 为等边三角形, 在△PBD 中,PB =4,PD =3,BD =PC =5, ∵32+42=52,即PD 2+PB 2=BD 2, ∴△PBD 为直角三角形,∠BPD =90?, ∵△ADB ≌△APC ,

∴S△ADB=S△APC, ∴S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD=3 ×32+ 1 2 ×3×4= 93 6+. 故答案为: 93 6+. 【点睛】 本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解. 2.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______ 【答案】110°、125°、140° 【解析】 【分析】 先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则 ∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可. 【详解】 解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d, 则a+b=60°,b+c=180°﹣110°=70°,c+d=60°, ∴b﹣d=10°, ∴(60°﹣a)﹣d=10°, ∴a+d=50°, 即∠DAO=50°, 分三种情况讨论: ①AO=AD,则∠AOD=∠ADO, ∴190°﹣α=α﹣60°,

全等三角形专项训练及答案解析

初中数学专项训练:全等三角形 一、选择题 1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是 A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 2.如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是 A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D 3.如图,已知OP平分∠AOB,∠AOB=? 60,CP2 =,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是 A.2 B.2 C.3D.3 2 4.如图,在四边形ABCD中,对角线AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有【】 A.1对 B.2对 C.3对 D.4对 5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为() A.BD=CE B.AD=AE C.DA=DE D.BE=CD 6.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是() A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC 7.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三 条直线l 1,l 2 ,l 3 上,且l 1 ,l 2 之间的距离为1 , l 2 ,l 3 之间的距离为2 , 则AC的长是()

A .26 B .52 C .24 D .7 二、填空题 8.如图,已知∠C=∠D ,∠ABC=∠BAD ,AC 与BD 相交于点O ,请写出图中一组相等的线段 . 9.如图,在Rt△ABC 中,∠A=Rt ∠,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是 。 10.如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC≌△DEC ,则应添加的一个条件为 .(答案不唯一,只需填一个) 11.如图,在Rt△ABC 中,∠ACB=90°,AB 的垂直平分线DE 交AC 于E ,交BC 的延长线于F ,若∠F=30°,DE=1,则BE 的长是 . 12.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=5,AC=2,则DF 的长为 . 13.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 .(只需写一个,不添加辅助线) 14.如图,点O 是△ABC 的两条角平分线的交点,若∠BOC =118°,则∠A

三角形角平分线部分经典题型.docx

1如图1所示,在△ ABC中,∠ A= 90°, BD平分∠ ABC AD= 2 Cm ,则点D到BC的距离为___________ cm. 2. 如图2所示,在Rt Δ ABC中,∠ C = 90°, BD是∠ ABC的平分线,交 AC于D,若CD = n, AB = m, 则Δ ABD的面积是() 1 1 A . -mn B. — mn C. mn D. 2mn 3 2 3. 如图,在△ ABC中,∠ C= 900, BC= 40, AD是∠ BAC的平分线交BC于D,且DC: DB= 3 : 5,则点D到AB的距离是________ 。 4. 如图,已知BD是∠ ABC的内角平分线,CD是∠ ACB的外角平分线,由D出发,作点D到 BC3题题图和AB 的垂线DE DF和DG垂足分别为 E F、G贝U DE DF、DG的关系是__________________________ 5. _________________________________ 如图,已知AB// CD O为∠ A∠ C的角平分线的交点, 则两平行线间AB CD的 距离等于______________________________ 。 6. AD是厶BAC的角平分线,自D向AB AC两边作垂线,垂足为E、F,那么下列结论中错误的是 () A DE=DF B 、AE=AF C、BD=CD D∠ ADE玄ADF 7. 到三角形三条边的距离都相等的点 是这个三角形的() A.三条中线的交点 E.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点 8. 已知△ ABC中,∠ A=80°,∠ B和∠ C的角平分线交于O点,则∠ BOC= ___ 。 9. 如图,已知相交直线AB和CD及另一直线EF。如果要在EF上找出与AB CD距离相等的点,方 法 是___________ ,这样的点至少有________ 个,最多有___ 个。 OEL AC于E,且0E=2

相关文档
最新文档