函数复习之6-- 指数与对数的运算

函数复习之6-- 指数与对数的运算
函数复习之6-- 指数与对数的运算

函数复习之6 指数与对数的运算

一.课标要求

(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;

(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

(3)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;

二.命题走向

指数与对数的性质和运算,在历年的高考中一般不单独命题。大多以指数函数、对数函数等基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

预测2009年对本节的考察是:

1.题型有两个选择题和一个解答题;

2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。同时它们与其它知识点交汇命题,则难度会加大。 三.要点精讲

1、整数指数幂的概念。

(1)概念:*)(N n a a a a a n ∈??= )0(10≠=a a *),0(1

N n a a

a n n ∈≠=-

n 个a

(2)运算性质: )

()(),()()

,(Z n b a ab Z n m a a Z n m a a a n n n mn n m n m n m ∈?=∈=∈=?+

两点解释:① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=n m a -

② n b a )(可看作n

n b a -? ∴n b a )(=n n b a -?=n n b

a

2、根式:

(1)定义:若),1(+∈>=N n n a x n 则x 叫做a 的n 次方根。

(2)求法:①当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数 记作:n a x =

② 当n 为偶数时,正数的n 次方根有两个(互为相反数) 记作:

n a x ±=

负数没有偶次方根 0的任何次方根为0

名称:n a 叫做根式 n 叫做根指数 a 叫做被开方数

(3)公式: ①a a n n =)( ;

②当n 为奇数时 a a n n =;

③当n 为偶数时 ???<-≥==)0()

0(a a a a a a n n

3、分数指数幂

(1)有关规定: 事实上,kn n k a a =)( 若设a >0,*),1(N n n n

m

k ∈>=

,m n

n m

n k a a a ==)()(由n 次根式定义, n a a m n

m 的是次方根,即:

n m n

m a a =

(2)同样规定:)1*,,0(1>∈>=

-n N n m a a

a

n

m n

m 且;0的正分数指数幂等于0,

0的负分数指数幂没有意义。

(3)指数幂的性质:整数指数幂的运算性质推广到有理指数幂。

)

,0,0()(),,0()()

,,0(Q r b a b a ab Q s r a a a Q s r a a a a r r r r s s r s r s r ∈>>=∈>=∈>=+

(注)上述性质对r 、∈s R 均适用。

4、对数的概念

(1)定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数。

①以10为底的对数称常用对数,N 10log 记作N lg ;

②以无理数)71828.2( =e e 为底的对数称自然对数,N e log ,记作N ln ; (2)基本性质:

①真数N 为正数(负数和零无对数); ②01log =a ;

③1log =a a ; ④对数恒等式:N a N a =log 。

(3)运算性质:如果,0,0,0,0>>≠>N M a a 则

①log ()log log log log log ()a a a a a a MN M N M N MN =+?+=; ②log log log log log log a

a a a a a M M M N M N N N

=-?-=; ③log log ()log log n n a a a a M n M n R n M M =∈?=R )。 ④b m

n

b a n a m log log =

(4)换底公式:),0,1,0,0,0(log log log >≠>≠>=

N m m a a a

N

N m m a 两个非常有用的结论①1log log =?a b b a ; 【注】指数方程和对数方程主要有以下几种类型:

(1) a f(x)=b ?f(x)=log a b, log a f(x)=b ?f(x)=a b ; (定义法)

(2) a f(x)=a g(x)?f(x)=g(x), log a f(x)=log a g(x)?f(x)=g(x)>0(转化法)

(3) a f(x)=b g(x)?f(x)log m a=g(x)log m b (取对数法)

(4) log a f(x)=log b g(x)?log a f(x)=log a g(x)/log a b(换底法) 四.典例解析 题型1:指数运算

例1.(1)计算:25.021

21

32

5.032

0625.0])32.0()02.0()008.0()9

4

5()833[(÷?÷+---;

(2)化简

3

2233--+

(3)化简:

533233

23

233

23

1

3

4)2(248a

a a a a

b a

a

ab b b a a ???-÷++--

(4)化简: 33

3

233

23

134)21(428a a

b b

ab a b a a ?-÷++-

例2.已知112

2

3x x

-+=,求

22332

2

23

x x x x

--+-+-的值。

题型2:对数运算 例3.计算

①2(lg2)lg2lg50lg25+?+; ②3948(log 2log 2)(log 3log 3)+?+;

③1

.0lg 2

1

036.0lg 21600lg )2(lg 8000lg 5lg 2

3--+?。

④log 2

48

7+log 212-2

1log 242-1;

解:(1)原式=22lg5lg2(1lg5)(lg2)2lg5lg2(1lg5lg2)2lg52lg22+?++=+++=+=

(2

)原式=333

lg33lg 2)(1lg3)(lg32lg 21)

3222(lg31)(lg32lg 21)(lg31)(lg32lg 21)2

+--?+-==--?+--?+-

(3)(log 32+log 92)·(log 43+log 83). (1)log 2

48

7+log 212-2

1log 242-1;

例4.设a 、b 、c 为正数,且满足222a b c +=

(1)求证:22log (1)log (1)1b c a c

a b +-+

++=; (2)若4log (1)1b c a ++=,82

log ()3

a b c +-=,求a 、b 、c 的值。

例5(1)已知 log 18 9 = a , 18 b = 5 , 求 log 36 45 (用 a , b 表示)

(2)设 1643>===t z y x 求证:y

x z 21

11=-

题型4:指数、对数方程

例6:解方程(1)()()

1123log 2122

=-+-x x x (2)()[]0log log log 432=x

例7.设关于x 的方程∈=--+b b x x (0241R ),

(1)若方程有实数解,求实数b 的取值范围;

(2)当方程有实数解时,讨论方程实根的个数,并求出方程的解。 . 【课前预习】

1、已知3234+?-=x x y 的值域为[1,7],则x 的取值范围是

( )

A.[2,4]

B.)0,(-∞

C.]4,2[)1,0(

D.]2,1[)0,( -∞ 2、若,310,210==y

x

则=-2

310

y x

3、【08重庆卷13】已知1

2

4

9a =(a>0) ,则23

log a = . 【课外作业】

1.若0log log log log log log log log log 324243432===z y x ,则z y x ++的值为

A .50

B .58

C .89

D .111

( )

2、若273291=?---x x ,则x = ;

3、.如果函数)1,0(122≠>-+=a a a a y x x 在区间[-1,1]上的最大值是14,求a 的值。

4、设3

421lg )(a x f x x ?++=若]1,(-∞∈x 时)(x f 有意义,求实数a 的范围。

1.化简下列各式(其中各字母均为正数):

(1)

;)

(6

5

3

1212

113

2b

a b a b a ????-

-

(2)

.)4()3(6

521

3321212

31----?÷-??b a b a b a 解 (1)原式=

.1006

531216

121316

5613

1212

131=?=?=

?-+-+--b a b a b a b a b a

(2)原式=-)(4

5)4(2523

31

361

21332

361

---

---÷-=?÷b a b a b a b a .45145452

323

21

ab ab

ab b a -=?-=?-=-- 2.已知3a =5b =A ,且b

a

11+=2,则A 的值是 .

答案

15

3.已知log 7[log 3(log 2x )]=0,那么x 2

1

-= .

答案

4

2

例1 计算:(1));32(log 3

2-+

(2)2(lg 2

)2+lg

2·lg5+12lg )2(lg 2+-;

(3)

2

1lg 4932-34

lg 8

+lg

245.

解 (1)方法一 利用对数定义求值 设32log +(2-3

)=x , 则(2+

3

)x =2-

3

=

3

21+=(2+

3

)-1,∴x =-1.

方法二 利用对数的运算性质求解 32log + (2-3

)=3

2log +3

21

+=32log +(2+

3

)-1=-1.

(2)原式=lg 2(2lg

2

+lg5)+12lg 2)2(lg 2+-=lg 2(lg2+lg5)+|lg

2

-1|

=lg

2

+(1-lg 2

)=1.

(3)原式=21(lg32-lg49)-34lg821

+21lg245

=2

1 (5lg2-2lg7)-3

4×2

3lg2+2

1 (2lg7+lg5)

=25lg2-lg7-2lg2+lg7+

21lg5=21lg2+2

1

lg5 =2

1lg(2×5)= 2

1lg10=2

1. 1.化简求值. (1)log 2

48

7

+log 212-2

1log 242-1;

(2)(lg2)2+lg2·lg50+lg25; (3)(log 32+log 92)·(log 43+log 83). 解 (1)原式=log 248

7+log 212-log 2

42

-log 22

=log 2

.2

3

2

log 2

21log 2

42481272

322-===???- (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.

(3)原式=(.4

5

2lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++

8.计算:(1)2lg 25lg 2lg50(lg 2)+?+;

(2

解:(1)原式=22lg5lg2(1lg5)(lg2)2lg5lg2(1lg5lg2)2lg52lg22+?++=+++=+=

(2

)原式=333

lg33lg 2)(1lg3)(lg32lg 21)

3222(lg31)(lg32lg 21)(lg31)(lg32lg 21)2

+--?+-==--?+--?+-

五.思维总结

1.b N N a a N a b n ===log ,,(其中1,0,0≠>>a a N )是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底;

2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验;

3.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识;

《新课标》必修Ⅰ复习 第四讲 指数与对数的运算(答案详解) 【课前预习】

1、答案:D 先求出x 2范围再求x 的范围;

2、3

6

2 3、3

题型1:指数运算

例1. 解:(1)原式=4

1

32

21

32

)10000

625(]102450)81000()949()278[(÷?÷+-

922)2917(21]1024251253794[=?+-=÷??+-=; (2)原式=

3

3)33(2)

13(2)33(23

242)33(22

-+=

--+=

--+

=

6226

)

3612(2)

33)(33()33(22+=+=

+-+

(注意复习,根式开平方)

(3)原式=

5

131212

13231312

313

13

12

313

313

313

1)()

(2)

2()2()(])2()[(a a a a a

b a b b a a b a a ???-÷

+?+- 23

23

16

1653

13

13

131312)2(a a a a a

a b

a a

b a a =??=?

-?

-=。

(4)原式=

a b

a b a a a b

a a

b

b a a b a a =--=

?-?

++-8)

8(242)8(3

13

13

13

13

23

13

13

23

1

点评:根式的化简求值问题就是将根式化成分数指数幂的形式,然后利用分数指数幂的运算性质求解,对化简求值的结果,一般用分数指数幂的形式保留;一般的进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数运算,同时兼顾运算的顺序。 例2. 解:∵112

2

3x x

-+=,

∴1

122

2()9x x -+=, ∴129x x -++=, ∴17x x -+=, ∴12()49x x -+=, ∴2247x x -+=, 又∵331112

2

2

2

()(1)3(71)18x x

x x x x --

-+=+?-+=?-=,

22332

2

2

472

3183

3

x x x x --+--=

=-+-。 点评:本题直接代入条件求解繁琐,故应先化简变形,创造条件简化运算。 题型2:对数运算

例3解:(1)原式22(lg2)(1lg5)lg2lg5(lg2lg51)lg22lg5=+++=+++

(11)lg 22lg52(lg 2lg5)2=++=+=; (2)原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3

(

)()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+?+=+?+ 3lg 25lg35

2lg36lg 24

=

?=; (3)分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++; 分母=4100

6

lg 26lg 101100036lg

)26(lg =-+=?-+; ∴原式=

4

3

。 点评:这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧。

例4. 证明:(1)左边2

22log log log ()a b c a b c a b c a b c

a b a b

+++-+++-=+=? 2222222

2222()22log log log log 21a b c a ab b c ab c c ab ab ab +-++-+-=====;

解:(2)由4log (1)1b c a ++

=得14b c

a

++=, ∴30a b c -++=……………①

由82

log ()3

a b c +-=得2

384a b c +-==………… ……………②

由①+②得2b a -=……………………………………③ 由①得3c a b =-,代入222a b c +=得2(43)0a a b -=,

∵0a >, ∴430a b -=………………………………④ 由③、④解得6a =,8b =,从而10c =。

点评:对于含对数因式的证明和求值问题,还是以对数运算法则为主,将代数式化简到最见形式再来处理即可。 题型3:指对数式的简单应用

例5 (1) 解:∵ log 18 9 = a ∴a =-=2log 12

18

log 1818

∴log 18 2 = 1 - a ∵ 18 b = 5 ∴ log 18 5 = b ∴

a

b

a -+=

++==

22log 15log 9log 36log 45log 45log 181818181836 (2) 证:∵1643>===t z y x ∴ 6

lg lg 4lg lg 3lg lg t

z t y t x =

==

,, ∴ y

t t t t x z 21

lg 24lg lg 2lg lg 3lg lg 6lg 11=

==-=- 题型4:指数、对数方程

例6: 解(1)2,00212123222-==?=+?-=-+x x x x x x x

但必须:???

????>-+≠->-012311201222

2x x x x ∴0=x 舍去 2-=x

(2)()1log log 43=x , ∴3log 4=x , 6443==x

例7. 解:(1)原方程为124+-=x x b ,

11)12(22)2(24221-≥--=?-=-+x x x x x ,

),1[+∞-∈∴b 当时方程有实数解;

(2)①当1-=b 时,12=x ,∴方程有唯一解0=x ; ②当1->b 时,b b x x +±=?+=-1121)12(2 .

b b x x ++=∴>++>112,011,02 的解为)11(log 2b x ++=;

令,0111011<<-?<+?>+-b b b

b b x +-=<<-∴112,01时当的解为)11(log 2b x +-=;

综合①、②,得

1)当01<<-b 时原方程有两解:)11(log 2b x +±=; 2)当10-=≥b b 或时,原方程有唯一解)11(log 2b x ++=;

3)当1-

点评:具有一些综合性的指数、对数问题,问题的解答涉及指数、对数函数,

二次函数、参数讨论、方程讨论等各种基本能力,这也是指数、对数问题的特点,题型非常广泛,应通过解题学习不断积累经验。 【课外作业】

1. 答案: C 易得9,16,64===z y x ; 2、 -2 3、. 解析:()

()21122

2

-+=-+==t a a y x

a t x

x ,

(1)1>a 时,

a t a

≤≤1

二次函数2)1(2-+=t y 在],1

[a a

上单调递增,

∴142)1(2max =-+=a y , ∴53-==a a 或(舍去),

(2)当10<

≤, 二次函数2)1(2-+=t y 在]1

,[a

a 上单调递增,

∴142)11

(2max =-+=a y ,

∴5

1

31-==a a 或(舍去),

综上3

1

3或=a 。

评析:换元之后,函数解析式变了,函数定义域也变了,二次函数最值问题,一般先讨论开口方向,再讨论对称轴和区间的相对位置。

4、解:由已知得,当(]1,∞-∈x 时

03

421>?++x

x a ,∴0124>++?x x a ∴x

x a 214-->? ∴()

???

?????-??? ??+-=????

??

??+-=-->412121212

1214122

x x x x x a

(]1,∞-∈x ,∴??

?

???+∞∈??? ??,2121x

, ∴432141-=-->a 。

指数函数与对数函数复习教案

指数函数与对数函数 [教学目标] 1、知识与技能 (1)梳理知识网络,建构知识体系. (2)熟练掌握指数函数、对数函数的定义、图像与性质. (3)熟练运用指数函数、对数函数的图像和性质解答问题. 2、过程与方法 (1)让学生通过复习对指数函数和对数函数有一个总体认识,能够形成知识网络.(2)两种函数的图像和性质对比掌握,解决函数问题要做到数形结合. 3、情感.态度与价值观 使学生通过复习指数函数、对数函数的图像和性质,培养研究函数问题的思维方法,.[教学重点]:指数函数、对数函数的图像与性质 [教学难点]:指数函数与对数函数的性质. [课时安排]: 1课时 [学法指导]:学生动脑、动手总结规律,梳理知识. [讲授过程] 【建构知识网络】 指数函数的图像与性质

对数函数的图像与性质 (0,+∞) (0,+∞) R R 增函数 减函数 (1,0) (1,0) 例题: 一、定义域 例1.求下列函数的定义域(1)y =(2)4 12 1 2- = --x y 解:(1)要使函数有意义,须使2log (x 2)0 +≥,即22log (x 2)log 1+≥,因为函数

2y log x =为增函数,所以x 21,x 1+>∴>-,所以函数的定义域为{x |x 1}>- (2)要使函数有意义,须使x 1 x 121 2022,x 12,x 14 ------ ≥∴≥∴--≥-∴≤,所以函数的定义域为{x |x 1}≤ 练习1: 求下列函数的定义域(1)1y lg(x 3) =-;(2)2 2x y -= 二、值域 例2.求下列函数的值域 (1)x y -=215 (2) x y 21-= (3)13 y log (4x 5)=+ 分析:要求函数的值域,必须先求函数的定义域,要在函数的定义域范围内求出. 解:(1) 函数x y -=215 的定义域为{x |x 2}≠,指数 1 0x 2 ≠-,所以y 1≠,函数的值域为{y |y 0,y 1}>≠; (2)函数x y 21-=有意义,必须x x 12021x 0-≥∴≤∴≤,函数的定义域为(,0]-∞,因为x x 20,0121>∴≤-<,所以函数的值域为[0,1). (3)13 y log (4x 5)=+要有意义,须使5 4x 50x 4 +>∴>-,函数的定义域为 5 {x |x }4 >-,此时真数4x 50+>,所以函数的值域为R 练习2: 求下列函数的值域(1) x y -? ?? ??=131 (2) 121-?? ? ??=x y (3)1y ln 5x =- 解:(1)函数x y -? ? ? ??=131的值域为()∞+, 0; (2)函数121-??? ??=x y 有意义,则x 110,x 02?? -≥∴≤ ??? 所以函数的定义域为 {x |x 0}≤,值域为[0,)+∞. (3)函数1y ln 5x =-要有意义,须使 1 0x 55x >∴<-,函数的定义域为{x |x 5}<,函数的值域为R . 三、单调性

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

(完整版)指数与对数函数综合复习题型.doc

指数与对数函数 I 题型 一、利用指数和对数函数性质比较大小 1. (2010 3 52 2 53 2 52 , , c 的大小 安徽文)设 a ( ) , b ( ), c ( ) ,则 5 5 5 a b 关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a 2、下列大小关系正确的是( ) A. 0.42 30.4 log 4 0.3 ; B. 0.42 log 4 0.3 30.4 ; C. log 4 0.3 0.42 30.4 ; D. log 4 0.3 30.4 0.42 3、比较下列比较下列各组数中两个值的大小: ( 1) log 6 7 , log 7 6 ; ( 2) log 5 3 , log 6 3, log 7 3 . 4. 设 a 0 3 , b log 3, c 1,则 a,b, c 的大小关系是( ) A. a b c B. a c b C. b a c D. b c a 二、指数与对数运算 1、若 m = lg5 - lg2 ,则 10m 的值是( ) 5 B 、 3 C 、 10 D 、 1 A 、 2 1 2、 若 log 4 [log 3 (log 2 x)] 0 ,则 x 2 等于( ) A 、 1 2 B 、 1 2 C 、 8 D 、 4 4 2 3、化简计算: log 2 1 · log 3 1 · log 5 1 25 8 9 4. 化简: log 2 5+log 4 0.2 log 5 2+log 250.5 5、已知 3a 2 ,那么 log 3 8 2log 3 6 用 a 表示是( ) A 、 a 2 B 、 5a 2 C 、 3a (1 a) 2 D 、 3a a 2 6、 2log a ( M 2N ) log a M log a N ,则 M 的值为( ) A 、 1 N B 、4 C 、 1 D 、 4 或 1 4 1

指数函数与对数运算解读

指数函数与对数运算 一、选择题 1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .3124 3)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.对数式b a a =--)5(log 2中,实数a 的取值范围是 ( ) A .)5,(-∞ B .(2,5) C .),2(+∞ D . )5,3()3,2( 4.如果c b a x lg 5lg 3lg lg -+=,那么 ( ) A .x =a +3b -c B .c ab x 53= C .53 c ab x = D .x =a +b 3-c 3 5.已知指数函数()y f x =,且35 ()225 f -= ,则函数()y f x =的解析式是( ) A 、32 y x = B 、5x y -= C 、5 y x = D 、5x y = 6.设123()4a -=,144()3b =,3 43 ()2 c -=则,,a b c 的大小顺序是 ( ) A c a b << B c b a << C b a c << D b c a << 7.为了得到函数13()3 x y =?的图象,可以把函数1()3 x y =的图象 ( ) A 向左平移3个单位长度 B 向右平移3个单位长度 C 向左平移1个单位长度 D 向右平移1个单位长度 8.函数13x y =-的定义域是( ) A 、(,0]-∞ B 、(,1]-∞ C 、[0,)+∞ D 、[1,)+∞ 9. 若{} |2x M y y ==,{ } |1N x y x == -则M N = ( ) A {}|1y y > B {}|1y y ≥ C {}|0y y > D {}|0y y ≥ 10.函数?????>≤-=-0 ,0 ,12)(2x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

《指数函数对数函数》练习题(附答案)

指数函数及其性质 1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2. 函数且叫做指数函数 图象过定点,即当时,. 在上是增函数在上是减函数 变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.

对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质: 函数且叫做对数函数 图象过定点,即当时,. 在上是增函数在上是减函数 变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.

指数函数习题 一、选择题 1.定义运算a ?b =??? ?? a (a ≤ b )b (a >b ) ,则函数f (x )=1?2x 的图象大致为( ) 2.函数f (x )=x 2 -bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系 是( ) A .f (b x )≤f (c x ) B .f (b x )≥f (c x ) C .f (b x )>f (c x ) D .大小关系随x 的不同而不同 3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2) 4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x -1)的定义域是B ,若A ?B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a >5D .a ≥ 5 5.已知函数f (x )=????? (3-a )x -3,x ≤7, a x -6 ,x >7. 若数列{a n }满足a n =f (n )(n ∈N * ),且{a n }是递 增数列,则实数a 的取值范围是( ) A .[94,3) B .(9 4,3) C .(2,3) D .(1,3) 6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围 是( ) A .(0,12]∪[2,+∞) B .[1 4,1)∪(1,4] C .[12,1)∪(1,2] D .(0,1 4)∪[4,+∞) 二、填空题 7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a 2,则a 的值是________. 8.若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

指数函数和对数函数复习

漯河体校师生共用教学案【43】 高一必修一 科目:数学 执笔:张亚丽 审核:数学组 内容:第二章 基本初等函数 课型:复习 学法:议展点练 时间:2014-12-1 教学目标: 1.全面认识和理解指数函数、对数函数的概念与基本性质,了解五种幂函数;并且能够清晰明辨三类函数,弄清它们的区别与联系; 教学重难点: 1.会运用三种函数解决一些相关的实际问题以及较简单综合问题; 2.会利用方程函数、数形结合、转化等数学思想方法解决与三类初等函数有关的问题; 3.在解题过程中引导学生探究、提问,促使学生形成良好的学习习惯,养成积极向上的学习精神;通过对相关知识的简介,使学生了解数学问题的实际背景,从而增强学生学习数学的兴趣。 教学过程: 一、知识梳理: 二、指数的性质 (一)整数指数幂 1.整数指数幂概念: 43 421Λa n n a a a a 个???= )(* ∈N n ()010a a =≠ ()10,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈

其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -; ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100Θ 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()443π- (4) ()()b a b a >-2 三、课堂小结: 全面认识和理解指数函数、对数函数的概念与基本性质,了解五种幂函数; 并且能够清晰明辨三类函数,弄清它们的区别与联系; 教学反思:

指数对数幂函数总结归纳

指数与指数幂的运算 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数 与对数函数互为反函数(a >0,a ≠1). 【要点梳理】 要点一、幂的概念及运算性质 1.整数指数幂的概念及运算性质 2.分数指数幂的概念及运算性质 为避免讨论,我们约定a>0,n ,m ∈N *,且 m n 为既约分数,分数指数幂可如下定义: 3.运算法则 当a >0,b >0时有: (1)n m n m a a a +=?; (2)()mn n m a a =; (3)()0≠>=-a n m a a a n m n m ,; (4)()m m m b a ab =. 要点诠释: (1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算; (2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-; (3)幂指数不能随便约分.如2 142 )4()4(-≠-. 要点二、根式的概念和运算法则 1.n 次方根的定义: 若x n =y(n ∈N * ,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ; n 为偶数时,正数y 的偶次方根有两个,记为n y ±;负数没有偶次方根;零的偶次方根为零,记为00n =. 2.两个等式 (1)当1n >且*n N ∈时, ()n n a a =; (2)???=)(||) (,为偶数为奇数n a n a a n n 要点诠释: ①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误. ②指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如 ),先要化成假分数(如15/4),

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

《指数函数与对数函数》测试题与答案

指数函数与对数函数检测题 一、选择题: 1、已知(10)x f x =,则(5)f =( ) A 、510 B 、10 5 C 、lg10 D 、lg5 2、对于0,1a a >≠,下列说法中,正确的是( ) ①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若2 2 log log a a M N =则M N =; ④若M N =则2 2 log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2 {|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、? B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.5 0.90.48 12314,8 ,2y y y -??=== ? ?? ,则( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()2 2 lg 2lg 52lg 2lg 5++?等于( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是( ) A 、52a - B 、2a - C 、2 3(1)a a -+ D 、2 31a a -- 9、若210 25x =,则10x -等于( ) A 、15 B 、15- C 、150 D 、1625

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

相关文档
最新文档