高中数学技巧--妙--构造对偶式的八种途径

高中数学技巧--妙--构造对偶式的八种途径
高中数学技巧--妙--构造对偶式的八种途径

构造对偶式的八种途径

在数学解题过程中,合理地构造形式相似,具有某种对称关系的一对对偶关系式,并通过对这对对偶关系式进行适当的和,差,积等运算,往往能使问题得到巧妙的解决,收到事半功倍的效果。下面通过实例来谈谈构造对偶式的八种途径。

一. 和差对偶

对于表达式()()u x v x ±,我们可构造表达式()()u x v x 作为它的对偶关系式。

例1若02

πθ<<

,且3sin 4cos 5θθ+=,求tan θ的值。

解析:构造对偶式:3sin 4cos y θθ-=

则3sin 4cos 5,3sin 4cos y θθθθ+=??-=?得5sin 6

5cos 8y y

θθ+?

=??∴?-?=??

再由2

2sin

cos 1θθ+=,得:7

3,tan 54

y θ=-∴=。

点评:这种构造对偶式的方法灵巧,富有创意,有助于培养学生的创新思维和创造能力。 例2已知:,,,a b c d R ∈,且2222

1a b c d +++≤,

求证:4

4

4

4

4

4

()()()()()()6a b a c a d b c b d c d +++++++++++≤。

解:

4444444

4

4

4

4

4

()()()()()():()()()()()()

M a b a c a d b c b d c d N a b a c a d b c b d c d =+++++++++++=-+-+-+-+-+-设,构造对偶式

则有:

4444222222222222222226(222222)6()6

M N

a b c d a b a c a d b c b d c d a b c d +=+++++++++=+++≤ 又0N ≥,故6M ≤,即原不等式成立。

点评:这个对偶式构造得好!它的到来一下子使问题冰消融了。解法自然,朴素,过程简洁,运算轻松!

10=

a =,再由原方程联立可解得:

10,(1)2

10,(2)2

a a +=-=

那么2

2

(1)(2)+得:2

21

242(100),(3)2

x a +=

+ 22

(1)(2)-得:1610x a =,即85

x a =,

代入(3)中得:2

2164242(100)225

x x +=+,

整理得:29425x =, 解得:10

3

x =±。

二. 互倒对偶

互倒对偶是指针对式子的结构,通过对式中的某些元素取倒数来构造对偶式的方法。 例4若,,(0,1)x y z ∈,求证:

111

3111x y y z z x

++≥-+-+-+。

解:设111

111M x y y z z x

=

++-+-+-+,

构造对偶式:(1)(1)(1)N x y y z z x =-++-++-+,则

1111

(1)(1)(1)11112226M N x y y z z x x y y z z x y z

+=

+-+++-+++-++

-+-+-+-+≥++=而3N =,故3M ≥,即

111

3111x y y z z x

++≥-+-+-+。

例5设123,,,,n a a a a 为互不相等的正整数,

求证:3

2122

2

111

12323n a a a a n

n +

+++

≥++

+

。 解:设M=3

2122

2

23n a a a a n +

+++

,构造对偶式:

1211

1

n

N a a a =+++ 则2122

1211111

1()()(

)1232

n n a a M N a a a a n

n

+=++++++≥+++

又123,,,

,n a a a a 为互不相等的正整数,所以11

1

123

N n

≤+

++

,因此111123

M n

≥+

++

。 点评:解题时巧妙构思,对其构造了“意料之中”的对偶式,化新为旧,等价转化,完成对难点的突破,以达化解问题这目的。

例6已知对任意(,0)(0,)x ∈-∞?+∞总有1()2()0f x f x x

++=,求函数()y f x =的

解析式。

解析:因1()2()0f x f x x

++= ①

1x 替代上式中的x ,构造对偶式:11

()2()0f f x x x

++= ② 由①-②×2得:12

()4()0f x x f x x

+--=

故22()3x x

f x x

-=。

三. 共轭对偶

共轭对偶是反映利用共轭根式或共轭复数来构造对偶式的方法。 例7已知z c ∈,解方程:313z z iz i ?-=+。

解析:由313z z iz i ?-=+ ① 构造对偶式:313z z iz i ?+=- ②

由①-②得2z z =--,代入②得(1)(13)0z z i ++-=, 故1z =-或13z i =-+。

例8若z c ∈,已知1z =且1z ≠±,证明:

1

1

z z -+为纯虚数。 解:设M=

1

1z z -+,则11()11z z M z z --==++,构造对偶式:N=11

z z -+ 则M+N=

11z z -++11

z z -+=0(因为2

1z z z ?==) 又

1

01z z -≠+(因为1z ≠±) ∴11

z z -+为纯虚数。

例9已知:0,0a b >>,且1a b +=≤

+

∵2

2

2

4()48M M N a b ≤+=++=

∴M ≤,即原不等式成立。

四. 倒序对偶

倒序对偶是指针对式子的结构,通过和式或积式进行倒序构造对偶式的方法。

例10求和:1234

1234n

n n n n n S C C C C nC =++++

+

解析:观察和式联想到*

,0,k n k n n C C k n n N -=≤≤∈,故首先在和式右边添上一项0

0n C ?,则012012n

n n n n S C C C nC =?+++

+ ①

构造对偶式: 012

(1)(2)0n n n

n S nC n C n C C =+-+-+ ②

即②亦为: 012

012n

n n n n S C C C nC =?+++

+ ③

由①+③得:01

1n n

n n n n nC nC nC nC -++++

∴01

101

12()n n n n

n n n n n n n n S nC nC nC nC n C C C C --=++

++=++

++

∴22n

S n =? ∴2n

S n =?

点评:利用现成的对偶式,使问题本身变得简单,便易,如此处理,可谓“胜似闲庭信

步”,岂不妙哉! 例11正项等比数列{}n a 中,123123,n n T a a a a S a a a a =????=++++试用S,T

表示12

11

1

n

Q a a a =

+++

。∵∴ 解析:传统解法都用1,a q 表示S,T及Q,然后通过1a 和q 找到S,T,Q的等量关系,这种解法虽思路正确,但运算繁琐,加之在用等比数列求和公式时还要讨论1q =和1q ≠两种情形,如此解题会陷入漫漫无期的运算之中,很少有人能够到达终点。其实,观察和式子与积式特征不妨采取“本末倒置”构造倒序对偶序式一试。

由题意知:123n T a a a a =???

? ①

构造倒序对偶式:121n n n T a a a a --=???? ②

由①×②得:2

2

12111()()()()n n n n T a a a a a a a a -=??????=?,即2

1()n n T a a =?

再来看: 12111

n Q a a a =

+++

③ 构造倒序对偶式:1

1

111

n n Q a a a -=+++

④ 即③+④得:

122

1

111111

2(

)()(

)n n n Q a a a a a a -=++++++,

即122

1

122

1

2n n n n n n a a a a a a Q a a a a a a --+++=

+++

???。

由等比数列性质可知,右边的分母均为1n a a ?,故

12111()()()

2n n n n

a a a a a a Q a a -++++

++=

?

即12

2n S Q a a =

,∴1n

S

Q a a = 又2

1n

n a a T = ∴2n

S Q T

=

=

五. 定值对偶

定值对偶是指能利用和,差,积,商等运算产生定值,并借此构造出对偶式的方法。

例12已知函数22()1x f x x =+。111

()()()(1)(2)(3)(4)432

f f f f f f f ++++++,

则S= 。

解析:2

2

2222

2

1

()11()()111111()x x x f x f x x x x x

+=+=+=++++ 发现定值:1

()()1f x f x

+=。

那么111

()()()(1)(2)(3)(4)432

S f f f f f f f =++++++ ①

构造对偶式:111

(4)(3)(2)(1)()()()234

S f f f f f f f =++++++ ②

由①+②得:

111

2[()(4)][()(3)][()(2)]2(1)

432

111

[(2)()][(3)()][(4)()]

234

S f f f f f f f f f f f f f

=++++++++++++

∴2S=7,即7

2

S =

。 六. 奇偶数对偶

奇偶数对偶指利用整数的分类中奇数与偶数的对称性构造对偶式的方法。 例13求证:

13521

2462n n

-???<

解:设135212462n M n -=???

,构造对偶式:246

235721

n

N n =???+。 由于1234212,,,,2345221

n n n n -<<<+

因此M

N <,从而2

121

M M N n

故M <

例14求证:1

1

(11)(1)

(1)4

32

n +++

>-证明:待证不等式的左边为:1125

31

(11)(1)(1)43214

32

n n n -+++=??

?

--。

令:2531

1432

n M n -=???-

构造两个对偶式:3634731

,2531363n n N P n n

+=???=???

- ∵23456731331,,12345632313n n n n n n

-+>>>>>>-- ∴3253136

34731

()()(

)1432253136

331

M M N P n n

n n n n

n >??-+=???

????

?????

--=+ ∴M >

故原不等式成立。

点评:灵活地选取解题方法,对其构造了“意想不到”的对偶式,从而完成了解答,充分体现了解题技巧。

七. 轮换对偶

轮换对偶是指针对式子的结构,通过轮换字母而构造对偶式的方法。

例15求证:对任意实数.1,1a b >>,都有

22

811a b b a +≥--不等式成立。 证明:设2211a b M b a =+--构造对偶式22

11b a N b a =+--, 则22222

()()011(1)(1)

a b b a a b a b M N b a b a --+--=

+=≥----,即M N ≥ 而

1111114(1)(1)42281111

N b a b a b a b a =++

+++=+-++-+≥++=----, ∴8M N ≥≥,即8M ≥。当且仅当2a b ==时等号成立。

构造对偶式

构造对偶式的八种途径 在数学解题过程中,合理地构造形式相似,具有某种对称关系的一对对偶关系式,并通过对这对对偶关系式进行适当的和,差,积等运算,往往能使问题得到巧妙的解决,收到事半功倍的效果。 一. 和差对偶 对于表达式()()u x v x ±,我们可构造表达式()()u x v x 作为它的对偶关系式。 例1若02 π θ<< ,且3sin 4cos 5θθ+=,求tan θ的值。 解析:构造对偶式:3sin 4cos y θθ-= 则3sin 4cos 5,3sin 4cos y θθθθ+=??-=?得5sin 6 5cos 8y y θθ+? =??∴?-?= ?? 再由22sin cos 1θθ+=,得:73,tan 5 4 y θ=- ∴= 。 点评:这种构造对偶式的方法灵巧,富有创意,有助于培养学生的创新思维和创造能力。 例2已知:,,,a b c d R ∈,且22221a b c d +++≤, 求证:444444()()()()()()6a b a c a d b c b d c d +++++++++++≤。 解: 4 4 4 4 4 4 4 4 4 4 4 4 ()()()()()():()()()()()() M a b a c a d b c b d c d N a b a c a d b c b d c d =+++++++++++=-+-+-+-+-+-设,构造对偶式 则有: 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6(222222)6()6 M N a b c d a b a c a d b c b d c d a b c d +=+++++++++=+++≤ 又0N ≥,故6M ≤,即原不等式成立。 例3解方程: 2 2 82182110x x x x +++ -+= 解:构造对偶式:2 2 821821x x x x a ++- -+=,再由原方程联立可解得: 2 210821,(1)2 10821,(2) 2 a x x a x x +?++=??? -?-+=?? 那么22 (1)(2)+得:2 2 1242(100),(3)2 x a += +

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高一数学选择题

高一上数学选择题专练(时间120分钟) 1.函数x y 2log =的定义域是 A .(0,1] B . (0,+∞) C. (1,+∞) D . [1,+∞) 2.下列函数中,在其定义域内既是奇函数又是减函数的是 A.3 ,y x x R =-∈ B.R x x y ∈--=,1 C. ,y x x R =∈ D. x 1() ,2 y x R =∈ 3.函数(1)1x y x x = ≠-+的反函数是 (A )(1)1x y x x = ≠+(B ))1(1≠--=x x x y (C )1(0)x y x x -=≠(D )1(0)x y x x -=≠ 4.函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图2所示),则方程()0f x =在[1,4]上的根是x = A.4 B.3 C. 2 D.1 5.已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B.()x x f ln 2ln 2?= )0(>x C .()22()x f x e x R =∈ D.()2ln ln 2(0)f x x x =+> 6.设函数f(x)=log a (x+b)(a>0,a ≠1)的图象过点(0, 0),其反函数的图像过点(1,2),则a+b 等于 A.6 B.5 C.4 D.3 7.设2log 3P =,3log 2Q =,23log (log 2)R =,则 A.R Q P << B.P R Q << C.Q R P << D.R P Q << 8.已知112 2 log log 0m n <<,则 A .n <m <1 B .m <n <1 C .1<m <n D .1<n <m 9.设2)1(,1)(1 =-+=-f ax x f ,则a 的值为 A.2 B.1 C.0 D. 1- 10.如果函数()y f x =的图像与函数32y x =-的图像关于原点对称,则y=()f x 的 表达式为 A .23y x =- B .23y x =+ C .23y x =-+ D .23y x =-- 11.设函数()y f x =的反函数为1()y f x -=,且(21)y f x =-的图像过点1(,1)2 ,则 1()y f x -=的图像必过 A .1 (,1)2 B .1(1,2 C .(1,0) D .(0,1)

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

最新浅谈构造法在中学数学解题中的应用上课讲义

浅谈构造法在中学数学解题中的应用 富源六中范文波 [摘要]:现代数学素质教育要求大力提高学生的数学素养,这不仅要使学生掌握数学知识,而且要使学生掌握渗透于数学知识中的数学思想方法,使他们能用数学知识和方法解决实际问题。构造法作为一种数学方法,不同于一般的逻辑方法,它是一步一步寻求必要条件,直至推导出结论,它属于非常规思维。其本质特征是“构造”,用构造法解题,无一定之规,表现出思维的试探性、不规则性和创造性。本文主要通过大量的例题说明构造法是广泛存在于解题过程中的,而且对于解某些问题是非常有用的. [关键词]:构造法;创造性;构造;几何变换 1 前言 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。构造法就是这样的手段之一. 构造的数学思想提炼于数学各分支的研究方法之中,它融直观性、简单性、统一性、抽象性、相似性于一体,显示出简化与精密、直观与抽象的高度统一. 什么是构造法又怎样去构造呢?构造法是运用数学的基本思想经过认真的观察,深入的思考、分析,迁移联想,正确思维,巧妙地、合理地构造出某些元素、某种模式,使问题转化为新元素的问题,或转化为新元素之间的一种新的组织形式,从而使问题得以解决,这种方法称之为“构造法”. 构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,其基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法.在解题过程中,若按习惯定势思维去探求解题途径比较困难时,我们可以根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养我们创造意识和创新思维的手段之一,同时对提高我们的解题能力也有所帮助. 构造法包含的内容很多,在解题中的应用也千变万化,无一定规律可言,它需要更多的分析、类比、归纳、判断,同时能激发人们的直觉思维和发散思维.

人教版数学高二备课资料构造法证明不等式例 析

构造法证明不等式例析 由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使得不等式证明成为中学数学的难点之一.下面通过数例介绍构造法在证明不等式中的应用. 一、构造一次函数法证明不等式 如果所要证明的不等式中含有一个或多个一次的变量,此时可通过选择一个变量作未知数,其它的变量成为参数,这样就可以和一次函数建立直接联系,通过构造一次函数式,利用一次函数的有关特性,完成不等式的证明.例1 设0≤a、b、c≤2,求证:4a+b2+c2+abc≥2ab+2bc+2ca. 证明:视a为自变量,构造一次函数 (a f= 4a+b2+c2+abc-2ab-2bc-2ca = (bc-2b-2c+4)a+(b2+c2-) 2bc), 又)0(f= b2+c2-2bc = (b-c)2≥0,)2(f= b2+c2-4b-4c+8 = (b-2)2+(c-2)2≥0, ∴)(a f≥0,即4a+b2+c2+abc≥2ab+2bc+2ca. 二、构造二次函数法证明不等式 如果不等式中含有一元二次方程的判别式(△= b2-4ac)的结构,就可以通过构造一元二次函数,利用二次函数的有关特性,可以简洁地完成不等式证明.例2 实数a、b、c满足( a+c)( a+b+c)<0,求证:( b-c )2>4a( a+b+c). 证明:由已知得a = 0时,b≠c,否则与( a+c)( a+b+c)<0矛盾, 故a = 0时,( b-c )2>4a( a+b+c)成立.

当a ≠0时,构造二次函数)(x f = ax 2+( b -c )x +( a +b +c),则有 )0(f = a +b +c ,)1(-f = 2(a +c),而)0(f ·)1(-f = 2( a +c)( a +b +c)<0, ∴存在m ,当-1<m <0时,)(m f = 0,即二次函数)(x f 的图象与x 轴相交, ∴方程ax 2+( b -c )x +( a +b +c) = 0有两个不相等的实数根, ∴△=( b -c )2-4a( a +b +c)>0,即( b -c )2>4a( a +b +c). 三、构造单调函数法证明不等式 根据题意结构式构造与之相对应的单调函数式,再利用单调性的定义,完成要证的不等式. 例3 已知 a >0,b >0,求证 : a a +1+ b b +1>b a b a +++1. 证明: 构造函数)(x f =x x +1,易证)(x f =x x +1= 1-x +11 当x >0时单调递 增. ∵ a +b +ab >a +b >0,∴ f (a +b +ab)>f ( a +b). 故 a a +1+b b +1=)1)(1(2b a ab b a ++++>) 1ab b a ab b a +++++=f (a +b +ab)>f ( a +b) = b a b a +++1. 四、构造局部不等式证明不等式 如果所证不等式是多个变量的和式结构,并且每一个变量在不等式中所占地 位是相同的,此时从整体上考虑难以下手,通过构造若干个结构完全相同的局部不等式,再利用同向不等式相加的性质,即得证不等式. 例4 已知a 1,a 2,…,a n 均为正数,且a 1+a 2+…+a n = 1,求证: 2121a a a ++3 22 2a a a ++…+12a a a n n +≥21 . 证明:因2121a a a ++421a a +≥a 1,3 22 2 a a a ++432a a +≥a 2,……,12a a a n n ++

高中数学测试题(简单)

数 学 试 题 卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{|(2)(3)0}A x x x =+-<,{1,0,1,2,3}B =-,则A B = (A ){0,1} (B ){0,1,2} (C ){1,0,1}- (D ){1,0,1,2}- (2)设a =(2,)k k +,b =(3,1),若a ⊥b ,则实数k 的值等于 (A )-32 (B )-53 (C )53 (D )32 (3)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18等于 (A )20 (B )60 (C )90 (D )100 (4)圆与圆的位置关系为 (A )内切 (B )相交 (C )外切 (D )相离 (5)已知变量x ,y 满足约束条件?? ???≤-≥+≤112y x y x y ,则z =3x +y 的最大值为 (A )12 (B )11 (C )3 (D )-1 (6)已知等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3 +…+1a n a n +1的结果可化为 (A )1-14n (B )1-12n (C )23(1-14n ) (D )23(1-12n ) (7)“m =1”是“直线20mx y +-=与直线10x my m ++-=平行”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件

(8)阅读右面的程序框图,运行相应的程序, 输出S 的值为 (A )15 (B )105 (C )245 (D )945 第II 卷 二、填空题:本大题共4小题,每小题5分 (13)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法 从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取 名学生. (14)在ABC ?中,角所对边长分别为, 若3,,c o s 6 a B A π=== 则 b =___________. (15)已知点P ,Q 为圆C :x 2+y 2=25上的任意两点,且|PQ |<6,若PQ 中点 组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为 __________ . (16)点C 是线段..AB 上任意一点,O 是直线AB 外一点,OC xOA yOB =+, 不等式22(1)(2)(2)(1)x y y x k x y +++>++对满足条件的x ,y 恒成立, 则实数k 的取值范围_______. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 已知的面积是3,角所对边长分别为,4cos 5 A = . (Ⅰ)求AB AC ; (Ⅱ)若2b =,求的值. ,,A B C ,,a b c ABC ?,,A B C ,,a b c a

高中数学核心方法:构造法

高中数学核心方法:构造法 构造法,顾名思义是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵

活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。 下面,我们通过几个例题,来简单看一下高中阶段几种常见的构造法。 例1.(构造函数)已知三角形的三边长分别为,,a b c ,且m 为正数,求证:a b c a m b m c m +>+++ 解:构造函数()1x m f x x m x m = =-++,则()f x 在()0+∞,上是增函数。 0a b c +>> ,()()f a b f c ∴+>。 ()()()()a b a b a b f a f b f a b f c a m b m a b m a b m a b m ++= +>+==+>++++++++ a b c a m b m c m ∴+>+++ 例2.(构造距离)求函数 ()f x =的最小值。 解:()f x =其几何意义是平面内动点(),0P x 到两定点()()1,4,3,2M N --的距离之和,当 ,,P M N 三点共线时距离之和最小为MN ==即() f x 的最小值为。 例3.(构造直线斜率)求函数()sin cos 3x f x x =- 的值域。 解:构造动点()cos ,sin P x x 与定点()3,0Q 的连线的斜率,而动点P 的轨迹为单位圆。

分式不等式的证明与方法

分式 摘要:分式不等式的证明是高中数学中的难点之一,本文主要通过作差法,利用基本不等式法,利用非负实数的性质,利用放缩法,环元法,构造法,类比法,局部不等式法来分析与 证明分式不等式,从而对分式不等式的证明有着整体的理解。通过方法与总结克服证明分式不等式的胆怯心理。 关键词:分式不等式 证明方法 作差法 基本不等式法 构造法 二.利用基本不等式法 均 值 不 等 式 即 : 利用不等式 ∑ =n i y i x m i n 11 ≥∑=∑=n i y i n n i x i n m 1 11)1(∑=-∑=n i i m m y x n n i i 1 2 1 1)((2,1,,=∈+i R y x i i )证明一 类难度较大的分式不等式是很简捷的。 例2.若1,2)(i R =∈+ a i 且N m s n i i a ∈=∑=,1 ,则有∑+=-n i m a a i i 1 ) (1)(s n n s m n +≥ 证明:(1)当m=1时, ∵n a a n i i n i i 2 1 1 1 ≥∑∑=-=,s n a n i i 2 1 1 ≥∑=-,所以有:)1 1 (a a i n i i +∑=-=∑∑==-+n i i n i i a a 1 1 1 ≧s n 2 +s=n(n s s n +) (2)当m=2时,

)1 1 (a a i n i i +∑=-≧ n m 2 1 -n i i n i m a a ∑+=-1 )(1≧n )( n s s n m + 综上,由(1)(2)知原不等式成立。 排序不等式即,适用于对称不等式 例3.设a,b,c 是正实数,求证: 23 ≥+++++b a c a c b c b a 证明:不妨设a ≧c b ≥则b a a c c b +≥+≥+1 11 由排序不等式得: ≥+++++b a c a c b c b a b a a a c c c b b +++++ (1) ≥+++++b a c a c b c b a b a b a c a c b c +++++ (2) 由(1)+(2)得 2( b a c a c b c b a +++++)3≥,所以2 3≥+++++b a c a c b c b a 利用倒数不等式即:若a i >0,则n a a n i i n i i 2 1 1 1 ≥∑∑=-= 例4.设βα,都是锐角,求证:且βα,取什么值时成立? 证明:1cos sin 2 2=+βα,不等式左边拆项得: ββαcos sin sin cos 2 2 2 2 1 1 + = β αβααsni 2 2 2 2 2 sin cos sin cos 1 1 1 + + 又由于1sin sin cos sin cos 2 2222=++βαβαα 由倒数不等式有: ) (sin sin cos sin cos 2 2 2 2 2 βαβαα++)1 1 1 ( 2 2 2 2 2 sin cos sin cos β αβααsni + + ≥9 所以原不等式成立 当且仅当βαβααsin sin cos sin cos 2 2222==即2tan ,1tan ==αβ时等

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高三数学专题选择题集锦

[教育资源网 https://www.360docs.net/doc/6d13035922.html,] 教学资源集散地。最大的免费教育资源网! 数学试题 选择题集锦 陕西特级教师 安振平 1. 满足不等式03329≥-?-x x 的x 的最小实数值是 (A) –1 (B) 0 (C) 1 (D) 3 2. 在ABC ?中, AB=5, ,3≤AC 7≥BC , 则

[教育资源网 https://www.360docs.net/doc/6d13035922.html,] 教学资源集散地。最大的免费教育资源网! 5. 设22+-=z z z f )(,且),()(R y x yi x i f ∈+=+1,则)(i f -1等于 (A) yi x + (B )yi x -- (C )yi x +- (D )yi x - 6. 已知函数)(x f 是奇函数,当0+=a ax tg y θ的自变量x 从n 变到n+1(n ∈N )时,y 恰好从-∞变到+ ∞,则常数a 的值为 (A) 1 (B ) 2 (C) 2π (D) π 13. 某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调 查结果如下表: 表1 市场供给量 表2 市场需求量 根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间 ( A )(2.3,2.6)内 (B ) (2.4,2.6)内 (C) (2.6,2.8)内 ( D) (2.8,2.9)内 (A ) (B ) (C ) (D )

高中数学选择题技巧讲解

专题一数学客观题的解题方法与技巧 专题一I 选择题的解法 高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字—准确、迅速.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 选择题具有题小、量大、基础、快捷、灵活的特点,是高考中的重点题型.在高考试卷中数量最大,占分比例高.全国卷的选择题占60分.因此,正确的解好选择题已成为高考中夺取高分的必要条件. 选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快捷.应“多一点想的,少一点算的”,该算不算,巧判断.因而,在解答时应该突出一个“选”字,尽量减少书写解答过程.在对照选项的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速的选择巧法,以便快速智取. 选择题的巧解说到底就是要充分利用选项提供的信息,发挥选项的作用.能力稍差的学生解选择题仅仅顾及题干,然后像解答题那样解下去,选项只取了核对的作用.本来像选择题这样的小题应当“小题小作”,但却做成了解答题.至少做成了填空题.这样就“小题大作”了,导致后面的解答题没有充裕的时间思考,这是不划算的. 由于选择题结构特殊,不要求反映过程,再加上解答方式没有固定的模式,灵活多变,具有极大的灵活性.选择题的解题思想,渊源于选择题与常规题的联系与区别,它在一定程度上还保留着常规题的某些痕迹;而另一方面,选择题在结构上具有自己的特点,即至少有一个答案是正确的或合适的.因此,可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支;选择题中的错误支具有双重性,既有干扰的一面,也有可利用的一面.只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速做出判断. 1.选择题的解题策略 解题的基本策略是:充分地利用题干和选择支的两方面条件所提供的信息作出判断.先定性后定量,先特殊后推理;先间接后直解,先排除后求解. 一般地,解答选择题的策略是: ①熟练掌握各种基本题型的一般解法; ②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧;

竞赛数学解题研究之不等式

《竞赛数学解题研究》之不等式证明 一、公式法 1、柯西不等式:设n a a a ,,,21 与n b b b ,,,21 为任意两数组,则 ≤+++22211)(n n b a b a b a )(22221n a a a +++ )(2 2221n b b b +++ 等号当且仅当n n b a b a b a === 22 11时成立。 例1、设16,822222=++++=++++e d c b a e d c b a ,求e 的最大值。(第7届美国数学竞赛) 例2、设P 是锐角ABC ?内一点,P 到三边BC 、CA 、AB 的垂足分别是D 、E 、F 求出(并加以证明)使2 2 2 PF PE PD ++达到最小值的点P 。(1990年,浙江省高中数学夏令营) 例3、设P 是ABC ?内一点,P 到三边BC 、CA 、AB 的垂足分别是D 、E 、F 求出(并加以证明)使PF AB PE CA PD BC ++达到最小值的点P 。(IMO22,1981)

例4、设n a a a ,,,21 为两两互不相等的正整数,求证:∑∑==≤n i i n i i a i 1211 (IMO20) 例5、求出所有的实数a ,使得存在非负实数521,,,x x x ,满足下列关系: a kx k k =∑=5 1 , 2 5 1 3 a x k k k =∑=, 35 1 5 a x k k k =∑= 例6、设y x b a ,,,都是实数,并且,122=+b a ,122=+y x 试证:1||≤+by ax (1963年成都市数学竞赛试题) 2、均值不等式 设n a a a ,,,21 为n 个正数,则 n n n a a a n a a a 2121≥+++等号当且仅当 n a a a === 21时成立。 例1、已知ABC ?的面积S 及角A 均为定值,记A 的两夹边为b,c 则当2 2 32c b +取最小值时,c b 的值为多少。(1985年长沙市数学竞赛)

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

高中数学概率选择题(精华版)

高中数学概率选择题(精华版) 一.选择题(共25小题) 1.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是()A.10个B.15个C.16个D.18个 2.设集合A={x|x>2},若m=lne e(e为自然对数底),则() A.?∈A B.m? A C.m∈A D.A?{x|x>m} 3.从分别写有1,2,3,4,5的5卡片中随机抽取1,放回后再随机抽取1,则抽得的第一卡片上的数大于第二卡片上的数的概率为() A.B.C.D. 4.从分别标有1,2,…,9的9卡片中不放回地随机抽取2次,每次抽取1,则抽到在2卡片上的数奇偶性不同的概率是() A.B.C.D. 5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为() A.B.C.D. 6.如图,正方形ABCD的图形来自中国古代的太极图.正方形切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形随机取一点,则此点取自黑色部分的概率是() A.B.C.D. 7.已知随机变量ξ i 满足P(ξ i =1)=p i ,P(ξ i =0)=1﹣p i ,i=1,2.若0<p 1

<p 2 <,则() A.E(ξ 1)<E(ξ 2 ),D(ξ 1 )<D(ξ 2 )B.E(ξ 1 )<E(ξ 2 ),D(ξ 1 )>D (ξ 2 ) C.E(ξ 1)>E(ξ 2 ),D(ξ 1 )<D(ξ 2 )D.E(ξ 1 )>E(ξ 2 ),D(ξ 1 )>D (ξ 2 ) 8.同时掷两个质地均匀的骰子,向上点数之积为12的概率是()A.B.C.D. 9.如图,点E是边长为2的正方形ABCD的CD边中点,若向正方形ABCD随机投掷一点,则所投点落在△ABE的概率为() A. B. C.D. 10.如图,圆O有一个接三角形ABC,且直径AB=2,∠ABC=45°,在圆O随机撒一粒黄豆,则它落在三角形ABC(阴影部分)的概率是() A.B.C.D. 11.甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是() ①甲抛出正面次数比乙抛出正面次数多; ②甲抛出反面次数比乙抛出正面次数少;

均值不等式八法

运用均值不等式的八类拼凑方法 利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。 一、 拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327 x x x x x x ++?? ++- ?++=???-≤= ? ??? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大 值。 例2 求函数)01y x x =<<的最大值。 解: y == 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =- ,即x =时,上式取“= ”。故max y =。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()264y x x =-的最大值。 解:() ()()2 2 2 222236418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-???≤=???? 。 当且仅当() 22 24x x =- ,即x = =”。

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

相关文档
最新文档