数独中的数学模型

数独中的数学模型
数独中的数学模型

数独中的数学模型

摘要

现如今数独游戏风靡全球,深受人们喜爱。其难度等级多样,求解数独难度

等级较高的常常需要花费大量的时间和精力,因此我们试图用计算机来解决这一

问题。

在问题一中,我们主要考虑空格数的多少以及空格自由度与数独难度等级的

关系。由一定的案例分析得出数独题目的难度等级与空格数存在正比关系,接着

我们考虑如果只是简单的按照空格的数目多少来划分数独题目的难易程度是不

全面的,因此继续分析,得出空格自由度与数独的难度等级存在正比的关系,最

后又以空格数和空格自由度综合分析进行验证,得出此数独等级为3级。[1] 空格自由度法模型如下:

在问题二中,我们运用穷举法分析大量可能情况,再用MATLAB编写程序得

出此数独游戏的终盘。

在问题三中,我们运用了比较排除法、唯一解法和综合法来求解此数独游戏,最终选用综合法作为较优方法。[1]

在问题四中,我们用循环回溯法进行求解,使用MATLAB编写程序得出结果(见表8)。[1]

关键字:穷举法比较排除法唯一解法循环回溯法数独空格数空格自由度

一、问题背景

数独是一种数字解谜游戏,英文名叫Sudoku,前身为“九宫格”,当时

的算法比现在的更为复杂,要求纵向、横向、斜向上的三数之和等于15,

而不只是数字的不能重复,儒家典籍《易经》中的“九宫图”也是来源于此。关于它的起源一直存有争议,有人认为最早起源于中国,也有人认为起

源于瑞士。1970年由美国一家数学逻辑游戏杂志首先发表,名为Number。后在

日本流行,于1984年把Sudoku取名为数独。数独全面考验做题者观察能力和逻

辑推理能力,它的玩法逻辑简单,除了1到9的阿拉伯数字以外,不必用到

任何东西,但数字的排列方式却又千变万化,不少教育者认为,数独是锻炼大

脑的绝佳方式。它不仅具有很强的趣味性,也是一种对智慧和毅力的考验。

二、问题重述

芬兰一位数学家号称设计出全球最难的“数独游戏”,并刊登在报纸上,

让大家去挑战。这位数学家说,他相信只有“智慧最顶尖”的人才有可能破解这

个“数独之谜”。

所给数独游戏表格如下:

据介绍,目前,数独游戏难度的等级有一到五级,一是入门等级,五则比较难。不过这位数学家说,他所设计的数独游戏难度等级是十一,可以说是所有数

独游戏中,难度最高的等级。

数独是根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足

每一行、每一列、每一个粗线宫内的数字均含1-9,不重复。每一道合格的数

独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。

由此我们要解决以下问题:

问题一:分析此数独的难度;

问题二:用穷举算法求解数独;

问题三:设计此数独求解的较优的算法;

问题四:建立数独求解模型并给出此数独的答案。

三、问题分析

根据题中所给信息我们知道数独是一种数字解谜游戏,要求游戏者有很好的观察能力和逻辑推理能力。

针对问题一:

分析此数独难度,我们认为有两点因素:一、空格数的多少,二、空间自由度。因此我们采取例证法进行分析,根据空格数来划分等级,进行一定的数据分析求出空格率,进而得出难度系数与空格数的关系。数独的难度等级与行、列、宫格内的空格数存在着密切联系,所以数独难易程度还与空间自由度有关。数独的空格自由度,指除掉空格本身,空格所在行、列、九宫内的空格数总和。除此之外我们可以以玩家完成数独题目的时间来判定数独题目的难度。

针对问题二:

“穷举法”是指当一个问题有几种可能而一时难以判定时,把几种可能一一列举出来,然后逐一尝试,直到尝试结果与给定的条件和结论相符为止。这种方法一般在计算机中运用,因为计算机计算速度快,可以很快验证答案是否正确,所以我们就以此来分析所有可能情况得出最终结果。

针对问题三:

为了找出更好的数独解法,我们运用了三种方法来求解。分别是:比较排除法、唯一解法和综合法。分析比较,选出较优方案。

针对问题四:

我们选用循环回溯法进行分析求解,与问题三中所求结果对比,以此验证其准确性。

四、模型假设

1、假设每种数独游戏都存在一定的联系且相互之间的难易程度成一定的比例;

2、假设实验者水平相同,随着实验不断进行,完成数独题目熟练程度不会增加;

3、假设实验者数独时间与数独题目难度无关。

五、符号说明

六、模型建立与求解

6.1问题一的求解

为了更好的区分难易程度我们将数独以空格数划分为五个等级,具体划分如下:

空格数的取值范围为0-81,以空格数来平均划分难度等级,将空格数平均分成5个类型,空格数的取值范围缩小到37-81。

划分等级如下表所示:

100道,表格行表示空格的个数,列表示难度的级别,一星为最容易,二星为容易,三星为难,四星为最难。例如:表一的首格3表示,难度为一星,空格数为50的题目有3道。

也相应的增加。为进一步探讨数独的难易程度是否还与其他因素有关,我们对数独题目的统计表格进行处理,在同等难度上,将每种空格的题目个数除以该难度的总题目数,得到如下表格。

表2 计算《数独》空格率与难度

表格的数据用图表表示(图1),由图可以清晰看出,难度等级递增,空格

数也不断增加。难度等级与空格数存在正比的关系。

图1 《数独》空格数与难度

经过我们的多次试验与分析,我们初步得到,随着空格数的增加,数独的难度系数也相应的增加,当然数独题目的难度等级与空格数存在正比关系。难度等级的增加,空格数总体趋势递增,不同难度等级的题目空格数也一样的情况。6.1.2空格自由度与难度等级

数独题目的难度等级与空格数存在正比关系。难度等级的增加,空格数总体

趋势递增,不同难度等级的题目空格数也一样的情况。我们得出初步结论,简单按照空格的数目多少来划分数独题目的难易程度是不全面的。同样空格数的数独题目,空格数分布位置的不同对难度等级也造成影响。

注:格数是决定难度等级的因素,但不是唯一的因素。

表3 统计《数独-再露锋芒》空格数与难度

计算空格自由度的模型如下:

空格自由度的取值范围大,当数独题目全为0时,空格的数为 81,空间自由度为2106;数独题目只剩1个空格时,空格自由度为0。在[0,2106]的范围内平均划分,将难度级别划分为5个等级,空格自由度0-420难度等级为1;421-841为2;842-1262为3;1263-1683为4;1683-2106为5。这与实际题目的难度划分不一致。空格自由度划分的区间缩小到[700,1300],[700,820]为1级,[820,940]为2级,[940,1060]为3级,[1060,1180]为4级,[1080,1300]为5级(图2)。

图2 空格自由度难度模型

随机抽取数独书籍不同难度等级的题目,进行空格自由度的计算,验证空格自由度衡量数独题目的难度是否合理,首先抽取4道不同难度的数独题目,将题目转换为字符串,计算空格自由度,实验结果如下:

表4 实验数据

划分合理,与书中的划分基本一致。

数独题目的难度等级由空格数与空格自由度综合决定,建立几何难度等级模型:

(1)以数独的空格数来划分,将空格数为横坐标X;

(2)将空格自由度的总和划分等级,将等级数设为纵坐标Y;

(3)根据(X,Y)判定难度。

将计算好的空格数和空格自由度划分等级,两者结合,便可得到数独题目的

难度等级了。难度等级等级为A-I,A为最易,I为最难,随着字母变大,难度

逐次增加。具体划分的数据如下:

图3 难度判定坐标

难度等级 A B C D E F G H I X+Y 2 3 4 5 6 7 8 9 10 为了测试难度等级划分的情况的准确程度,主要做了如下测试:

(1)测试的数独题目,查找出自《数独》和《路途中的数独》资料

表6 测试题目

(2)书籍中对数独难度等级的划分,并不一定合理,为了更准确区分难度等级,我们将的题目由3个人完成,计算每道数独题目完成需要的平均时间,完成时间

越长,数独题目难度越大。测试结果如下:

表7 测试结果 Test result

独题目的时间来判定数独题目的难度的话,那么此种划分难度等级的方法也合理。

6.2问题二的求解

6.2.1 MATLAB编程求解数独

“链式推导方法”解数独定义

所谓链式推导方法就是根据数独题中候选数的出现关系或分布规律来推导,形成一条或多条推导链,最后证明某个或某些候选数是真或是假的解数独题的方法。

现在能想到的链式推导方法有:

1、由A证明B为假(由一个格子的候选数假设推导证明另一个格子里的某个候选数是假的方法)

2、由A证明B为真(由一个格子的候选数假设证明另一个格子的某个候选数是真的方法)

3、由A证明A为假(由某个候选数推导而出现错误证明本身假设是错的方法)

4、与成名方法结合的链式推导

5、还有………

如何推导,先定义一下,所说的A、B、C……、a、b、c……等等,都是候选数在某格子位置的代号。箭头“-->”是“导致”或“因此”的意思;“=”是等于,“<>”是不等于的意思;A=1-->B=2-->C=3……的意思是:当A是1时,导致B 等于2,B等于2因此C就等于3……,余下类推;A=1-->B<>1-->……的意思就是当A是1时,B就不是1,余类推;“同一单元”的概念是指同一行或同一列或同一九宫格。

6.3问题三的求解

由于数独规则要求每行、每列和每宫的数字不重复,所以已出现的数字可以排除掉同行、同列、同宫中的其他单元格内再填入该数字的可能性,以下我们用两个截图解释。

比较排除法流程图如下:

排除法的模型优点是步步为营,谨慎小心,出错率不大。但其推算过程较复

杂,编程水平要求很高,所以不适合解答本题。

当某行已填数字的宫格达到8个,那么该行剩余宫格能填的数字就只剩下那个还没出现过的数字了,成为行唯一解。

当某列已填数字的宫格达到8个,那么该列剩余宫格能填的数字就只剩下那个还没出现过的数字了,成为列唯一解。

当某九宫格已填数字的宫格达到8个,那么该九宫格剩余宫格能填的数字就只剩下那个还没出现过的数字了,成为九宫格唯一解。

以下我们用一个例子来简单的介绍这种算法:

A行已经添入8个数字,A行只有数字3没有出现

过,所以A9=3,这是行唯一解

第1列已经添入8个数字,第1列只有数字5没

有出现过,所以E1=5,这是列唯一解

在A8所在九宫格区域已经添入8个数字,只有

数字9没有出现过,所以A8=9,这是九宫格唯一

唯一解法实施起来比较简单,但就是因为简单所以只能应用于较简单的数独游戏中或者是用于较难数独游戏题型中的最后阶段,所以唯一解法的模型也不适合解答本题。

我们借鉴了数独游戏算法中几种算法的思想,进行归纳最后定义为综合法,其算法的步骤如下:

1、将所有未确定的格子的可能性定义为0xFFFF(即所有数字都可能),可能数目为9。

2、寻找所有确定的格子A(可能数目为0),在所有与A同行、同列和同区域的未确定的格子的可能性中减去与A相同的可能性。例如:A确定为9,则与A同行、同列和同区域(区域标志相同)的未确定的格子的可能性与0xFEFF按位与(除去可能性9),并将其可能性数目减少。

在除去可能性的过程中如果发现某个格子B的可能性数目由1减小为0,说明B和A只能取相同的数字,这可能是题目本身无解引起,也肯能是由于步骤3中搜索方向不对引起的,可认为此方向的搜索无解,退出这一方向的搜索。定义这个检查为唯一性检查。

3、寻找所有未确定格子中可能性数目最少的格子M,如果M的可能性数目为1,则确定M:将M的可能性数目定义为0,并把确定数量加1,如果此时确定数量达到81,则报告找到解,否则,在所有与M同行、同列和同区域的未确定的格子的可能性中减去与M相同的可能性,并进行唯一性检查。然后重复步骤3。

如果M的可能性大于1,则把M假设为所有M的可能性,分多个方向进行搜索,在每一个搜索方向重复步骤3(这个可以用递归来实现)。

6.4问题四的求解

在比较排除法、唯一解法的基础上,我们对模型进行深化,提出了循环回溯模型。其回溯法求解数独步骤如下:

1)按下标sp由小到大的顺序逐个获取空白位置;

2)对空白位置sp试图填数,填数的规律为从1-9依次由小到大选择(有序);3)若找到一个可以填入的数据,将数据填入数独[sp],并将sp入栈push否则转5);

4)获取下一个空白位置,若有空白位置则转2),否则转6);

5)因为check(sp)返回1),找不到合适数据填入该位置,进行回溯,即pop 得到上一次填数的位置sp,重新对该位置试图填数,且为了递推的高效性,此时可以仅从当前sp存放的数字大于1开始试图填充,转3);

6)填数结束。

回溯法流程图如下:

模型的整个函数体在while(isempty 1(a))的循环体中,只有当a得所有点

全部确定下来后,该循环才终止。我们是从矩阵的第一个元素开始循环的,首先判断a(i,j)是否确定,如果确定,则判断下一个点,如果a(i,j)没有确定,则把a(i,j)的第一个候选值赋给它,并用firstsolve()更新a100次,如果出现矛盾,即isright(a)=0,则说明第一个候选值错误,此时要把下一个候选值赋值给a(i,j),由于不同的a(i,j)的候选值下标是不同的,为此,需要指针表达这种关系,于是我们定义了一个新的细胞数组t=cell(9,9),用t{i,j}表示a(i,j)的候选值下标,并用语句:

for ii=1:9

for jj=1:9

t={ii,jj}=1;

end

end

把t{i,j}的值初始化为1,以后循环中依次加1即可。当a(i,j)的所有候选值都尝试过后依然出现矛盾(isright(a)=0),则应该回溯到上一点,让上一点取下一个候选值,同时让当前点清空。回溯的时候容易出现的问题是发生越界,最容易发生的越界的点为每一行的第一个点和矩阵的第一个点a(1,1),为解决回溯越界问题,我们用一系列的if else 语句进行约束:

j=j-1

else if j==1

j=9;

i==i-1

if i==0

i=9

end

end

需要注意的是,程序回溯的是上一个未确定的点,而不是上一个点,因此,在回溯过程中需要进行判断上一点是否已经是确定的点。

如果a(i,j)确定下来了,则应继续寻找下一点,此时又遇到越界问题,容易越界的点是矩阵的最后一个点a(9,9)和每一行的最后一个点,我们依然用一系列的if else 语句进行限制:

j=j+1;

if j==10

i=i+1;

i=1;

if i==10&&j==10

i=1;

j=1;

end

end

这样,通过循环回溯,直到所有的点都已经确定下来,结束程序,可得出正确的解。

如下表所示:

七、模型优缺点

7.1模型优点:

(1)难度等级模型引入空格自由度的概念,是模型的创新点;

(2)模型对数独的难度的分类较为直观;

(3)难度等级的模型可操作性强;

(4)难度模型计算的难度等级符合现实的等级划分。

7.2模型缺点:

(1)模型所划分难度等级的区域过大,在实际题目中,数独的空格数往往较为集中在20-40中,研究的范围较大,划分的难度等级准确性低,主观成分过强;

(2)实验数据分析过程中,默认数独书籍对难度等级的划分为合理,这个前提存在不准确的可能,因为书籍中的难度等级划分,可能渗入编者个人的主观意识,笔者在研究过程中,没有剔除该种可能,也存在着不足;

(3)模型建立忽视数独题目所提供的数字不同,导致数独题目难度不一致的可能。

参考文献

[1]刘彬,刘丹彤,王倩倩.数学软件(2)课程设计.百度文库.2012-07-21

[2]MonkeyDove.数学建模与数学实验计算机模拟.百度文库.2012-07-21

附录

针对问题二编写的Matlab程序:

function initial

A=zeros(9,9);

%骨灰级

A(1,[1 2 6 8])=[2 4 5 8];

A(2,[1 3 5 8])=[8 9 3 5];

A(3,[7])=[3];

A(4,[3 6 8 9])=[4 9 1 5];

A(6,[1 2 4 7])=[3 9 8 2];

A(7,[3])=[1];

A(8,[2 5 7 9])=[2 9 7 3];

A(9,[2 4 8 9])=[3 7 6 2];

disp('the inital condition is : ')

A %显示初始值

main(A);

load result

disp('the result is : ')

A

end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function main(A)

if isempty(find(A==0))==1

save result A

return;

end

[i,j,P]=findmp(A);

if length(P)==0

return;

else

for k=1:length(P)

A(i,j)=P(k);

main(A);

end

end

end

%%%%%%%%%%%%%%%%%%%%%找出可能元素最小的格子及其可能元素function [i,j,P]=findmp(A)

temp=zeros(9,9);

temp(A>0)=10;

for row=1:9

for col=1:9

if A(row,col)==0

r=A(row,; r=r(r>0);

c=A(:,col); c=c(c>0);

rc1=and_log(r,c);%行列不同元素放在rc中

rr=findrc(row);

cc=findrc(col);

rc2=reshape(A(rr*3+1:rr*3+3,cc*3+1:cc*3+3),1,9);

rc2=rc2(rc2>0);

total=and_log(rc1,rc2);

temp(row,col)=9-length(total);

end

end

end

[v,i]=min(temp);

[v,j]=min(v);

i=i(j);

row=i;

col=j; %以下找出可能元素

r=A(row,; r=r(r>0);

c=A(:,col); c=c(c>0);

rc1=and_log(r,c);

rr=findrc(row);

cc=findrc(col);

rc2=reshape(A(rr*3+1:rr*3+3,cc*3+1:cc*3+3),1,9); rc2=rc2(rc2>0);

total=and_log(rc1,rc2);

P=[];

for kkk=9:-1:1

if isempty(find(total==kkk))==1

P=[P,kkk];

end

end

end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%集合A&B求和function c=and_log(a,b)

c=a;

for i=1:length(b)

log=0;

for j=1:length(a)

if b(i)==a(j)

log=1;

break;

end

end

if log==0

c=[c,b(i)];

end

end

end

%%%%%%%%%%%%%%%%%%%找出九个小方格所在位置

function rr=findrc(row)

switch row

case {1 2 3}

rr=0;

case {4 5 6}

rr=1;

otherwise

rr=2;

end

针对问题四用matlab编写数独9*9的程序:

function y=choose1(a)

y=cell(9,9);

choose=cell(9,9);

select=[1,2,3,4,5,6,7,8,9];

save=cell(9,9);

grid=cell(3,3);

templ=a (1:3,1:3);

grid{1,1}=temp1(temp1>0)’;

temp2=a(1:3,4:6);

grid{1,2}=temp2(temp2>0)’;

temp3=a(1:3,7:9);

grid{1,3}=temp3(temp3>0)’;

temp4=a(4:6,1:3);

grid{2,1}=temp4(temp4>0)’;

temp5=a(4:6,4:6);

grid{2,2}=temp5(temp5>0)’;

temp6=a(4:6,7:9);

grid{2,3}=temp6(temp6>0)’;

temp7=a(7:9,1:3);

grid{3,1}=temp7(temp7>0)’;

temp8=a(7:9,4:6);

grid{3,2}=temp8(temo8>0)’;

temp9=a(7:9,7:9);

grid{3,3}=temp9(temp9>0)’; %%%%%%%%%%%%%%%%%%%%

%求出每一点处所在行、列、九宫格处已有的点

for i=1:9

for i=1:9

if a(i,j)=0

n1=find(a(i,:>0);

N1=a(I,n1);

n2=find(a(:,j)>0);

N2=a(n2,j);

N2=N2’;

aaa=[N1,N2]; %%%%%%%%%%%%%%%%%%%%

%把a(i,j)所在行、列、九宫格已确定的数字合并

if i>=1&&i<=j&&j<=3

aaa=[aaa,grid{1,1}];

else if i>=1&&i<=3&&j>=4&&j<=6

aaa=[aaa,grid{1,2}];

else if i>1&&i<=3&&j>=7&&j<=9

aaa=[aaa,grid{2,1}];

else if i>=4&&i<=6&&j>=4&&j<=6

aaa=[aaa,grid{2,2}];

else if i>=4&&i<=6&&j>=7&&j<=9

aaa=[aaa,grid{2,3}];

else if i>=7&&i<=9&&j>=1&&j<=3

aaa=[aaa,grid{3,1}];

else if i>=7&&i<=9&&j>=4&&j<=6

aaa=[aaa,grid{3,2}];

else if i>=7&&i<=9&&j>=7&&j<=9 aaa=[aaa,grid{3,3}];

end

end

end

end

end

end

end

end

end

aaa=unique(aaa);

save{i,j}=aaa;

end

end

end

%%%%%%%%%%%%%%%%%%%%

%求出每一处的候选数字

for i=1:9

for j=1:9

n=[];

if a(i,j)=0

choose{i,j}=a(i,j);

else if a(i,j)=0

temp=select;

for t=1:length(save:{i,j})

n(t)=find(temp=save{i,j}(t));

temp(n(t))=[];

end

choose{i,j}=temp;

end

end

end

end

y=choose;

%%%%%%%%%%%%%%%%%%%%

%找出一次性能确定的点,不用回溯

function y=firstsolve(a)

choose2=choose1(a);

a1=[];

for i=1:9

for j=1:9

if length(choose2{i,j})=1;

a1(i,j)=choose2{i,j};

else

contine

end

end

end

a=a1;

y=a;

%%%%%%%%%%%%%%%%%%%%

%判断举证元素是否全部确定,如果确定,返回0,否则返回1

function y=isempty1(a)

choose2=choose1(a);

tempp=0;

for i=1:9

for j=1:9

if length(choose2{i,j})>1||a(i,j)=0

tempp=1;

end

end

end

y=tempp;

%%%%%%%%%%%%%%%%%%%%

%判断该矩阵的点是否有解,如果无解,则返回值为0,否则返回值为1 function y=isright(a)

choose2=choose1(a);

tempp=1;

for i=1:9

for j=1:9

if length(choose1{i,j})==0

tempp=0;

end

end

end

y=tempp;

%%%%%%%%%%%%%%%%%%%%

function y=sudu_solve(a)

i=1;

j=1;

choose2=choose1(a);

t=cell(9,9);

for ii=1:9

for jj=1:9

t={ii,jj}=1;

end

end

while isempty1(a)

if a(i,j)==0

while t{i,j}<=length(choose2{i,j})

a(i,j)=choose2{i,j}(t{i,j});

for isright(a)==1

break

else if isright(a)==0

t{i,j}=t{i,j}+1;

if t{i,j}>=length(choose2{i,j})

t{i,j}= length(choose2{i,j});

end

a(i,j)=choose2{i,j}(t{i,j});

end

end

end

%[][][][][][][][][][][][][][][][][][][][][][][][][][][][] if isright(a)==0

a(i,j)=0;

if j>1

j=j-1;

else if j==1

j=9;

i=i-1;

if i==0

i=9

end

end

end

if length(choose2{i,j})==1

if j>1

j=j-1;

else if j==1

j=9;

i=i-1;

if i==0

i=9;

end

end

end

Else

%上一点的候选值改变,如果上一点的候选值只有一个,则继续寻找上一点 a(i,j)=choose2{i,j}(t{i,j}+1)

end

end

%跳出循环后继续寻找下一点

j=j+1;

if j==10

i=i+1;

j=1;

if i==10&&j==10

i=1;

j=1;

end

end

%如果a(i,j)的值确定,寻找下一点

else

j=j+1;

if j==10

i=i+1;

j=1;

if i==10&&j==10

i=1;

end

end

end

end

y=a;

%%%%%%%%%%%%%%%%%%%%

function y=generate()

a=[ 8 1 2 7 5 3 6 4 9;

9 4 3 6 8 2 1 7 5;

6 7 5 4 9 1 2 8 3;

1 5 4

2

3 7 8 9 6;

3 6 9 8

4

5 7 2 1;

2 8 7 1 6 9 5 4 3;

5 2 1 9 7 4 3

6 8;

4 3 8

5 2

6 9 1 7;

7 9 6 3 1 8 4 5 2]

select=a;

count=0;

while (1)

h=rand;

n=floor(53*h+64*(1-h));

a=reshape(a,1,81);

NN=randperm(81);

%从a中随机选取n个数字,使其为空 for t=1:n

a(NN(t)=0;

end

a=reshape(a,9,9);

choose=choose1(a);

for i=1:9

for j=1:9

if length(choose{i,j}>=3

count=count+1;

end

end

end

if count>40

break

else

a=select;

end

end

y=a;

function y=generate()

a=[ 8 1 2 7 5 3 6 4 9;

9 4 3 6 8 2 1 7 5;

6 7 5 4 9 1 2 8 3;

1 5 4

2

3 7 8 9 6;

3 6 9 8

4

5 7 2 1;

2 8 7 1 6 9 5 4 3;

5 2 1 9 7 4 3

6 8;

4 3 8

5 2

6 9 1 7;

7 9 6 3 1 8 4 5 2];

%aa=sudu_solve(a)

select=a;

count=0;

while (1)

h=rand;

n=floor(30*h+40*(1-h));

a=reshape(a,1,81);

NN=randperm(81);

%从a中随机选取n个数字,使其为空 for t=1:n

a(NN(t))=0;

end

a=reshape(a,9,9);

choose=choose1(a);

for i=1:9

for j=1:9

if length(choose{i,j})==1 count=count+1;

end

end

end

if count>40

break

else

a=select;

end

end

%任取互换a中两个数字的位置

a=reshape(a,1,81);

hh1=rand;

hh2=rand;

h1=floor(hh1+9*(1-hh1))

h2=floor(hh2+9*(1-hh2))

if h1==h2

h1=1;

h2=9;

end

n1=find(a==h1);

n2=find(a==h2);

for i=1:length(n1)

a(n1(i))=h2;

end

for i=1:length(n2)

a(n2(i))=h1;

end

a=reshape(a,9,9);

a=a’;

y=a

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

数学模型在经济学中的应用 李海维

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 数学与应用数学年级:2008 题目: 数学模型在经济学的应用 学生姓名: 李海维学号: 08063041指导教师姓名:陈作清职称: 副教授 2012年5月1日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:年月日

目录 1数学模型概述 (2) 1.1.1 数学的应用 (2) 1.1.2 数学建模 (3) 1.2.1 数学建模的方法 (4) 1.2.2 数学建模的基本过程 (4) 1.2.3 数学建模的分类 (6) 2数学模型的实际应用 (7) 2.1.1 运用数学模型解决经济最优化问题 (6) 2.1.2 数学模型对经济预测的指导 (7) 2.1.3 数学模型对经济政策的指导 (8) 2.2 经济学研究中应用数学方法的注意事项 2.2.1 数学在经济学中应用的局限性 (9) 结论 (10) 致谢 (10) 参考文献 (11)

数学模型在经济学中的应用 摘要:本文在阐述了数学建模的基本概念及相关理论知识基础上,分析了数学模型的合理性,实用性、严密性、抽象性与趣味性。当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。本文从“运用数学模型解决经济最优化问题”,“数学模型对经济预测的指导”,以及“数学模型对经济政策的指导三个方面”阐明了数学模型在经济学中的应用。最后阐述了正确认识数学方法和数学模型在经济学研究运用中的重要的意义。 关键词:经济学数学模型应用最优化预测指导 The mathematics model application in Economics Abstract:In this paper, the mathematical modeling of the basic concept and theory of knowledge based on the analysis of the mathematical model, the rationality, practicability, tightness, abstract and interest. Contemporary western economic thought, economics is the basic method of economic analysis of the relationship between variables, the establishment of the economic model, derived from the economic principle and the theory of decision-making and forecasting. I use the mathematical model to solve the economic optimization problem, a mathematical model of economic prediction guidance, and mathematical model of economic policies of the three aspects of each give an example explain the mathematical model in the application of economics. Secondly, the correct understanding of mathematics method and mathematics model in economics research in the use of the trend, effect and limitation, have very important sense. Key words:Mathematical model;Graph maximum coverage;Optimization;Forecast;Guide

数学建模常用算法程序

假设图G 权的邻接矩阵为0A , ????? ? ??? ???=nn n n n n a a a a a a a a a A 2 1 22221 112110 来存放各边长度,其中: 0=ii a n i ,,2,1 =; ∞=ij a j i ,之间没有边,在程序中以各边都不可能达到的充分大的数代替; ij ij w a = ij w 是j i ,之间边的长度,n j i ,,2,1, =。 对于无向图,0A 是对称矩阵,ji ij a a =。 Floyd 算法的基本思想是:递推产生一个矩阵序列n k A A A A ,,,,,10 ,其中),(j i A k 表示从顶点i v 到顶点j v 的路径上所经过的顶点序号不大于k 的最短路径长度。 计算时用迭代公式: )),(),(),,(min(),(111j k A k i A j i A j i A k k k k ---+= k 是迭代次数,n k j i ,,2,1,, =。 最后,当n k =时,n A 即是各顶点之间的最短通路值。 例10 用Floyd 算法求解例1。 矩阵path 用来存放每对顶点之间最短路径上所经过的顶点的序号。Floyd 算法的Matlab 程序如下: clear; clc; M=10000; a(1,:)=[0,50,M,40,25,10]; a(2,:)=[zeros(1,2),15,20,M,25]; a(3,:)=[zeros(1,3),10,20,M]; a(4,:)=[zeros(1,4),10,25]; a(5,:)=[zeros(1,5),55]; a(6,:)=zeros(1,6); b=a+a';path=zeros(length(b)); for k=1:6 for i=1:6 for j=1:6 if b(i,j)>b(i,k)+b(k,j)

数独介绍 (文科试卷分析侯立伟)

有关数独知识的背景介绍 数独Sudoku(日语:すうどく)是2005年风靡世界的智力填数游戏,在英国尤为狂热.在标准的9?9矩阵中,游戏者用从1到9九个数字填满空格,要求横竖各行都是从1到9的数字,而且每一行或者列没有重复数字.与普通的填字游戏相比,Sudoku的优势显而易见,第一,使用阿拉伯数字,全球通用;第二,游戏者具有一般的思考能力就够了;第三,规则非常简单. 一.数独发展的历史 数独的雏型首先于1970年代由美国的一家数学逻辑游戏杂志发表,当时名为Number Place.现今流行的数独于1984年由日本游戏杂志《パズル通信ニコリ》发表并确定为现在的名称.数独本是“独立的数字”的省略,因为每一个方格都填上一个个位数. Sudoku的流行与1997年香港回归有点渊源.新西兰人韦恩·古尔德(Wayne Gould),在香港法院系统工 作了大半生.随着香港回归的临近,他一边环球旅游,一边打算在退休之后找点事情 做.就在退休前去东京的旅行时,他发现一种日本80年代中期出现的数字游戏.它就 是Sudoku,这个游戏的推广商是一家叫做Nikoli的出版社,专门从事智力题业务, 他们最早从一家叫《戴尔杂志》(Dell Magazine)的美国智力游戏杂志获得了灵感. 早在1979年这家杂志推出了Sudoku,发明人是一位叫霍华德·戛纳斯(Howard Garnes)的建筑师. 从来没有玩过Sudoku,古尔德很快就做完了,于是就想着多做 一些.他不是数学天才,只不过是对数字感兴趣,一度希望退休了可以编编程序.结果 在这样的兴趣驱动下,古尔德花了6年的时间研究如何用计算机来随机产生Sudoku 的矩阵,不想6年之后,当2004年11月,他的一个Sukodu游戏在《泰晤士报》 刊登出来,他的兴趣引发了全球性的“数独迷幻”.Sudoku的规则看起来很简单,然而英国谢菲尔德大学和德国Dresden技术大学的研究表明,这样的9?9的矩阵,理论上说有6,670,903,752,021,072,936,960种组合.因此,这是一个穷尽一生的游戏. 二.现代科学家关于数独研究 著名的程序是爱尔兰数学教授麦盖尔博士(Gary McGuire)的免费程序SOLVER.EXE ,计算机专业的学生都可以写的出这个程序,. http://www.math.ie/checker.html 下载这个程序 全部的数独解(Sudoku grids )有6,670,903,752,021,072,936,960这是贝米耳(Stanley E. Bammel)与罗思坦(Jerome Rothstein)二位数学家计算出来的,有专门研究的报告 https://www.360docs.net/doc/6d1309866.html,/sudoku/ 登陆这个网址可以查看报告内容 由于同一个数独可以变形,例如左右纵列交换、上下横行交换、数字代码交换(例如1和5交换,2和8、3和4...)重复前面几次之后,就分不清是来自同一个数独,但是专家们还是有法子的. 澳大利亚的大学(The University of Western Australia )教授Gordon Royle 博士利用图形理论,发展出辨识数独变形的方法.将数独谜题利用Nauty 程序图形转化,然后作比对. https://www.360docs.net/doc/6d1309866.html,.au/gordon/sudokumin.php 如果考虑经过变形的数独不算是新数独,那么数独解的数目会少很多! 现在有数学、计算机、...等专家们正在研究, 三.数独Sudoku背后的四个数学问题 德国名画家丢勒的这幅木刻画《忧郁症》(Melencolia)描述的就是一个因为数学患上忧郁症的天使.让画中天使牵挂的就是墙上挂着的数字迷宫,横向、纵向、对角线数字的和都是34,在最下面一行的中间两格,画家自娱地留下了创作年代1514. 古埃及石墙上的数字方阵也许是最古老的数独游戏

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学模型在微观经济学中的应用吴亚兰

数学模型在微观经济学中的应用 建立一个形如U=Aa+(1-a)B关于某消费者的效应函数,两种商品Y的价格既定,消费者的收入既定,计算该消费者关于两种商品各消费多少?从中获得的总效应是多少? 问题分析: 需要建立一个效应函数来求商品的消费量和可获得的总效应。只有既定的预算线与一条无差异曲线的相切点,才是消费者获得最大效用水平或满足程度的均衡点。切点是在收入一定的条件下费消费者带来最大效用的商品组合。可知预算线的斜率与无差异曲线的斜率相等意味着:MU X/MU Y = P X/P Y 模型假设: 1.假定消费者将其全部货币收入W用于购买两种商品X和Y; 2. 商品X和Y的价格分别为P X 和P Y ; 3. 消费者的收入为W. 模型建立: 消费者的效应函数可建立成:U(x,y)=alnx + (1-a)lny,a为(0-1)。得MU X=aU/ax=a/x;MU Y=aU/ay=(1-a)y 又X商品的价格是P X ,Y商品的价格是P Y ,则消费者的预算线方程可表示为: W=P X x+P Y y 模型求解: 根据消费者效用最大化的均衡条件MU X/MU Y = P X/P Y 得a.y/(1-a)x = P X/P Y 从而y = (1-a)x P X/a P Y 根据预算线方程W=P X x+P Y y,得W=P X x +(1-a) P X x/a 从而x=aW/P X 把x=aW/P X 代入y = (1-a)x P X/a P Y,得y = (1-a)W/ P Y 即该消费者消费商品X和Y各为aW/P X和(1-a)W/ P Y,把x=aW/P X和 y=(1-a)W/ P Y代入效用函数,得U=aln(aW/ P X) +(1-a)ln[ (1-a)W/ P Y]

数学建模10种常用算法

数学建模10种常用算法 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行

编程的话,那一些数值分析中常用的算法比如方程组 求解、矩阵运算、函数积分等算法就需要额外编写库 函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关, 即使与图形无关,论文中也应该要不乏图片的,这些 图形如何展示以及如何处理就是需要解决的问题,通 常使用Matlab进行处 参数估计 C.F. 20世纪60年代,随着电子计算机的 。参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。在一定条件下,后面三个方法都与极大似然法相同。最基本的方法是最小二乘法和极大似然法. 基本介绍 参数估计(parameter 尽可能接近的参数 误差 平方和  θ,使已知数据Y 最大,这里P(Y│θ)是数据Y P(Y│θ)。在实践中这是困难的,一般可假设P(Y│θ

四宫数独教学设计

模块六统计 “幼儿四宫数独”教学设计 【学习内容】 幼儿数独 【学习目标】 1.认识四宫“数独”游戏的规则,掌握玩“数独”的方法; 2.通过数学游戏,提高学生推理能力,培养学习数学的兴趣; 3.培养学生养成动手之前先动脑的好习惯,动手实际摆一摆,在拼摆的过程中不断尝试,克服困 难,用数独的思想指导生活。 学习工具:益智学具:幼儿数独 学习形式:每4人为一组,拼摆与讨论。 问题清单: 1.仔细观察横着看,你能发现哪几个数字? 2.竖着看你又能发现哪几个数字? 3.在一个正方形围城的框里,你又能发现哪几个数字? 【活动过程】 1.创设情境,提出问题 教师带来一个既能培养我们的观察能力,又能锻炼我们动手动脑能力,并且它是所有聪明人喜欢玩的一种填数字游戏,孩子想变成聪明人那就一起来玩游戏。 出示:幼儿四宫数独 简介“独”的意思:单一的,独自的,然后理解“数独”之意:单一的数字或独立的数字,“宫”为一种小房子,古代帝王或太子居住的地方,用自己的话说“四宫数独”的意思,加深游戏印象。 简介游戏组成部分: 左面这是游戏盒,类似于我们平时的棋盘,上面有十六个圆形的小孔,右面是十六颗棋子,分别是四个相同的1、2、3、4,从图中,你能猜到我们要玩什么吗? 预设:玩数字,把数字摆放在小圆孔上。 这是我提前摆好的棋子,请看:

动手之前,我们先来看“问题清单”: 1.仔细观察棋盘,横着看你能发现哪几个数字? 2.竖着看你又能发现哪几个数字? 3.在分成的四个正方形内,你又能发现哪几个数字? 【设计意图】学生平时接触的棋类和今天要玩的数字棋大不相同,因此在清单里面要抓住让学生观察的重点四个数字:1、2、3、4,先让学生在意识里引起注意要玩让学生的棋跟四个数字有关,而且要简洁明了的让他知道四个数字分别出现在哪里,显得尤为重要。 2.活动与实验,建立模型 1.弄清横着为行,竖着为列,每四个小格子围城的正方形是一宫。 2、填数字游戏规则:每一行里有1、2、 3、4,每一列里有1、2、3、4,每一宫里也有1、2、3、 4,而且不能够重复,只能出现一次。 同学们已经迫不及待了,想玩填数字游戏吗?那就要按要求去做。 活动要求: (1)在一行中这样摆,那剩余的格子怎么摆。 (2)在一列中这样摆,那剩余的格子应该怎么摆? (3)在一宫中这样摆,那剩余的格子应该怎么摆? 【设计意图】学生第一次接触这种填数字的游戏,增加了难度,孩子不但会填更要动手操作把它摆正确,这就要求学生动手之前先动脑,设计了三个简单的动手操作活动,简单的活动让学生熟悉规则,调动学生继续玩下去的兴趣,让他获得成功的喜悦。为后面更加复杂的摆数字游戏积累初步的活动经验,把复杂的问题简单处理,由易到难的拼摆符合学生的认知规律。 2.汇报展示。 (1)我这样摆。 (2)我这样摆.

集总参数和分布参数

集总参数和分布参数 组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。 参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用 l表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式 λ>>l 成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路,因50赫芝的电流、电压其波长虽为 6000 千米,但线路长度达几百甚至几千千米,已可与波长相比。通信系统中发射天线等的实际尺寸虽不太长,但发射信号频率高、波长短,也应作分布参数电路处理。 研究分布参数电路时,常以具有两条平行导线、而且参数沿线均匀分布的传输线为对象。这种传输线称为均匀传输线(或均匀长线)。作这样的选择是因为实际应用的传输线可以等效转换成具有两条平行导线形式的传输线,而且这种均匀的传输线容易分析。 传输线是传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R0代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和

浅论数学建模在经济学中的应用

浅论数学建模在经济学中的应用 摘要:当代西方经济认为,经济学的基本方法是分析 经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。 关键词:经济学数学模型应用 在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。 一、数学经济模型及其重要性 数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。 数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起

来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。 二、构建经济数学模型的一般步骤 1.了解熟悉实际问题,以及与问题有关的背景知识。 2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。 3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。 4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因

数独问题 数学建模

数独问题 摘要 本文是对数独问题进行求解。结合数独生成的特点,立足于题中数独建模和 WNF P函数和整数规划模型。 求解的要求,建立了数独难度分析() 对于问题一,首先研究数独难度的影响因素,通过综合分析数独的特点结构,WNF P可以在常数时间内计算出来以衡量数独的难易程度。通过计算可知得出() ()0.04531 WNF P=,根据数独难度的划分得到如下结论:数独难度系数为4,达到了极难的程度。 对于问题二,我们通过对此数独的分析和讨论,利用穷举法,通过matlab 软件编程求解,最终得出答案,如表1所示。 对于问题三,我们利用回溯法思想,建立求解模型,具体算法一般采用如下步骤: 1).在此数独初盘选择一个空单元格; 2).取这个单元格中一个可能的候选数; 3).将这个候选数填入单元格中,迭代完成数独; 4).若这个候选数推导得到一个无效数独终盘,返回此单元格取其他候选数; 对于问题四采用整数规划模型,采用三维0-1 变量的方法,运用lingo软件编程求解。最终得到答案,如表1所示。 关键词:数独数独难度分析穷举法回溯法整体规划

1问题的重述 前段时间芬兰一位数学家号称设计出全球最难的“数独游戏”,并刊登在报纸上,让大家去挑战。该数独如下图所示: 数独是根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫内的数字均含1-9,且不重复。每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。 根据以上描述,试完成以下问题: 1. 分析此数独的难度; 2. 用穷举算法求解数独; 3. 设计此数独求解的较优的算法; 4. 建立数独求解模型并给出此数独的答案。 2模型的基本假设 1该数独问题存在唯一解。 3符号说明 X表示空单元格候选数 ? () X的加权函数 W n表示候选数数? () c X表示数独空单元格中的候选数数目函数 n E p表示该数独的空格处 () () WNF P表示该数独难度的函数 x表示数k是否填入数独方中的(i,j)处 ijk c表示往空格处填入0后数独方中(i,j)处的数 ij y表示经过求解后数独方中(i,j)处的数 ij

数学建模十种常用算法

数学建模有下面十种常用算法, 可供参考: 1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问 题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中 也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)

数独中的数学模型

数独中的数学模型 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

数独中的数学模型 摘要 现如今数独游戏风靡全球,深受人们喜爱。其难度等级多样,求解数独难度等级较高的常常需要花费大量的时间和精力,因此我们试图用计算机来解决这一问题。 在问题一中,我们主要考虑空格数的多少以及空格自由度与数独难度等级的关系。由一定的案例分析得出数独题目的难度等级与空格数存在正比关系,接着我们考虑如果只是简单的按照空格的数目多少来划分数独题目的难易程度是不全面的,因此继续分析,得出空格自由度与数独的难度等级存在正比的关系,最后又以空格数和空格自由度综合分析进行验证,得出此数独等级为3级。[1] 空格自由度法模型如下: 在问题二中,我们运用穷举法分析大量可能情况,再用MATLAB编写程序得出此数独游戏的终盘。 在问题三中,我们运用了比较排除法、唯一解法和综合法来求解此数独游戏,最终选用综合法作为较优方法。[1] 在问题四中,我们用循环回溯法进行求解,使用MATLAB编写程序得出结果(见表8)。[1] 关键字:穷举法比较排除法唯一解法循环回溯法数独空格数空格自由度 一、问题背景 数独是一种数字解谜游戏,英文名叫Sudoku,前身为“九宫格”,当时的算法比现在的更为复杂,要求纵向、横向、斜向上的三数之和等于15,而不只是数字的不能重复,儒家典籍《易经》中的“九宫图”也是来源于此。关于它

的起源一直存有争议,有人认为最早起源于中国,也有人认为起源于瑞士。1970年由美国一家数学逻辑游戏杂志首先发表,名为Number。后在日本流行,于1984年把Sudoku取名为数独。数独全面考验做题者观察能力和逻辑推理能力,它的玩法逻辑简单,除了1到9的阿拉伯数字以外,不必用到任何东西,但数字的排列方式却又千变万化,不少教育者认为,数独是锻炼大脑的绝佳方式。它不仅具有很强的趣味性,也是一种对智慧和毅力的考验。 二、问题重述 芬兰一位数学家号称设计出全球最难的“数独游戏”,并刊登在报纸上,让大家去挑战。这位数学家说,他相信只有“智慧最顶尖”的人才有可能破解这个“数独之谜”。 所给数独游戏表格如下: 据介绍,目前,数独游戏难度的等级有一到五级,一是入门等级,五则比较难。不过这位数学家说,他所设计的数独游戏难度等级是十一,可以说是所有数独游戏中,难度最高的等级。 数独是根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫内的数字均含1-9,不重复。每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。 由此我们要解决以下问题: 问题一:分析此数独的难度; 问题二:用穷举算法求解数独; 问题三:设计此数独求解的较优的算法;

数学建模方法详解种最常用算法

数学建模方法详解--三种最常用算法 一、层次分析法 层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案 排序、政策制定、冲突问题、性能评价等方面都有广泛的应用. (一) 层次分析法的基本原理 层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍. 1.递阶层次结构原理 一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这 些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配 关系.具有这种性质的层次称为递阶层次. 2.测度原理 决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对 于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理

层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1] . 1.成对比较矩阵和权向量 为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因 素放在一起比较,而是两两相互对比,二是对比时采用相对尺度. 假设要比较某一层n 个因素n C C ,,1对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比, 全部比较 结 果 可 用 成 对 比 较 阵 1 ,0,ij ij ji n n ij A a a a a 表示,A 称为正互反矩阵.一般地,如果一个正互反阵 A 满足: , ij jk ik a a a ,,1,2,,i j k n (1) 则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根 n 的特征向量. 如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,, 1对 上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记

儿童数独入门(三)

儿童数独入门(三) 戎卫武 一、教学内容: “数独”(英文名为 SU DOKU)(三) 二、教学目标: 知识与技能: 1、培养学生把握全局的能力。 2、培养学生的观察反应能力。 3、培养学生分析推理能力。 数学思考:通过数独游戏,可以益智,可以获得持久的脑力锻炼。 解决问题:培养学生用排除法思考问题,初步学会的推理分析问题,掌握解决问题的策略。 情感态度与价值观:既在同伴之间的交流与团结协作中,获得肯定,又在独立思考后,获得成就感。 三、教学重、难点: 培养学生的观察和推理能力。 四、教具和学具: 课件数独游戏学具 五、教学过程: 1、激趣引新: 师:同学们,我们已经学会了玩简单的数独,你们喜欢数独吗?今天老师将为你们介绍9×9的数独游戏:

数独是一种逻辑数组谜题。“数独”是一个9×9的方阵,它是由九个“九宫格”(图中黑色实线围住的3×3的方阵)构成的,每个九宫格又是由九个小格子构成的,在空白的小格子里填上1~9中的数字,使得每个数字在“九宫格”的每行、每列、每个九宫格中均只出现一次。游戏会从一个部分带有数字的九宫格开始。 2、建立数独的模型 数独是一款很经典的益智数字游戏,可以用来锻炼益智的,它包含九直行九横列,共分成九个九宫格,每行列都由1到9、不能重复的阿拉伯数字组成,每个九宫格亦然。 赶紧来看看数独的游戏规则吧: 数独游戏在9x9的方格内进行,分为3x3的小方格,被称为“宫”: 数独游戏首先从已经填入数字的格子开始:

数独游戏的目的是根据下列规则,用1至9之间的数字填满空格,一个格子只能填入一个数字: 1. 每个数字在每一行只能出现一次: 2. 同样的,每个数字在每一列只能出现一次: 3. 每个数字在每一区只能出现一次: 总结这些规则,即每个数字在每一行、每一列和每一宫只能出现一次。 3、应用体验。 学生用数独游戏卡片及学具玩9×9数独游戏 两人一组(或四人一组)玩 第1---5关(基本的9×9数独)

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

相关文档
最新文档