隧道ansys计算程序算例——荷载结构模式

隧道ansys计算程序算例——荷载结构模式
隧道ansys计算程序算例——荷载结构模式

选取新建铁路宜昌(宜)-万州(万)铁路线上的别岩槽隧道某断面,该断面设计单位采用的支护结构如图3-3所示。为保证结构的安全性,采用了荷载—结构模型,利用ANSYS 对其进行计算分析。

主要参数如下:

●隧道腰部和顶部衬砌厚度是65cm,隧道仰拱衬砌厚度为85cm。

●采用C30钢筋混凝土为衬砌材料。

●隧道围岩是Ⅳ级,洞跨是5.36米,深埋隧道。

●隧道仰拱下承受水压,水压0.2MPa。

图3-3 隧道支护结构断面图

隧道围岩级别是Ⅳ级,其物理力学指标及衬砌材料C30钢筋混凝土的物理力学指标见表3-3所示。

表3-3 物理力学指标

表3-4 荷载计算表

根据《铁路隧道设计规范》,可计算出深埋隧道围岩的垂直匀布力和水平匀布力。对于竖向和水平的分布荷载,其等效节点力分别近似的取节点两相临单元水平或垂直投影长度的一般衬砌计算宽度这一面积范围内的分布荷载的总和。自重荷载通过ANSYS程序直接添加密度施加。隧道仰拱部受到的水压0.2MPa按照径向方向载置换为等效节点力,分解为水平竖直方向加载。

3.3.3 GUI操作方法

3.3.3.1 创建物理环境

1) 在【开始】菜单中依次选取【所有程序】/【ANSYS10.0】/【ANSYS Product Launcher】,得到“10.0ANSYS Product Launcher”对话框。

2)选中【File Management】,在“Working Directory”栏输入工作目录“D:\ansys\example301”,在“Job Name”栏输入文件名“Support”。

3

)单击“RUN”按钮,进入ANSYS10.0的GUI操作界面。

4)过滤图形界面:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。

5)定义工作标题:Utility Menu> File> Change Title,在弹出的对话框中输入“Tunnel Support Structural Analysis”,单击“OK”,如图3-4所示。

图3-4 定义工作标题

6)定义单元类型:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出“Element Types”单元类型对话框,如图3-5所示,单击“Add”按钮,弹出“Library of Element Types”单元类型库对话框,如图3-6所示。在该对话框左面滚动栏中选择“Beam”,在右边的滚动栏中选择“2D-elastic 3”,单击“Apply”,定义了“Beam3”单元。再在左面滚动栏中

选取“Combination”,右边的滚动栏中选择“Spring-damper 14”,如图3-7所示。然后单击“OK”按钮,这就定义了“Combin14”单元,最后单击图3-5单元类型对话框中的“Close”按钮。

图3-5 单元类型对话框

3-6 定义Beam3单元对话框

3-7 定义Combin14单元对话框

7)定义材料属性:Main Menu> Preprocessor> Material Props> Material Models,弹出

“Define Material Model Behavior”对话框,如图3-8所示。在右边的栏中连续双击“Structural> Linear> Elastic>Isotropic”后,又弹出如图3-9所示“Linear Isotropic Properties for Material Number 1”对话框,在该对话框中“EX”后面的输入栏输入“3E10”,在“PRXY”后面的输入栏输入“0.2”,单击“OK”。再在定义材料本构模型对话框选中“Density”并双击,弹出如图3-10所示“Density for Material Number 1”对话框,在“DENS”后面的栏中输入隧道衬砌混凝土材料的密度“2500”,再单击“OK”按钮。

图3-8 定义材料本构模型对话框

图3-9 线弹性材料模型对话框图3-10材料密度输入对话框

最后单击“Material> Exit”结束,得到结果如图3-11所示。

`

图3-11 材料属性定义结果

8)定义实常数:Main Menu> Preprocessor> Real Constants> Add/Edit/Delete,弹出“Real Constants”实常数对话框,如图3-12所示。单击“Add”按钮,弹出如图3-13所示的选择单元类型对话框,选中“Type 1 BEAM3”,单击“OK”按钮,弹出如图3-14所示“Real Constant for BEAM3”对话框,在对话框中分别输入隧道腰部和顶部衬砌支护结构BEAM3梁单元的横截面积AREA“0.65”、惯性矩IZZ“0.022885417”、高度HEIGHT“0.65”。

图3-12 实常数对话框图3-13 选择单元类型对话框

图3-14 定义隧道腰部和顶部BEAM3实常数1对话框

图3-15 定义隧道仰拱BEAM3实常数2对话框

然后单击“OK”按钮,然后在弹出的对话框中单击“Add”按钮,弹出如图3-13所示的选择单元类型对话框,选中“Type 1 BEAM3”,单击“OK”按钮,弹出如图3-15所示的对话框,在对话框中分别输入隧道腰部和顶部衬砌支护结构BEAM3梁单元的横截面积AREA “0.85”、惯性矩IZZ“0.051170833”、高度HEIGHT“0.85”。这是因为隧道衬砌支护仰拱和腰部及顶部的厚度不同,所以要建立2个BEAM2实常数。

然后单击“OK”按钮,在弹出的对话框中单击“Add”按钮,弹出如图3-13所示的选择单元类型对话框,选中“Type 2 Combin14”,单击“OK”按钮,弹出如图3-16所示“Real Constant Set Number 3 for COMBIN14”对话框,在“SPRING CONSTANT ”栏后面输入

“30000000”,单击“OK”按钮,弹出如图3-17对话框,最后单击“Close”按钮

图3-16 COMBIN14实常数后对话框

图3-17 定义完实常数后对话框

3.3.3.2 建立模型和划分网格

1)创建隧道衬砌支护关键点:Main Menu> Preprocessor> Modeling> Create>Keypoints>In Active CS,弹出“Creae Keypoints in Active Cooedinate System”对话框,如图3-18所示。在“NPT keypoint number”栏后面输入“1”,在“X,Y,Z Location in active CS”栏后面输入“(0,0,0)”,单击“Apply”按钮,这样就创建了关键点1。再依次重复在“NPT keypoint number”栏后面输入“2、3、4、5、6、7”,在对应“X,Y,Z Location in active CS”栏后面输入“(0,3.85,0)、(0.88,5.5,0)、(2.45,6.15,0)、(4.02,5.5,0)、(4.9,3.85,0)、(4.9,0,0),最后单击“OK”按钮,生成7个关键点,如图3-19所示。

图3-18 在当前坐标系创建关键点对话框

图3-19 隧道支护关键点

2)创建隧道衬砌支护线模型:Main Menu>Preprocessor>Modeling>Create>Lines>Arcs>By End KPs & Rad,弹出如图3-20所示的对话框。在对话框栏中输入关键点“1,2”,单击“Apply”,弹出如图3-21所示对话框。在对话框栏中输入关键点“6”,弹出“Arc By End KPs & Rad ”对话框,如图3-22所示。在“RAD Radius of the arc”栏后面输入弧线半径“8.13”,单击“Apply”按钮,这样就创建了弧线1。

图3-20 定义弧线两端点对话框图3-21 定义弧线曲率关键点对话框

图3-22 画弧线对话框

重复以上操作步骤,分别把图3-22对话框栏中空栏依次输入“3.21,2,3,6”、“2.22,3,4,6”、“2.22,4,5,2”、“3.21,5,6,2”、“8.13,6,7,2”、“6,7,1,4”,最后单击“OK”按钮,生成隧道衬砌支护线模型,如图3-23所示。

图3-23 隧道衬砌支护线模型

3)保存几何模型文件;Utility Menu> File> Save as,弹出一个“Save Database”对话框,在“Save Database to”下面输入栏中输入文件名“Support-geom.db”,单击“OK”。

4)给线赋予特性:Main Menu> Preprocessor> Meshing> MeshTool,弹出“MeshTool”对话框,如图3-24所示。在“Element Attributes”后面的下拉式选择栏中选择“Lines”,按“Set”按钮,弹出一个“Lines Attributes”线拾取框,在图形界面上拾取编号为“L1、L2、L3、L4、L5、L6”的线,单击拾取框上的“OK”按钮,又弹出一个如图3-25所示的“Lines Attributes”对话框,在“Material number”后面的下拉式选择栏中选取“1”,在“Real Constant set number ”后面的下拉式选择栏中选取“1”,在“Element type number ”后面的下拉式选择栏中选取“1 BEAM3”。单击“Apply”再次弹出线拾取框。

用相同方法给线L7赋予特性,其他选项与“L1、L2、L3、L4、L5、L6”的线一样,只是在“Real Constant set number ”后面的下拉式选择栏中选取“2”,单击“OK”按钮退出。

图3-24 网格划分工具栏 图3-25 赋予线特性对话框 5)控制线尺寸:在“MeshTool ”对话框中的“Size controls ”下面的选择栏中的“Lines ”右边单击“Set ”,在弹出对话框中拾取线L1和L6,单击拾取框上的“OK ”按钮,弹出“Element Sizes on All Selected Lines ”对话框,如图3-26所示。在“No of element divisions ”栏后面输入“4”。再单击“Apply ”按钮。

用相同方法控制线L2、L3、L4、L5、L7的尺寸,只是线L2、L3、L4、L5在“No of element divisions ”栏后面输入“2”,线L7在“No of element divisions ”栏后面输入“8”。

图3-26 线单元尺寸划分对话框

6)划分网格:在图3-24 网格划分工具栏中单击“Mesh”按钮,弹出一个对话框,单击“Pick ALL”,生成24个梁单元,如图3-27所示。

图3-27 隧道支护单元图

7)打开节点编号显示:Utility Menu> PlotCtrls> Numbering,弹出“Plot Numbering Controls”对话框,如图3-28所示。选中“Node Numbers”选项,后面的文字由“off”变为“on”,单击“OK”关闭窗口。显示这些节点编号目的是为后面创建弹簧单元准备,这些节点是弹簧单元的一个节点。

图3-28 显示节点编号对话框

8)创建弹簧单元:Main Menu>Preprocessor>Modeling>Create>Piping Models>Define Pipes>Spring Support,弹出一个选择节点对话框,选择节点1后,单击“OK”按钮,又弹出一个“Define Support Spring”对话框,如图3-29所示。

在图3-29对话框中,在“Node at spring location”栏后面输入弹簧节点位置编号“1”,在“Type of spring”后面的下拉选择栏中选择“Translation”,在“Spring constant”栏后面输入弹簧系数“300000000”,在“DX,DY,DZ Distance to ground pt”栏后面分别输入弹簧另一端点的坐标值“-0.97029572,-0.241921895,0”,因为是平面问题,DZ不用输入,默认是0。

单击“Apply”按钮(这时就生成了节点1的弹簧单元,编号为25),又弹出一个选择节点的对话框,和生成节点1位置弹簧方法一样生成其它节点的弹簧单元。只是在图3-29对话框中改变节点号和改变“DX,DY,DZ Distance to ground pt”栏中值:节点2对应“DX,DY”为“-0.97437006,0.22495105”,节点3对应“DX,DY”为“-0.98628560,-0.1604768”,节点4对应“DX,DY”为“-0.99996192,- 0.00872654”,节点5对应“DX,DY”为“-0.98901586,0.14780941”,节点6对应“DX,DY”为“-0.70710678,0.70710678”,节点7对应“DX,DY”为“-0.88294757,0.469471561”,节点10对应“DX,DY”为“0.70710678,0.70710678”,节点13对应“0.88294757,0.469471561”,节点12对应“DX,DY”为“0.97437006,0.22495105”,节点15对应“DX,DY”为“0.98901586,0.14780941”,节点16对应“DX,DY”为“0.99996192,- 0.00872654”,节点17对应“DX,DY”为“0.98628560,-0.1604768”,节点14对应“DX,DY”为“0.97029572,-0.241921895”,节点18对应“DX,DY”为“0.30901699,-0.95105651”,节点24对应“DX,DY”为“-0.30901699,-0.95105651”,节点19对应“DX,DY”为“0.20791169,-0.97814760”,节点23对应“DX,DY”为“-0.20791169,-0.97814760”,节点20对应“DX,DY”为“0.10452846,-0.99452189”,节点22对应“DX,DY”为“-0.10452846,-0.99452189”,节点21对应“DX,DY”为“0,-1”,再单击“OK”按钮就完成了弹簧单元的创建,得到添

加弹簧单元的单元网格图,如图3-30所示。

图3-29 定义弹簧单元对话框

注意:

?弹簧单元长度为1,实际上弹簧长度对计算结果没有影响。

?隧道顶部范围(90度范围)为“脱离区”,故不需要添加弹簧单元。

?“DX,DY”是生成弹簧的另一个端点的坐标值,它是在法线方向,根据在在CAD 图形中角度来计算。

?图3-30中一共添加了21个弹簧单元,如果有些弹簧单元根据计算结果显示是受拉的,必须去除,再进行重新计算。

?用来模拟隧道结构与围岩间相互作用的COMBIN14弹簧单元(也叫地层弹簧),对其参数设置时,只需要输入弹性常数K,阻尼系数和非线性阻尼系数不用输入。

图3-30 添加弹簧单元后的单元网格图

3.3.3.3 施加约束和荷载

1)给弹簧单元施加约束:Main Menu>Solution>Define Loads>Apply>Structural>Displacement

>on Nodes,弹出在节点上施加位移约束对话框,用鼠标选取弹簧单元最外层节点共21个节点,单击“OK”按钮,弹出“Apply U,ROT on Nodes”对话框,如图3-31所示。

图3-31 给节点施加位移约束对话框

在图3-31对话框中:在“DOFS to be constrained”栏后面中选取“UX,UY”,在“Apply as”栏后面的下拉菜单中选取“Constant value”,在“Displacement value”栏后面输入“0”值,然后单击“OK”按钮就完成了对弹簧节点位移的约束。

2)施加重力加速度:Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Gravity,弹出“Apply(Gravitational)Acceleration”对话框,如图3-23所示。只需在“Global Cartesian Y-comp”栏后面输入重力加速度值“9.8”就可以,单击“OK”按钮,就完成了重力加速度的施加。

图3-32 施加重力加速度对话框

注意:虽然在ANSYS中输入的重力加速度9.8后,其重力加速度方向显示向上,但ANSYS 默认模型施加重力时,输入的重力加速度是9.8,不是-9.8。

3)对隧道衬砌支护施加围岩压力:Main Menu>Solution>Define Loads>Apply>Structural> Force/Moment >on Nodes,在弹出节点位置施加荷载对话框中,用鼠标选择隧道支护线上腰部和顶部所有节点,弹出“Apply F/M on Nodes”对话框,如图3-24所示。在“Direction of force/mom”栏后面下拉菜单中选取“FY”,在“Force/Moment”栏中输入围岩垂直匀布力“-80225”。

图3-24 施加节点力对话框

单击“Apply”按钮,在弹出对话框后选择隧道支护线剩下的节点,在“Direction of force/mom”栏后面下拉菜单中选取“FY”,在“Force/Moment”栏中输入围岩垂直匀布力“80225”。

再单击“Apply”按钮,又弹出一个节点位置施加荷载对话框,用鼠标选择隧道衬砌支护线上的1、2、3、4、5、6、7、8、9、22、23、24共12个节点,又弹出如图3-24所示的对话框,在“Direction of force/mom”栏后面下拉菜单中选取“FX”,在“Force/Moment”栏中输入围岩水平匀布力“16045”。

再次单击“Apply”按钮,又弹出一个节点位置施加荷载对话框,用鼠标选择隧道衬砌支护线上剩下的12个节点,又弹出如图3-24所示的对话框,在“Direction of force/mom”栏后面下拉菜单中选取“FX”,在“Force/Moment”栏中输入围岩水平匀布力“-16045”。单击“OK“按钮,就完成了对隧道衬砌支护施加围岩压力。

图3-25 施加约束和荷载后隧道结构模型

输入围岩垂直匀布力和水平匀布力应参考节点位置来考虑力的方向,切忌加错力的方向。

4)对隧道仰拱施加水压:Main Menu>Solution>Define Loads>Apply>Structural> Force/Moment >on Nodes,在弹出节点位置施加荷载对话框中,用鼠标选择隧道仰拱节点18,弹出如图3-24所示的对话框,在“Direction of force/mom”栏后面下拉菜单中选取“FX”,在“Force/Moment”栏中输入水平水压力“-161803”。再次单击“Apply”按钮,又弹出一个对话框,选择节点18,又弹出图3-24的对话框,在“Direction of force/mom”栏后面下拉菜单中选取“FY”,在“Force/Moment”栏中输入围岩水平匀布力“70381”,单击“OK”按钮,就完成了节点18的水压力的施加,同法对仰拱的其它节点施加水压,只是数值不同:节点19“FY=50101”、“FX=-182309”;节点20“FY=13093”、“FX=-198904”;节点21“FY=125960”、“FX=0;节点22“FY=13093”、“FX=198904”;节点23“FY=50101”、“FX=-182309”;节点24“FY=70381”、“FX=-161803”。

最后得到施加约束和荷载后隧道衬砌支护结构模型图,如图3-25所示。

◆将作用在衬砌上的分布荷载置换为等效节点力。

◆对于竖向和水平的分布荷载,其等效节点力分别近似的取节点两相临单元水平或垂

直投影长度的一般衬砌计算宽度这一面积范围内的分布荷载的总和。

◆自重荷载通过ANSYS程序直接添加密度施加。

◆水压按照径向方向载置换为等效节点力,分解为水平和竖直方向加载。

3.3.3.4 求解

1)求解运算:Main Menu>Solution>Solve>Current LS,弹出一个求解选项信息和一个当前求解载荷步对话框,如图3-36和图3-37所示,检查信息无错误后,单击“OK”,开始求解运算,直到出现一个“Solution is done”的提示栏,如图3-38所示,表示求解结束。

图3-36 求解选项信息

图3-37 当前求解载荷步对话框

图3-38 求解结束提示栏

3.3.3.5 后处理(对计算结果进行分析)

1.计算分析修改模型

1)查看隧道衬砌支护结构变形图:Main Menu>General Postproc>Plot Results>Deformed shape,弹出一个“Plot Deformed Shape”的对话框,如图3-39所示,选中“Def+undeformed”并单击“OK”,出现隧道衬砌支护结构变形图,如图3-40所示。

图3-39 查看变形图对话框

从图3-40的初次分析隧道衬砌支护结构变形图中可以看出,弹簧33、34、35和36是受拉的,因为用来模拟隧道结构与围岩间相互作用的地层弹簧只能承受压力,所以这4根弹簧必须去掉,再重新计算,直到结构变形图中没有受拉弹簧为止。

2)删除受拉弹簧单元:Main Menu>Preprocessor>Modeling>Delete>Elements,弹出一个删除单元选取对话框,选中弹簧单元33、34、35和36,然后单击“OK”按钮。

再执行Main Menu>Preprocessor>Modeling>Delete>Nodes,弹出一个删除节点选取对话框,选取弹簧单元33、34、35和36最外端节点,再单击“OK”按钮。

3)第2次求解:Main Menu>Solution>Solve>Current LS,弹出一个求解选项信息和一个当前求解载荷步对话框,接受默认设置,单击“OK”,开始求解运算,直到出现一个“Solution is done”的提示栏,表示求解结束。

图3-40 初次分析计算隧道衬砌支护结构变形图

4)查看第2次分析计算结构变形图:Main Menu>General Postproc>Plot Results>Deformed shape,弹出一个“Plot Deformed Shape”的对话框,选中“Def+undeformed”并单击“OK”,出现第2次分析计算的隧道衬砌支护结构变形图。图形显示,第2次分析计算仍有受拉弹簧。

5)再次去掉受拉弹簧,重复2)~4),直到分析计算出的隧道衬砌支护结构变形图中没有受拉弹簧为止。

最后经过3次反复分析计算,终于得到没有受拉弹簧时的隧道结构模型,如图3-41所示。其对应的分析计算隧道衬砌支护结构变形图如图3-42所示。

6)保存计算结果到文件:Utility Menu> File> Save as,弹出一个“Save Database”对话框,在“Save Database to”下面的输入栏中输入文件名“support result.db”,单击“OK”。

◆进行隧道结构受力分析时,用地层弹簧来模拟围岩与结构间相互作用,在隧道顶部

90度范围内,起变形背向地层,不受围岩的约束而自由变形,这个区域称为“脱

离区”,不需要添加弹簧单元。在隧道两侧及底部,结构产生朝向地层的变形,并

受到围岩约束阻止其变形,因而围岩对衬砌产生了弹性抗力,这个区域称为“抗力

区”,需要添加弹簧单元。

◆进行完第一次求解后,查看结构变形图,去除受拉弹簧单元,再进行求解,再查看

结构变形图,反复进行,直到最终计算出结构变形图无受拉弹簧为止。

图3-41 最后隧道结构模型图

隧道ansys计算程序算例——荷载结构模式

选取新建铁路宜昌(宜)-万州(万)铁路线上的别岩槽隧道某断面,该断面设计单位采用的支护结构如图3-3所示。为保证结构的安全性,采用了荷载—结构模型,利用ANSYS 对其进行计算分析。 主要参数如下: ●隧道腰部和顶部衬砌厚度是65cm,隧道仰拱衬砌厚度为85cm。 ●采用C30钢筋混凝土为衬砌材料。 ●隧道围岩是Ⅳ级,洞跨是5.36米,深埋隧道。 ●隧道仰拱下承受水压,水压0.2MPa。 图3-3 隧道支护结构断面图 隧道围岩级别是Ⅳ级,其物理力学指标及衬砌材料C30钢筋混凝土的物理力学指标见表3-3所示。 根据《铁路隧道设计规范》,可计算出深埋隧道围岩的垂直匀布力和水平匀布力。对于竖向和水平的分布荷载,其等效节点力分别近似的取节点两相临单元水平或垂直投影长度的一般衬砌计算宽度这一面积范围内的分布荷载的总和。自重荷载通过ANSYS程序直接添加密

度施加。隧道仰拱部受到的水压0.2MPa按照径向方向载置换为等效节点力,分解为水平竖直方向加载。 3.3.3 GUI操作方法 3.3.3.1 创建物理环境 1) 在【开始】菜单中依次选取【所有程序】/【ANSYS10.0】/【ANSYS Product Launcher】,得到“10.0ANSYS Product Launcher”对话框。 2)选中【File Management】,在“Working Directory”栏输入工作目录“D:\ansys\example301”,在“Job Name”栏输入文件名“Support”。 3)单击“RUN”按钮,进入ANSYS10.0的GUI操作界面。 4)过滤图形界面:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。 5)定义工作标题:Utility Menu> File>Change Title,在弹出的对话框中输入“Tunnel Support Structural Analysis”,单击“OK”,如图3-4所示。 图3-4 定义工作标题 6)定义单元类型:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出“Element Types”单元类型对话框,如图3-5所示,单击“Add”按钮,弹出“Library of Element Types”单元类型库对话框,如图3-6所示。在该对话框左面滚动栏中选择“Beam”,在右边的滚动栏中选择“2D-elastic 3”,单击“Apply”,定义了“Beam3”单元。再在左面滚动栏中选取“Combination”,右边的滚动栏中选择“Spring-damper 14”,如图3-7所示。然后单击“OK”按钮,这就定义了“Combin14”单元,最后单击图3-5单元类型对话框中的“Close”按钮。 图3-5 单元类型对话框

隧道ansys计算程序算例——荷载结构模式

选取新建铁路宜昌(宜)-万州(万)铁路线上的别岩槽隧道某断面,该断面设计单位采用的支护结构如图3-3所示。为保证结构的安全性,采用了荷载—结构模型,利用ANSYS对其进行计算分析。 主要参数如下: ●隧道腰部与顶部衬砌厚度就是65cm,隧道仰拱衬砌厚度为85cm。 ●采用C30钢筋混凝土为衬砌材料。 ●隧道围岩就是Ⅳ级,洞跨就是5、36米,深埋隧道。 ●隧道仰拱下承受水压,水压0、2MPa。 图3-3 隧道支护结构断面图 隧道围岩级别就是Ⅳ级,其物理力学指标及衬砌材料C30钢筋混凝土的物理力学指标见表3-3所示。 表3-3 物理力学指标 名称容重 γ(3 /m kN) 弹性抗力系数 K(MPz/m) 弹性模量 E(GPa) 泊松比 v 内摩擦角 ?(。) 凝聚力 C(MPa) Ⅳ级围岩22 300 1、5 0、32 29 0、35 C30钢筋25 - 30 0、2 54 2、42

混凝土 表3-4 荷载计算表 荷载 种类 围岩压力结构自重水压 N/m3垂直匀布力N/m3水平匀布力N/m3 值80225 16045 通过ANSYS添加200000 根据《铁路隧道设计规范》,可计算出深埋隧道围岩的垂直匀布力与水平匀布力。对于竖向与水平的分布荷载,其等效节点力分别近似的取节点两相临单元水平或垂直投影长度的一般衬砌计算宽度这一面积范围内的分布荷载的总与。自重荷载通过ANSYS程序直接添加密度施加。隧道仰拱部受到的水压0、2MPa按照径向方向载置换为等效节点力,分解为水平竖直方向加载。 3、3、3 GUI操作方法 3、3、3、1 创建物理环境 1) 在【开始】菜单中依次选取【所有程序】/【ANSYS10、0】/【ANSYS Product Launcher】,得到“10、0ANSYS Product Launcher”对话框。 2)选中【】,在“Working Directory”栏输入工作目录“D:\ansys\example301”,在“Job Name”栏输入文件名“Support”。 3)单击“RUN”按钮,进入ANSYS10、0的GUI操作界面。 4)过滤图形界面:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。 5)定义工作标题:Utility Menu> File> Change Title,在弹出的对话框中输入“Tunnel Support Structural Analysis”,单击“OK”,如图3-4所示。 图3-4 定义工作标题 6)定义单元类型:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出“Element Types”单元类型对话框,如图3-5所示,单击“Add”按钮,弹出“Library of Element Types”单元类型库对话框,如图3-6所示。在该对话框左面滚动栏中选择“Beam”,在右边的滚动栏中选择“2D-elastic 3”,单击“Apply”,定义了“Beam3”单元。再在左面滚动栏中选取“Combination”,右边的滚动栏中选择“Spring-damper 14”,如图3-7所示。然后单击“OK”按钮,这就定义了“Combin14”单元,最后单击图3-5单元类型对话框中的“Close”按钮。

ANSYS中索计算的一些整理

ANSYS中索计算的一些整理 一、索结构分析 索分为三种力学状态:无应力状态,初始状态和工作状态。无应力状态是指加工放样状态,该状态中索为原长,且索中无应力,不承受任何荷载。初始状态是指仅承受自重或预应力作用下的自平衡状态,不考虑外部荷载的作用,该状态提供了分析结构在外部荷载作用下的所有初始条件,如几何结构和预应力等。工作状态是指在外部荷载作用下所达到的平衡状态。 相应的索结构也对应三种力学状态:无应力状态,初始状态和工作状态。索结构的设计分析开始的工作就是找到合适的初始状态,即找形工作。 结构的找形是和找力对应的,因为在特定的荷载(初始状态下仅自重,无外荷载)下,结构的形状和内力是对应的。 如果形状确定,求解结构中的预应力,就是找力;如果知道结构中的预应力水平,求解结构的形状,就是找形。 通常找形找力是同时进行的,目的是找到一个合适的预应力水平和合适的建筑外观。 二、建模 1、几何模型 简单的几何模型可以在ansys中直接建立,可以通过定义关键点,线来建立模型。这个部分,可以参考各种ansys的教学用书,里面有比较详细的叙述。 复杂的结构,可以通过别的软件生成,再导入ansys中。例如mst软件中可以方便的生成各种规格的网架、网壳模型,然后通过导出接口文件导入ansys 中。 索通常选用Link10单元,并通过KEYOPT设置为仅受拉单元,以模拟索只能受拉的特性。Link10单元为直线单元,只能承受节点力,当索中内力较大时,索可以简化为直线计算,但当索中内力较小时,索其实不是直线,此时可以通过划分更密的单元获得更高的精度,通过设置实常数可以设置索的初始内力以及索的截面面积。 AREA:索的截面面积

Ansys常见命令流

Ansys命令流 第一天 目标:熟悉ANSYS基本关键字的含义 k --> Keypoints 关键点 l --> Lines 线 a --> Area 面 v --> Volumes 体 e --> Elements 单元 n --> Nodes 节点 cm --> component 组元 et --> element type 单元类型 mp --> material property 材料属性 r --> real constant 实常数 d --> DOF constraint 约束 f --> Force Load 集中力 sf --> Surface load on nodes 表面载荷 bf --> Body Force on Nodes 体载荷 ic --> Initial Conditions 初始条件 第二天 目标:了解命令流的整体结构,掌握每个模块的标识 !文件说明段 /BATCH /TITILE,test analysis !定义工作标题 /FILENAME,test !定义工作文件名 /PREP7 !进入前处理模块标识 !定义单元,材料属性,实常数段 ET,1,SHELL63 !指定单元类型 ET,2,SOLID45 !指定体单元 MP,EX,1,2E8 !指定弹性模量 MP,PRXY,1,0.3 !输入泊松比 MP,DENS,1,7.8E3 !输入材料密度 R,1,0.001 !指定壳单元实常数-厚度...... !建立模型 K,1,0,0,, !定义关键点 K,2,50,0,,

K,3,50,10,, K,4,10,10,, K,5,10,50,, K,6,0,50,, A,1,2,3,4,5,6, !由关键点生成面 ...... !划分网格 ESIZE,1,0, AMESH,1 ...... FINISH !前处理结束标识 /SOLU !进入求解模块标识 !施加约束和载荷 DL,5,,ALL SFL,3,PRES,1000 SFL,2,PRES,1000 ...... SOLVE !求解标识 FINISH !求解模块结束标识 /POST1 !进入通用后处理器标识 ...... /POST26 !进入时间历程后处理器 …… /EXIT,SAVE !退出并存盘 以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助 /ANGLE !指定绕轴旋转视图 /DIST !说明对视图进行缩放 /DEVICE !设置图例的显示,如:风格,字体等 /REPLOT !重新显示当前图例 /RESET !恢复缺省的图形设置 /VIEW !设置观察方向 /ZOOM !对图形显示窗口的某一区域进行缩放

ansys常用命令t z部分

514. TALLOW,TEMP1,TEMP2,TEMP3,TEMP4,TEMP5,TEMP6(定义允许应力值相应的温度) 515. TB,Lab,MAT,NTEMP,NPTS,TBOPT,EOSOPT(在非线性材料属性或特殊单元输入中激活一单元表格) 516. TBDATA,STLOC,C1,C2,C3,C4,C5,C6(定义单元表格中的数据) 517. TBLIST,Lab,MAT(列表显示材料非线性特性) 518. TBPLOT,Lab,MAT,TBOPT,TEMP,SEGN(图形显示非线性材料的应力-应变曲线)519. TBPT, oper, x,y(在应力-应变曲线上定义一个点) 【注】oper: defi 定义一个点 dele 删除一个点 x,y:坐标 520. TCHG,ELEM1,ELEM2,ETYPE2(将四面体退化单元转化为非退化单元) 521. TIME,TIME(通过时间定义载荷步) 522. TIMP,ELEM,CHGBND,IMPLEVEL(对不附属于体的四面体单元进行改进) 523. /TLABEL,XLOC,YLOC,Text(使用文字注释) 524. TOFFST,VALUE(选择温度的单位) 525. TORQ2D(计算磁场中物体上的扭矩) 526. TORQC2D,RAD,NUMN,LCSYS(计算磁场中物体上环行路径的扭矩) 527. TORQSUM,Cnam1,Cnam2,…,Cnam8,Cnam9(对2-D平面问题中单元上的电磁麦克斯韦和虚功扭矩求和) 528. TORUS,RAD1,RAD2,RAD3,THETA1,THETA2(生成环体) 【注】RAD1,RAD2,RAD3中最大直径为主半径,最小为内半径,中间值为外半径。529. TRANSFER,KCNTO,INC,NODE1,NODE2,NINC(将节点模式转换到另一坐标系中)530. TREF,TREF(定义参考温度) 531. /TRIAD,Lab(控制是否显示整体坐标系标志,并对其位置进行定义) 【注】Lab=ORIG(在原点显示坐标系)、OFF(关闭显示)、LBOT(在左下角显示坐标系)、RBOT(在右下角显示坐标系)、LTOP(在左上角显示坐标系)、RTOP(在右上角显示坐标系)。532. /TRLCY,Lab,TLEVEL,N1,N2,NINC(透明显示) 533. TRPDEL,NTRP1,NTRP2,TRPINC(删除轨迹点) 534. TRPLIS,NTRP1,NTRP2,TRPINC(列表显示轨迹点信息) 535. TRPOIN,X,Y,Z,VX,VY,VZ,CHRG,MASS(定义粒子流轨迹上的点) 536. TRTIME,TIME,SPACING,OFFSET,SIZE,LENGTH(定义流动轨迹时间间隔) 537. /TSPEC,TCOLOR,TSIZE,TXTHIC,PANGLE,IANGLE(定义文字标注属性) 538. TUNIF,TEMP(定义结构中所有节点的温度)。 【注】适用于均匀温度负载时使用) 539. /TXTRE,Lab,NUM,N1,N2,NINC(为所选项选择纹理) /TXTRE,VOLU,NUM,N1,N2,NINC(为体选择纹理) /TXTRE,ON(激活纹理显示) 540. /TYPE,WN,Type(定义显示类型) 541. TYPE,ITYPE(指定单元类型) 542. /UDOC,Wind,Class,Key(指定图例栏中图例和文本在窗口中的位置) 543. UIMP,MAT,Lab1,Lab2,Lab3,VAL1,VAL2,VAL3(求解过程中修改材料特性)544. /UNITS,Label,LENFACT,MASSFACT,TIMEFACT,TEMPFACT,TOFFSET,CHARGEFACT,FORCEFACT,HEATFACT(选择单位制)

隧道衬砌ANSYS强度检算

一、衬砌结构的计算模型 隧道工程建筑物是埋置于地层中的结构物,它的受力和变形与围岩密切相关,支护结构与围岩作为一个统一的受力体系相互约束,共同工作。这种共同作用正是地下结构与地面结构的主要区别。根据本工程浅埋及松散地层的特点,使用阶段结构安全性检算采用“荷载—结构”模式,即将支护和围岩分开考虑,支护结构是承载主体,围岩作为荷载的来源和支护结构的弹性支承。支护结构与围岩的相互作用是通过弹性支承对支护结构施加约束来实现的。 计算模型中,二衬结构采用弹性平面梁单元模拟,弹性抗力以及隧底地基均采用弹簧单元模拟。组合荷载根据不同作用方向分别转换成等效节点力施加在相应的单元结点上。具体计算模型见图1。 图1 计算模型 二、荷载计算 围岩压力计算参照课本中有关我国铁路隧道推荐的方法进行确定(双线隧道)或参照《铁路隧道设计规范》,深浅埋分别计算。 三、配筋计算 结构强度检算和配筋计算应按照现行《铁路隧道设计规范》的方法进行。 四、ANSYS操作过程 1、更改路径和工作名 2、进入前处理模块(preprocessor) (1)定义单元类型element type

(2)定义实常数real constant (3)定义材料参数material props (4)定义梁的截面特性sections (5)进入modeling进行建模,生成几何模型 (6)进行网格划分meshing a)给几何模型赋属性 meshing>mesh attribute>picked lines (7)施加弹性约束 Model>Creat>piping models>spring support

定义弹性抗力系数K和距离所选结构节点的相对距离DX, DY, DZ。 3、进入求解器solution (1)定义分析类型analysis type>new analysis>static (2)定义荷载define loads (3)设置荷载添加形式setting>replace vs add>force,按如下图示设置 (4)施加等效节点力 define loads>apply>force(编程实现) (5)施加重力 define loads>apply>inertia>gravity>global (6)求解计算 Solve>current LS 4、后处理(general postproc) (1)读入结果 Read results>last set (2)查看变形图,(plot results>deformed shape)检查弹簧约束范围是否正确(所有弹簧均应受压,即处于抗力区)否则添加或删除弹簧单元,重新计算。 (3)定义单元表 Element table>define table,出现对话框后点击add按钮,出现下列对话框:

ANSYS结构分析教程篇

ANSYS结构分析基础篇 一、总体介绍 进行有限元分析的基本流程: 1.分析前的思考 1)采用哪种分析(静态,模态,动态...) 2)模型是零件还是装配件(零件可以form a part形成装配件,有时为了划分六 面体网格采用零件,但零件间需定义bond接触) 3)单元类型选择(线单元,面单元还是实体单元) 4)是否可以简化模型(如镜像对称,轴对称) 2.预处理 1)建立模型 2)定义材料 3)划分网格 4)施加载荷及边界条件 3.求解 4.后处理 1)查看结果(位移,应力,应变,支反力) 2)根据标准规范评估结构的可靠性 3)优化结构设计 高阶篇: 一、结构的离散化 将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。 这一步要解决以下几个方面的问题: 1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。 2、根据结构的特点,选择不同类型的单元。对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。 3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。 4、根据工程需要,确定分析类型和计算工况。要考虑参数区间及确定最危险工况等问题。 5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。 二、选择位移插值函数 1、位移插值函数的要求 在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。 位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。

ANSYS常用的命令

(转)ANSYS学习也有一个来月的时间了,可是还是什么都不会!郁闷!整理了一些ANSYS 常用的命令;但深知自己的水平,还不敢保证完全正确;给大家一些参考,望指正: 1. A,P1,P2,…,P17,P18(以点定义面) 2. AADD,NA1,NA2,…NA8,NA9(面相加) 3. AATT,MAT,REAL,TYPE,ESYS,SECN(指定面的单元属性) 【注】ESYS为坐标系统号、SECN为截面类型号。 4. *ABBR,Abbr,String(定义一个缩略词) 5. ABBRES,Lab,Fname,Ext(从文件中读取缩略词) 6. ABBSAVE,Lab,Fname,Ext(将当前定义的缩略词写入文件) 7. ABS,IR,IA,--,--,Name,--,--,FACTA(取绝对值) 【注】************* 8. ACCAT,NA1,NA2(连接面) 9. ACEL,ACEX,ACEY,ACEZ(定义结构的线性加速度) 10. ACLEAR,NA1,NA2,NINC(清除面单元网格) 11. ADAMS,NMODES,KSTRESS,KSHELL 【注】************* 12. ADAPT, NSOLN, STARGT, TTARGT, FACMN, FACMX, KYKPS, KYMAC 【注】************* 13. ADD,IR, IA, IB, IC, Name, --,-- , FACTA, FACTB, FACTC(变量加运算) 14. ADELE,NA1,NA2,NINC,KSWP(删除面) 【注】KSWP =0删除面但保留面上关键点、1删除面及面上关键点。 15. ADRAG,NL1,NL2,…,NL6,NLP1,NLP2,…,NLP6(将既有线沿一定路径拖拉成面) 16. AESIZE,ANUM,SIZE(指定面上划分单元大小) 17. AFILLT,NA1,NA1,RAD(两面之间生成倒角面) 18. AFSURF,SAREA,TLINE(在既有面单元上生成重叠的表面单元) 19. *AFUN, Lab(指定参数表达式中角度单位) 20. AGEN, ITIME, NA1, NA2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE(复制面) 21. AGLUE,NA1,NA2,…,NA8,NA9(面间相互粘接) 22. AINA,NA1,NA2,…,NA8,NA9(被选面的交集) 23. AINP,NA1,NA2,…,NA8,NA9(面集两两相交) 24. AINV,NA,NV(面体相交) 25. AL,L1,L2,…,L9,L10(以线定义面) 26. ALIST,NA1,NA2,NINC,Lab(列表显示面的信息) 【注】Lab=HPT时,显示面上硬点信息,默认为空。 27. ALLSEL,LabT,Entity(选择所有实体) 【注】LabT=ALL(指定实体及其所有下层实体)、BELOW(指定实体及其下一层实体);Entity=ALL、VOLU、AREA、LINE、KP、ELEM、NODE。 28. AMESH,NA1,NA2,NINC(划分面生成面单元) AMESH,AREA,KP1,KP2,KP3,KP4(通过点划分面单元) 29. /AN3D,Kywrd,KEY(三维注释) 30. ANCNTR,NFRAM,DELAY,NCYCL(在POST1中生成结构变形梯度线的动画) 31. ANCUT,NFRAM,DELAY,NCYCL,QOFF,KTOP,TOPOFF,NODE1,NODE2,NODE3(在POST1中生成等势切面云图动画) 32. ANDATA,DELAY,NCYCL,RSLTDAT,MIN,MAX,INCR,FRCLST,AUTOCNTRKY(生成某一

浅谈ANSYS系统在隧道结构计算中的应用条件

浅谈ANSYS系统在隧道结构计算中的应用条件 刘平录弭坤 西安公路研究院710054 摘要:在公路隧道设计与施工中,为了提前判断在开挖和支护工程中隧道的结构安全性,隧道结构计算的数值研究方法就成为了一种重要的设计依据和施工控制措施。本文提供了一种方法,即利用ANSYS软件模拟隧道结构在开挖个步骤中的计算模式与应用条件。 关键词:隧道结构ANSYS模拟 隧道的结构分析是利用工程力学原理,选取合理的介质,通过相似模型体系对其结构进行计算,具体过程一般通过两个途径来进行,其一是利用相似性理论,采取合理的相似系数,在室内通过模型试验来模拟实际的工程问题。其二是数值计算,这种方法伴随着计算机的发展有了长足的进步。目前,伴随着岩土力学的发展,再加上计算机的普遍使用及其性能的不断提高,有限元法成为发展最迅速的用于隧道结构分析的数值计算方法。 有限元法先将结构分解为有限的小单元,在每一个单元上,利用弹性力学、弹塑性力学等力学理论建立力学性能参数之间的关系,然后根据位移或者应力协调条件把这些小单元组合起来,求出整体结构的力学特征。因为有限元法是利用矩阵代数方法求解方程组,而矩阵代数建立的方程组非常方便与计算机的存储与求解,所以,有限元法非常适用于分析复杂的地下结构。 1模型的建立 利用ANSYS来模拟隧道开挖过程,有两种建模方法,一个是建立真三维的模型,三维模型不仅可考虑围岩的流变特性,还能考虑开挖和支护的空间效应,能保证较好的计算精度。但是建模复杂,计算时间长,且费用较高。另一种建模方法是建立二维模型,即按平面应变问题来处理,隧道在长度方向的尺寸比横截面的尺寸大得多,在忽略掘进的空间效应及岩石流变效应的影响时,计算模型取为平面应变是可行的。另外,可以通过各阶段相应的初始应力释放系数来考虑开挖过程和支护时间早晚对围岩及支护受力的影响。本文采用后者建立有限元模型。 相对于整个岩体而言,开挖所引起的应力重分布的区域是有限的,因而要确定计算模型的范围。实践和理论分析表明,对于地下洞室开挖后的应力应变,仅在洞室周围距洞室中心点3~5倍洞室开挖宽度(或高度)的范围内存在实际影响。在3倍宽处的应力变化一般在10%以下,在5倍宽处的应力变化一般在3%以内。所以,计算宽度可确定在3~5倍洞室开挖宽度(或高度)。本文所采用的模型水平方向上隧道两边的长度均取洞跨的5倍为限,即计算模型的水平宽度为开挖隧道跨度的7倍;垂直方向上,隧道下方的距离为洞高的3倍,而隧道上方按实际地形尺寸。

ANSYS命令流及注释详解

ANSYS最常用命令流+中文注释 VSBV, NV1, NV2, SEPO, KEEP1, KEEP2 —Subtracts volumes from volumes,用于2个solid相减操作,最终目的是要nv1-nv2=?通过后面的参数设置,可以得到很多种情况:sepo项是2个体的边界情况,当缺省的时候,是表示2个体相减后,其边界是公用的,当为sepo的时候,表示相减后,2个体有各自的独立边界。keep1与keep2是询问相减后,保留哪个体?当第一个为keep时,保留nv1,都缺省的时候,操作结果最终只有一个体,比如:vsbv,1,2,sepo,,keep,表示执行1-2的操作,结果是保留体2,体1被删除,还有一个1-2的结果体,现在一共是2个体(即1-2与2),且都各自有自己的边界。如vsbv,1,2,,keep,,则为1-2后,剩下体1和体1-2,且2个体在边界处公用。同理,将v换成a 及l是对面和线进行减操作! mp,lab, mat, co, c1,…….c4 定义材料号及特性 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) co: 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数 定义DP材料: 首先要定义EX和泊松比:MP,EX,MA T,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MA T 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,…… 如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8 MP,NUXY,1,0.3 TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP Type,是选择的方式,有选择(s),补选(a),不选(u),全选(all)、反选(inv)等,其余方式不常用 Item, Comp 是选取的原则以及下面的子项 如volu 就是根据实体编号选择, loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标! 其余还有材料类型、实常数等 MIN, VMAX, VINC,这个就不必说了吧! ,例:vsel,s,volu,,14 vsel,a,volu,,17,23,2 上面的命令选中了实体编号为14,17,19,21,23的五个实体 VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体 nv1:初始体号 nv2:最终的体号 ninc:体号之间的间隔 kswp=0:只删除体 kswp=1:删除体及组成关键点,线面 如果nv1=all,则nv2,ninc不起作用 其后面常常跟着一条显示命令VPLO,或aplo,nplo,这个湿没有参数的命令,输入后直接回车,就可以显示刚刚选择了的体、面或节点,很实用的哦! Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备 Type: S: 选择一组新节点(缺省) R: 在当前组中再选择 A: 再选一组附加于当前组 U: 在当前组中不选一部分 All: 恢复为选中所有 None: 全不选 Inve: 反向选择 Stat: 显示当前选择状态 Item: loc: 坐标 node: 节点号

第3章-ANSYS隧道工程中的应用实例分析

. 第3章ANSYS隧道工程中的应用实例分析 本章重点 隧道工程概述隧道施工ANSYS模拟的实现 ANSYS隧道结构实例分析ANSYS隧道开挖模拟实例分析 本章典型效果图 可编辑

. 3.1 隧道工程相关概念 3.1.1 隧道工程设计模型 为达到各种不同的使用目的,在山体或地面下修建的建筑物,统称为“地下工程”。在地下工程中,用以保持地下空间作为运输孔道,称之为“隧道”。由于地层开挖后容易变形、塌落或是有水涌入,所以在除了在极为稳固地层中且没有地下水的地方以外,大都要在坑道的周围修建支护结构,称之为“衬砌”。隧道工程建筑物是埋于地层中的结构物,它的受力和变形与围岩密切相关,支护结构与围岩作为一个统一的受力体系相互约束,共同作用。隧道工程所处的环境条件与地面工程是全然不同的,但长期以来都沿用适应地面的工程理论和方法来解决地下工程中所遇到的各类问题,因而常常不能正确地阐明地下工程中出现的各种力学现象和过程,是地下工程长期处于“经验设计”和“经验施工”的局面。这种局面与迅速发展的地下工程现实 可编辑

. 极不相称,促使人们努力寻找新的理论和方法来解决地下工程遇到的各种问题。 地下工程的设计理论和方法经历了一个相当长的发展过程。在20世纪20年代以前,地下工程支护理论主要有古典的压力理论和散体压力理论,以砖、石头材料作为衬砌,采用木支撑或竹支撑的分部开挖方法进行施工。此时,只是将衬砌作为受力结构,围岩是看作载荷作用在衬砌结构上,这种设计理论过于保守,设计出的衬砌厚度偏大。20世纪50年代以来,岩石力学开始成为一门独立的学科,围岩弹性、弹塑性和粘弹性解答逐步出现。土力学的发展促使松散地层围岩稳定和围岩压力理论的发展,而岩石力学的发展则促使围岩压力和地下工程支护结构理论的进一步的飞跃。同时,锚杆和喷射混凝土的作为初期支护得到广泛应用。这种柔性支护允许开挖后的围岩有一定的变形,使围岩能够发挥其稳定性,从而可以大大地减小衬砌厚度。 国际隧道学会认为,目前采用的隧道设计模型主要有以下几种: ◆以工程类比为主的经验设计方法。 ◆以现场测试和实验室试验为主的实用设计方法(如现场和实验室的岩土力学试验、以 洞周围测量值为基础的收敛—约束法以及实验室模型试验等)。 ◆作用—反作用设计模型,即目前隧道设计常用的载荷—结构模型,包括弹性地基梁、 弹性地基圆环等。 ◆连续介质模型,包括解析法(封闭解和近似解)和数值法(以FEM为主)。 国际隧道学会于1978年成立了隧道结构设计模型研究小组,收集和汇总了各会员国目前 可编辑

ANSYS常用命令总结大全

161. EMF(电磁场分析中计算沿路径的电动势和电压降) 162. EMID,Key,Edges(增加或删除中间节点) 163. EMODIF,IEL,STLOC,I1,I2,I3,I4,I5,I6,I7,I8(调整单元坐标系方向)164. EMORE,Q,R,S,T,U,V,W,X(单元节点超过个时,在E命令后使用)165. EMUNIT, Lab, V ALUE(定义磁场单位) 166. EN,IEL,IJ,K,L,M,N,O,P(通过节点生成指定单元) 167. ENGEN,IINC,ITIME,NINC,IEL1,IEL2,IEINC,MINC,TINC,RINC,CINC,SINC,DX,DY,DZ(元素复制:用户自己进行编号) 168. ENORM,ENUM(重新定义壳单元的法线方向) 169. ENSYM,IINC,--,NINC,IEL1,IEL2,IEINC(镜像生成新单元:用户自己进行编号) 170. EPLOT(元素显示) 171. ERASE(擦除当前图形窗口显示的内容) 172. EREFINE,NE1,NE2,NINC,LEVEL,DEPTH,POST,RETAIN(将单元附近的单元网格细化) 173. ERESX,Key(控制单元积分点解的外推方式) Key=DEFA(线形材料单元节点解由积分点解外推得到) YES(节点解由积分点解外推得到) NO(节点解由积分点解拷贝得到) 174. ERNORM,Key(定义是否进行误差估计) 175. ERRANG,EMIN,EMAX,EINC(从文件读入单元数据) 176. ESEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS(选择单元子集) 177. /ESHAPE,SCALE(显示单元形状) 178. ESIZE,SIZE,NDIV(指定线划分单元的默认数目) 179. ESLA, Type(选择已选面上的单元) 180. ESLL, Type(选择已选线上的单元) 181. ESLN, Type, EKEY, NodeType(选择已选节点上的单元) 182. ESORT,Item,Lab,ORDER,KABS,NUMB(对单元数据指定新的排序方式)183. ESURF,XNODE,Tlab,Shape(在既有单元表面生成表面单元) 184. ESYM,--,NINC,IEL1,IEL2,IEINC(镜像生成新单元:自动编号) 185. ESYS,KCN(定义单元坐标系。【注】只能通过局部坐标系定义) 186. ET,ITYPE,Ename,KOPT1,KOPT2,KOPT3,KOPT4,KOPT5,KOPT6,INOP R(定义单元) 【注】KOPT1~KOPT6为元素特性编码,BEAM3的KOPT6=1时,表示分析后的结果可输出节点的力或力矩。 187. ETABLE,Lab,Item,Comp(将单元某项结果作成表格) 【注】Lab为字段名,最多8个字符;Item,Comp分别为单元输出表中的名称和分量。

盾构隧道结构ansys计算方法

一、盾构隧道结构计算模型 1、惯用法(自由圆环变形法) 惯用法的想法早在1960年就提出了,在日本国内得到了广泛的应用。惯用法假设管片环是弯曲刚度均匀的环,不考虑管片接头部分的柔性特征和弯曲刚度下降,管片截面具有同样刚度,并且弯曲刚度均匀的方法。这种方法计算出的管片环变形量偏小,导致在软弱地基中计算出的管片截面内力过小,而在良好地基条件下计算出的内力又过大。地层反力假设仅在水平方向上下45°范围内按三角形规律分布,这种模型可以计算出解析解。 P 0 k δ

2、修正惯用法 在采用惯用法的60年代,怎样评价错缝拼装效应是一个问题。如果错缝拼装管片,可弥补管片接头存在造成的刚度下降。于是,在对带有螺栓接头的管片环进行多次核对研究时,首次引入了η-ξ对错缝拼装的衬砌进行内力计算,即为修正惯用法。该法将衬砌视为具有刚度ηEI的均质圆环,将计算出的弯矩增大即(1+ξ)M,得到管片处的弯矩;将求出的弯矩减少即(1-ξ)M,得到接头处的弯矩。其中η称为弯曲刚度有效率,ξ称为弯矩增加率,它为传递给邻环的弯矩与计算弯矩之比。管片接头由于存在一些铰的作用,所以可以认为弯矩并不是全部经由管片接头传递,其一部分是利用环接头的剪切阻力传递给错缝拼装起来的邻接管片。 隧 道 纵 向 接头传递弯矩示意图

二、管片计算荷载的确定 1、荷载的分类 衬砌设计所考虑的各种荷载,应根据不同的地质条件和设计方法进行假定并根据隧道的用途加以考虑。衬砌设计所考虑的各种荷载见表所示。 衬砌设计荷载分类表

2、计算断面选择 埋深最大断面 埋深最小断面 埋深一般断面 水位 3、水土压力计算 对于粘性土层,如西安地铁黄土地层、成都地铁二号线膨胀土地层等,应采用水土压力合算的方式进行荷载计算。此时,地下水位以上地层荷载用湿容重计算,地下水位以下用饱和容重计算。 对于透水性较好的砂性地层,如西安地铁粗砂、中砂地层,成都地铁卵石土地层等,应采用水土压力分算的方式进行荷载计算。此时地下水位以上地层荷载用湿容重计算,地下水位以下用浮容重计算。 水土压力合算与分算,主要影响管片结构侧向荷载。一般水土分算时侧向压力更大。 4、松弛土压力 将垂直土压力作为作用于衬砌顶部的均布荷载来考虑。其大小宜根据隧道的覆土厚度、隧道的断面形式、外径和围岩条件等来决定。考虑长期作用于隧道上的土压力时,如果覆土厚度小于隧道外径,一般不考虑地基的拱效应而采用总覆土压力。但当覆土厚度大于隧道外径时,地基中产生拱效应的可能性比较大,可以考虑在计算时采用松弛土压力,一般采用泰沙基公式计算。

ansys常用命令 L 部分

260. L,P1,P2,NDIV,SPACE,XV1,YV1,ZV1,XV2,YV2,ZV2(定义线) 261. L2ANG,NL1,NL2,ANG1,ANG2,PHIT1,PHIT2(生成直线与两直线均成一定角度)262. L2TAN,NL1,NL2(生成直线与两直线均相切) 263. LANG,NL1,P3,ANG,PHIT,LOCAT(生成直线与已知直线成一定角度) 264. LARC,P1,P2,PC,RAD(生成弧线) 265. /LARC,XCENTER,YCENTER,XLRAD,ANGLE1,ANGLE2(使用弧线注释) 266. LAREA,P1,P2,NAREA(在面上两关键点之间生成一条最短的线) 267. LATT,MAT,REAL,TYPE,--,KB,KE,SECNUM(指定线的单元属性) 268. LCABS,LCNO,KABS(指定是否对载荷工况取绝对值) 269. LCASE,LCNO(将载荷工况读入) 270. LCDEF,LCNO,LSTEP,SBSTEP,KIMG(从结果文件中定义载荷工况) LCDEF,LCNO,ERASE(删除一载荷工况) 271. LCFACT,LCNO,FACT(指定载荷工况的比例因子) 272. LCFILE,LCNO,Fname,Ext,--(从载荷工况文件中定义载荷工况) 273. LCLEAR,NL1,NL2,NINC(清除线单元网格) 274. LCOMB,NL1,NL2,KEEP(线线合并) 275. LCOPER,Oper1,LCASE,Oper2,LCASE2(载荷工况的组合运算) 【注】Oper1=ADD(加)、SUB(减)、SQUA(平方)、SQRT(平方根)、SRSS(平方和求平方根)、MIN(比较存储最小值)、MAX(比较存储最大值)。 LCOPER,LPRIN(重新计算线单元的主应力) 276. LCSEL,Type,LCMIN,LCMAX,LCINC(选择载荷工况) 277. LCWRITE,LCNO,Fname,Ext,--(将当前载荷工况写入载荷工况文件中) 278. LCZERO(清空数据库中以前的数据) 279. LDELE,NL1,NL2,NINC,KSWP(删除线) 【注】KSWP=0删除线但保留线上关键点、1删除线及线上关键点。 280. LDIV,NL1,RATIO,PDIV,NDIV,KEEP(将线分割) 281. LDRAG,NK1,NK2,…,NK6,NL1,NL2,…,NL6(将一组既有关键点按一定路径拖拉成线) 282. LDREAD,Lab,LSTEP,SBSTEP,TIME,KIMG,Fname,Ext,--(施加耦合场载荷)283. LESIZE,NL1,SIZE,ANGSIZ,NDIV,SPACE,KFORC,LAYER1,LAYER2,KYNDIV(指定所选线上单元数) 284. LEXTND,NL1,NK1,DIST,KEEP(将线延伸) 285. LFILLT,NL1,NL2,RAD,PCENT(两条相交线生成倒角) 286. LFSURF,SLINE,TLINE(在既有面单元上生成重叠的表面单元) LGEN,ITIME,NL1,NL2,NINC,DX,DY,DZ,KING,NOELEM,IMOVE(从一条线或多条线生成新的线) 287. LGLUE,NL1,NL2,…,NL8,NL9(线间相互粘接) 288. /LIGHT,WN,NUM,INT,XV,YV,ZV,REFL(为模型添加光源) 289. LINA,NL,NA(线面相交) 290. /LINE,X1,Y1,X2,Y2(使用线注释) 291. LINL,NL1,NL2,…NL8,NL9(被选线的交集) 292. LINP,NL1,NL2,…NL8,NL9(线集两两相交)

ANSYS结构力分析实例

基于图形界面的桁架桥梁结构分析(step by step) 下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。背景素材选自位于密执安的"Old North Park Bridge" (1904 - 1988),见图3-22。该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3 种不同型号的型钢,结构参数见表3-6。桥长L=32m,桥高H=5.5m。桥身由8 段桁架组成,每段长4m。该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2 和P3 ,其中P1= P3=5000 N, P2=10000N,见图3-23。 图3-22 位于密执安的"Old North Park Bridge" (1904 - 1988) 图3-23 桥梁的简化平面模型(取桥梁的一半) 表3-6 桥梁结构中各种构件的几何性能参数 解答以下为基于ANSYS 图形界面(Graphic User Interface , GUI)的菜单操作流程。 (1) 进入ANSYS(设定工作目录和工作文件)

程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname (设置工作文件名):TrussBridge →Run →OK (2) 设置计算类型 ANSYS Main Menu:Preferences… →Structural →OK (3) 定义单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete... →Add…→Beam: 2d elastic 3 →OK(返回到Element Types窗口)→Close (4) 定义实常数以确定梁单元的截面参数 ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete →Add…→select Type 1 Beam 3 →OK →input Real Constants Set No. : 1 , AREA: 2.19E-3,Izz: 3.83e-6(1号实常数用于顶梁和侧梁) →Apply →input Real Constants Set No. : 2 , AREA: 1.185E-3,Izz: 1.87E-6 (2号实常数用于弦杆) →Apply →input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3号实常数用于底梁) →OK (back to Real Constants window) →Close (the Real Constants window) (5) 定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 2.1e11, PRXY: 0.3(定义泊松比及弹性模量) →OK →Density (定义材料密度) →input DENS: 7800, →OK →Close(关闭材料定义窗口) (6) 构造桁架桥模型 生成桥体几何模型 ANSYS Main Menu:Preprocessor →Modeling →Create →Keypoints →In Active CS →NPT Keypoint number:1,X,Y,Z Location in active CS:0,0 →Apply →同样输入其余15个特征点坐标(最左端为起始点,坐标分别为(4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5.5), (8,5.5), (12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→Lines →Lines →Straight Line →依次分别连接特征点→OK 网格划分 ANSYS Main Menu: Preprocessor →Meshing →Mesh Attributes →Picked Lines →选择桥顶梁及侧梁→OK →select REAL: 1, TYPE: 1 →Apply →选择桥体弦杆→OK →select REAL: 2, TYPE: 1 →Apply →选择桥底梁→OK →select REAL: 3, TYPE:1 →OK →ANSYS Main Menu:Preprocessor →Meshing →MeshTool →位于Size Controls下的Lines:Set →Element Size on Picked →Pick all →Apply →NDIV:1 →OK →Mesh →Lines →Pick all →OK (划分网格) (7) 模型加约束 ANSYS Main Menu: Solution →Define Loads →Apply →Structural→Displacement →On Nodes →选取桥身左端节点→OK →select Lab2: All DOF(施加全部约束) →Apply →选取桥身右端节点→OK →select Lab2: UY(施加Y方向约束) →OK (8) 施加载荷 ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment →On Keypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK →select Lab: FY,Value: -5000 →Apply →选取底梁上卡车中部关键点(X坐标为16)→OK →select Lab: FY,Value: -10000 →OK →ANSYS Utility Menu:→Select →Everything (9) 计算分析 ANSYS Main Menu:Solution →Solve →Current LS →OK (10) 结果显示 ANSYS Main Menu:General Postproc →Plot Results →Deformed shape →Def shape only →OK(返回到Plot Results)→Contour Plot →Nodal Solu →DOF Solution, Y-Component of Displacement →OK(显示Y方向位移UY)(见图3-24(a))

相关文档
最新文档