有机化学分子结构总结(最全版)

有机化学分子结构总结(最全版)
有机化学分子结构总结(最全版)

分子结构 struture(constitution) 分子中原子的连接次序和方式以及在空间的排布。分子结构至少应包括分子的构造、构型和构象,结构是一个广义的概念,有时还与“构造”一词混同泛用。

构造 constitution 分子中原子的连接次序和方式,即指具有一定分子式的物质,其分子中各原子成键的顺序和键性。

构型 configuration 具有一定构造的分子中各原子在空间的排列状况。

构象conformation 在一定的条件下,由于单键的旋转而产生的分子中各原子(或原子团)在空间的不同排布形象。构型和构象虽然都是表述分子的立体模样或空间形象的概念,但两者不能并列,构象比构型更为精细。在室温下,分子的一种构象可以通过单键的“自由”旋转,变成另一种构象。一般地讲,分子的构型是不能通过单键的旋转而改变的,必须通过化学键的断裂和形成才能改变分子的构型。

手性 Chirality 也称手征性,物质的分子和它的镜象不能重合的性质。手性是物质具有旋光性和产生对映异构现象的充分必要条件。

手性分子 Chiral molecule 具有手性的分子称为手性分子。手性分子一定具有旋光性,并存在一对对映体。

对映体 Enantiomer对映异构体的简称,两个互为镜象的立体异构体。在非手性条件下,对映体具有相同的物理和化学性质。

非对映体Diaseromer 非对映异构体的简称,两个不呈镜象关系的立体异构体。非对映体的物理性质不同。由于具有相同的官能团,同属一类化合物,因而化学性质相似,即可发生相同类型的化学反应,但活性不同。

次序规则sequence rule 各种原子或取代基按其原子序数的大小排列成序的规则,顺、反异构体的Z、E标记法和手性中心的构型R、S标记法,都是按次序规则来进行标记的。

立体选择反应Stereoselective reaction 一个反应不管反应物的立体化学如何,如果生成的产物只有或主要是某一种立体异构体(或一对映体),这样的反应叫做立体选择性反应

立体专一反应 Stereospecific reaction从立体化学上有差别的反应物分别给出立体化学上有差别的产物的反应

对映体过量百分数(%e,.e.) enantiomeric excess percent 评价手性合成优劣的一种指标。

旋光纯度百分率(%O.P.)optical purity percent 也是评价手性合成优劣的一种指标。由于构型的百分含量很难测量,比旋光度是可测量的,在实际工作中更方便的是应用%O.P.,多数情况下%O.P.与%e,.e.数值相等。

克莱姆规则Cram rule 是判断含有α-手性碳原子的酮类分子羰基的某些加成反应主要产物的一种经验规则。

诱导效应 inductive effect 分子中键的极性通过键链依次诱导传递的一种电子效应,以I表示。-I为吸电诱导效应,+I为供电诱导效应。

共轭效应 conjugative effect 在共轭体系中原子之间相互影响的一种电子效应,用C表示。-C为吸电共轭效应,+C为供电共轭效应。

空间效应,或叫立体效应 steric effect与原子或基团的大小即空间因素所表现出来的分子中的原子间的相互影响。空间效应主要表现为空间阻碍和空间张力,空间张力又分为B-张力、F-张力和I-张力。

B-张力,也称后张力 back strain 从四面体的反应物转变为三角形的活性中间体,松弛了比较大的空间张力,提高了反应速度。

F-张力,也称前张力 face strain 共价键被面对面的空间排斥张力。

I-张力,也称内张力 internal strain 分子内固有的张力。又表现为三种:角张力 angle strain 任何原子都要使键角与轨道的角相一致,与正常键角的任何偏差都会引起张力,这种张力就是角张力;扭转张力 twist strain 两个连接的四面体碳原子,他们的键角都倾向于交叉型构象,与交叉型的任何偏差都会引起扭转张力;范氏张力两个不成键的原子或基团,当它们的的距离小于范德华半径时而产生的斥力。

场效应field effects不是通过键链而是通过空间传递的诱导效应。

芳香性 aromaticity 经典的芳香性的概念是指苯环的特殊的稳定性,不易加成、不易氧化,而容易发生亲电取代。近代的芳香性概念是休克尔规则所描述的内容。

休克尔规则 Hückel rule 是判断环状共轭多烯是否具有芳香性的一种规则。凡含有4n+2个n电子的平面单环化合物应具有芳香性。

反芳香性 antiaromaticity 是指一环状多烯的稳定度甚至比相应的无环类似

物还要小的现象。例如环丁二烯的稳定性比1,3-丁二烯还要小,环丁二烯是反芳香性分子。

富烯 fulvene 亚甲环戊二烯的俗名,是非芳香性分子,苯的一种价键异构体,当苯用254nm的光照射时可得到富烯。

杯烯 Calicene 环丙烯亚基戊二烯,分子式C8H6。杯烯和其取代物的性质表明化合物是以偶极形式存在的,它们既是三元环又是五元环芳香性化合物的例子。

tropilidene 环庚三烯的俗名。其正离子具有芳香性;它的许多衍生物也具有芳香性,如酮和酚酮等

轮烯annulene 是一类单键与双键交替的环状多烯烃类,其分子式的通式为CxHx,一般把x≥10的称为轮烯。[10]轮烯和〔14〕轮烯的π电子数都符合休克尔规则,但由于环内氢的张力,使得整个分子不可能在一个平面上,故都没有芳香性。[18]轮烯是具有芳香性的轮烯的一个典型例子。

卟吩 porphine 由四个吡咯环和四个次甲基(-CH=)交替相连组成的大环。这

个环过去曾叫“(音lei)环”。天然色素血红素和叶绿素的分子结构中都含有这个基本结构。卟吩结构中有十八个π电子的共轭体系,这个体系符合休克尔规则

)4

=

n,是一个大型芳香杂环。

薁,又名阿族林(azulene), 深蓝色固体,又称兰烃。薁是由一个五元的环戊

二烯和七元环的环庚三烯稠合而成,具有明显的芳香性。是少数的非苯稠环芳烃。

反应历程 reaction mechanism 反应所经历的过程的总称,即原料通过化学反应变成产物所经历的全过程,也称为反应机理或反应机制。有机反应历程是高等有机化学的重要内容之一。

亲核试剂 nucleophilic reagent 在离子型反应中提供一对电子与反应物生成共价键的试剂,路易斯碱都是亲核试剂。

亲电试剂 electrophilic reagent 在离子型反应中从反应物接受一对电子生共价键的试剂,路易斯酸都是亲电试剂。

过渡态理论transition state theory 也称活化络合物理论,是关于反应速度的一种理论。该理论假定反应物分子在互相接近的过程中先被活化形成活化络合物即过渡态,过渡态再以一定的速度分解为产物,反应物→过渡态→产物。用反应进程图表示反应物到产物所经过的能量要求最低的途径。

过渡态 transition state TS 反应物与产物之间的中间状态,在反应进程图中位于能量最高处。很不稳定,不能用实验方法来观察,只能根据结构相近则内能相近的原则,对它的结构作一些理论上的推测或假设。

微观可逆性原理对于可逆反应,正逆反应(在同一条件下进行)必然是以相同的反应历程以相反的方向进行反应。

速度控制 speed control 也称动力学控制,对于可逆的可向多种方向进行的反应,利用反应速度快的特点来控制产物。降低反应温度或缩短反应时间往往有利于速度控制的反应。

平衡控制 balance conrtol也称热力学控制。对于可逆的可向多种方向进行的反应,利用达到平衡时进行的控制。提高反应温度或延长反应时间则通常有利于平衡控制的反应。

同位素标记 isotope label 利用同位素标记反应物(通常是部分标记),反应后测定产物中同位素的分布的一种实验方法。可使我们知道反应发生在什么部位。是研究反应历程的重要方法之一。

同位素效应 isotope effect 在化学反应中,H与D的反应速度不同的现象。以K H/K D之比来表示。同位素效应可为确定多步反应中的定速步骤提供的依据。

有机锂化合物Organolithium compound 也称有机锂试剂。有机锂和有机镁的化合物(格氏试剂)有许多相似之处。它们都溶于乙醚和其它醚类溶剂中,它们的化学性能相似,凡是有机镁能发生的反应,有机锂化物都可以发生,它还比有机镁化物活泼一些,格氏试剂不能起的反应,有机锂化物则可能进行。但由于有机锂比较贵,凡是能用有机镁的反应,就不必用锂化物。当然有时必须用有机锂化物才能完成的反应除外。

锂、镁的电负性钠、钾要大,C—Li键和C—Mg键都是极性共价键,因此这两种金属的有机化合物的反应活性要温和些;使用起来也就更方便;并且,它们又具有多样的反应性能,几乎可用来制备各类有机化合物,这也就是有机锂和有机镁在有机合成中广泛应用的原因。

反应中间体也称活性中间体 reactive intermediate 多步有机反应中活泼的中间产物。

碳正离子carbocation 含有带有正电荷的三价碳原子的原子团。

超酸 super acid 一般指酸性特强、超过98%硫酸的酸性、比普通的无机强酸酸性高106~1010倍的酸性溶液。

碳负离子 Carbanion 是碳原子上带有负电荷的活性中间体。

碳质酸 Carbon acid 一些与碳原子相连的氢具有一定的酸性,称为碳质酸,也称碳氢酸。碳质酸的酸性一般很小。其共轭碱是碳负离子

杂化效应由于原子杂化状态的不同,对物质性质产生的不同影响。因为这种不同的影响是由于杂化轨道中S轨道成分的不同所造成的,所以也叫S-性质效应。例如在烷、烯、炔中,与不同杂化状态的碳原子相连的氢原子质子化离去的难易程度,即酸性的强弱是不同的,所生成的碳负离子的稳定性也不同。

自由基 free radical 也叫游离基,自由基是共价键均裂的产物,带有未成对的孤电子,也是重要的活性中间体,碳自由基中心碳原子为三价,价电子层有七个电子,而且必须有一个电子为未成对的孤电子。

碳烯,也称卡宾 Carbene, 是亚甲基及其衍生物的总称。碳烯中心碳原子为中性两价碳原子,包含有六个价电子,四个价电子参与形成两个σ键,其余两个价电子

是游离的。最简单的碳烯为:CH2,也称为亚甲基。碳烯也是一类重要的活性中间体,是非常活泼的反应中间体。

瑞穆-悌曼反应 Reimer-Tiemann reaction 在碱性条件下,苯酚和氯仿作用,生成邻羟基苯甲醛的反应。反应是通过二氯碳烯与富电子的苯环加成而后水解实现的。

乃春 Nitrene, 也叫氮烯,是一价氮的活性中间体。最简单的氮烯为H—N:,也叫亚氮,是氮烯的母体,其他氮烯为H—N:的衍生物。氮烯即H—N:及其衍生物的总称。氮烯是碳烯的氮类似物,其结构和反应与碳烯相似。

苯炔 Benzyne或叫去氢苯 Dehydrobenzene,是苯环亲核取代反应中的活性中间体

西蒙-史密斯反应 Simmons-smith reaction二碘甲烷和锌铜合金在乙醚的悬浮液中,加入含有C=C双键的化合物,生成高产率的环丙烷衍生物的反应。是碳烯的络合物与烯烃的反应,反应有高度的立体选择性,在合成上很由意义。

磺酸根负离子。磺酸是一个强酸,磺酸根负离子是一个弱碱,在亲核取代反应和消除反应中是一个良好的离去基团。在有机合成中,常用烷基磺酸酯代替卤代烷。常用的是对甲苯磺酸的酯类,对甲苯磺酰基的英文名称是p-Toluenesulfonyl,缩写为Ts,对甲苯磺酸酯可写成TsOR。

S N1反应 S N1 reaction 单分子亲核取代反应,“S N”Substitution Nucleophilic 亲核取代,“1”表示单分子。

S N2反应 S N2 reaction 双分子亲核取代反应,,“S N”Substitution Nucleophilic 亲核取代,“2”表示双分子。

邻基参与 Neighboring group participation 邻近基团的参与作用,邻基参与的结果或促进反应速度异常增大,或导致环状化合物的生成,或限制反应产物的构型。

邻基促进(邻助效应) Neighboring group effect 邻基参与使反应速度加快的现象称为邻基促进或邻助效应

付瑞德尔一克拉夫茨烷基化反应简称付—克烷基化反应 Friedel-Crafts aklylation

葛德曼-科赫反应 Gatterman-Koch reation 也称芳环甲酰化反应。在无水AlCl3的催化下,CO和HCl作为甲酰化剂,在芳环上引入甲酰基的反应。

π络合物π complex 在芳烃的亲电取代反应中,亲电试剂与芳环上离域的π电子微弱的结合生成的中间产物。

σ络合物σcomplex 在芳烃的亲电取代反应中,亲电试剂与芳环上的一个碳原子以σ键相连接,苯环的环状共轭体系遭到破坏,环上四个π电子离域在环的其它五个碳原子上。σ络合物是一个离域的碳正离子,很活泼,它失去质子完成亲电试剂反应。σ络合物生成的一步是亲电试剂反应历程的定速步骤。

桑德迈尔反应 Sandmeyer reaction 在铜盐的存在下,重氮基被CI、Br或CN取代的反应。

LDA二异丙胺基锂,两个体积很大的异丙胺基,使LDA的亲核性很弱,但碱性很强称为非亲核性强碱。

鎓离子 Onium ion 三元环状正离子,是反应的活性中间体。简单的和非共轭的烯烃与卤素、次卤酸、醋酸汞的加成反应中都有相应的鎓离子生成,决定了加成反应是反式加成。

Ad E2历程 Bimolecular electrophilic addition 双分子亲电加成历程,又分为鎓离子的双分子亲电加成历程和碳正离子的双分子亲电加成历程。

Ad E3历程 Termolecular electrophilic addition 三分子亲电加成历程。一般来说,烯烃与卤化氢的加成,若生成比较不稳定的碳正离子,则倾向于Ad E3历程,得反式加成产物。

马尔柯夫尼柯夫规则 Markovnikov,s rule 是判断不对称烯烃与不对称的亲电试剂的加成反应取向的经验规则。无论是碳正离子的Ad E2历程还是Ad E3历程,都可以把碳正离子作为反应的活性中间体,碳正离子的稳定性决定了加成反应的主要方向。

硼氢化反应 Hydroboration reaction ,甲硼烷(或其二聚体乙硼烷)与烯烃亲电加成,生成烷基硼的反应,称为硼氢化反应。硼的电负性比氢小,甲硼烷BH3是缺电子分子,是亲电试剂。硼氢化反应是顺式的亲电加成反应,遵守马氏规则。

硼氢化—氧化反应 Hydroboration oxidation reaction 由硼氢化反应制备的烷基硼,在再碱性条件下用H2O2氧化,生成醇,该反应称为硼氢化—氧化反应。经该反应制备醇,是由烯烃制备特定取向和特定结构醇的好方法,反应步骤简单、副产物少、产率高,生成的醇恰好相当于烯烃酸催化水合的反马产物。

B AC2历程 Base Catalysis, Bimolecular Acyl-Oxygen Cleavage 碱催化双分子酰-氧断裂历程。

A AC2历程 Acid Catalysis, Bimolecular Acyl-Oxygen Cleavage 酸催化双分子酰-氧断裂历程。

A AC1历程Acid Catalysis, Unimolecular Acyl-Oxygen Cleavage 酸催化单分子酰-氧断裂历程。

B AL1历程Base Catalysis, Unimolecular Alkyl-Oxygen Cleavage 碱催化双分子酰-氧断裂历程。

共轭加成 Conjugate Addition 共轭体系的1,4-加成。

麦克尔反应 Michael reaction碳负离子与共轭醛酮的的共轭加成反应。反应被碱催化,其作用是产生碳负离子。最常用的碳负离子可能的来源是丙二酸酯、乙酰乙酸乙酯、氰乙酸酯、硝基化合物等。麦克尔反应是制备1,5-二羰基化合物的有用方法,在有机合成上有重要用途。

叶立德 Yiide 分子内相邻两个原子带有相反电荷的一类化合物的总称,也称内鎓盐。重要的有磷叶立德和硫叶立德。

威狄希试剂 Wittig reagent 磷的叶立德。通常由三苯膦与含有α-氢的卤代烃反应,再于碱作用来制备。在威狄希试剂中,碳的2P轨道与磷的3d空轨道侧面重叠,形成d-Pπ键,使碳原子上的负电荷得到了分散。威狄希试剂的双键形式,称为内鎓盐的烯式,但NMR分析结果表明,威狄希试剂主要是内鎓盐的的极性结构。威狄希试剂是强的亲核试剂。

威狄希反应 Wittig reaction 威狄希试剂与羰基化合物作用生成烯的反应。

羟醛缩合反应 Aldol condensation 含有α-氢的醛或酮,在碱或酸的催化下生成β-羟基醛或酮的反应,也称醇醛缩合反应。β-羰基醛酮在酸性条件下脱水,生成α,β-不饱和醛酮

克莱森酯缩合反应Claisen condensation 含有α-氢的酯在强碱的作用下,两分子的酯缩合生成β-羰基酸酯的反应。比较反应物和产物的结构,可以看出,克莱森酯缩合反应是以酯为酰化剂将含有α-氢的酯酰化。含有α-氢的酮或睛也可发生酯缩合反应,生成β-二酮或β-羰基睛。醛不能进行酯缩合反应,在酯缩合反应的反应条件下,醛的自身羟醛缩合反应占优势。

克莱森—斯密特缩合反应 Claisen-Schmidt reaction 在NaOH水溶液存

在下,芳醛与简单的脂肪醛或甲基酮缩合生成β-芳基丙烯醛的反应。

狄克曼酯缩合反应 Dieckmann condensation 分子内的两个酯基缩合生成环状β-酮酸酯的反应。

克诺文葛尔反应Knovenagel condensation 活泼亚甲基化物在氨或胺或其羧

酸盐的催化下,与醛、酮的反应。常用的活泼亚甲基化物包括丙二酸酯、氰乙酸酯和β-酮酸酯等,在合成上,克诺文葛尔反应用于α,β-不饱和酸、腈、硝基化合物等的制备。

柏琴缩合反应 Perkin condensation 芳醛同脂肪族酸酐在相应羧酸盐催化下

缩合,生成β-芳基丙烯酸类化合物的反应。是用于制备β-芳基丙烯酸的重要反应。

β-消除反应β-Elimination 也称1,2-消除反应。从相邻的两个碳原子上消除两个原子或基团的反应。卤代烃脱卤化氢和醇的脱水反应都是β-消除反应,是最常见的也是最重要的的消除反应。

α-消除反应α-Elimination 也称1,1-消除反应。从反应物分子中同一个碳原子上消去两个原子或基团,生成只有六个价电子的活泼的碳烯(卡宾)的反应。

E1历程 unimolecular elimination 单分子消除历程。E1历程有碳正离子中间体生成,反应常伴有S N1的竞争和重排产物。醇在酸的催化下脱水和第三卤代烷在碱的作用下脱卤化氢等属于E1反应。

E1cb历程 E1cb mechanism 也称共轭碱单分子历程。反应的中间体为碳负离子,只有当离去基团不易离去,β-H又有较强酸性时,即在β-上有硝基、羰基、氰基等强吸电子时,消除反应才可能按Elcb历程进行。

E2历程 bimolecular elimination 双分子消除历程。伯卤代烷、季铵碱等在强碱作用下的消除反应主要按E2历程进行。E2消除为反式消除。

扎依切夫规则 Saytzeff rule 判断消除反应的取向的一种规则,卤代烷和醇发生消除反应时,一般主要生成双键碳原子上连有较多取代基的烯烃,这样的烯烃也称扎依切夫烯烃。

霍夫曼规则Hofmann rule 季铵碱的热分解反应称为霍夫曼消除反应,反应主要生成双键碳原子上连有较少取代基的烯烃,称为霍夫曼烯烃。在卤代烷和醇的消除反应中,如果β-位的空阻很大或者碱的体积很大时,也常常以霍夫曼烯烃为主要产物。

1,1-E1cb历程 E1cb历程是β-消除反应的一种历程,但α-消除反应历程与E1cb历程很相似,只是进行的是1,1-消除反应,故称为1,1-E1cb历程。

热解消除反应 Pyyolitic elimination 无外加试剂,只是在加热的条件下所进行的消除反应。反应为单分子反应,经过分子内的环状过渡态实现的,为顺式消除。

寇普反应 Cope reaction 是氧化胺的热解消除反应。具有热解消除反应的一般规律。是一种从胺制备烯烃的很有用的方法。

分子重排反应 molecular rearrangement 有机物在试剂、加热、或其他因素的影响下,分子中某些原子(或基团)发生转移,分子碳架发生改变,甚至环的大小也发生变化的一类反应。按反应历程,重排反应可分为亲核重排、亲电重排和自由基重排。按迁移基团的迁移相对位置, 重排反应可分为1,2-迁移重排、1,3迁移重排、1,5-迁移重排,以及3,3-迁移重排、3,5-迁移重排等。大多数重排反应是1,2-迁移的亲核重排。

亲核重排 nucleophilic rearrangement迁移基团带着一对电子迁移到缺电子的迁移终点。缺电子迁移终点可以是碳正离子、碳烯、氮烯、也可以是缺电子的氧原子。重排过程中迁移基团始终未离开分子,往往发生邻基参与,形成类似环丙烷正离子的二

电子三中心体系,是一个芳香过渡态,体系能量较低,容易生成,这是亲核重排反应多的原因。

亲电重排 electrophilic rearrangement迁移基团不带电子对迁移到富电子的迁移终点。亲电重排首先要形成碳负离子,大多数碳负离子是通过强碱夺取质子生成的。重要的亲电重排是法伏尔斯基重排

自由基重排 free radical rearrangement 迁移的基团带着单个电子迁移到迁移终点。自由基重排主要是芳基的迁移,一般不发生H和烷基的迁移。

片呐醇 Pinacol 四甲基乙二醇称为片呐醇,取代的乙二醇通称为片呐醇类。

片呐醇重排 Pinacol rearrangement片呐醇在无机酸的作用下,转变为片呐酮反应,是一类亲核重排反应,在重排过程中迁移基团和离去的基团彼此处于反式

瓦格纳尔-米尔外英重排 Wagner-Meerwein rearrangement 简称瓦-米重排。是碳正离子发生的一种重排反应,是典型的亲核重排。通过碳正离子活性中间体进行的S N1、E1和Ad E2反应,碳架常常发生改变,这就是瓦-米重排。

沃尔夫重排 Wolff rearrangement α-重氮酮在氧化银存在下加热转变为烯酮的反应。α-重氮酮可由酰氯与重氮甲烷作用来制备。烯酮极为活泼,水解生成羧酸,醇解生成酯。沃尔夫重排是制备比原料羧酸在α-位增加一个碳原子的羧酸或其衍生物的好方法。

贝克曼重排 Beckmann rearrangement醛或酮的肟在酸性试剂(浓H2SO4、PCl5等)作用下重排为取代酰胺的反应。是亲核的C→N重排。

霍夫曼重排 Hofmann rearrangement在碱性溶液中酰胺与溴或氯作用,生成第一胺的反应。重排反应中有活性中间体酰基氮烯的生成。霍夫曼重排是从酰胺制备比它少一个碳原子的伯胺的方法。是亲核的C→N重排。

拜耶尔-维利格重排 Baeyer-Villiger rearrangement 酮在过氧酸的作用下,氧原子插到羰基和亲核性强的烃基之间生成相应酯的反应。是亲核的C→O重排法伏尔斯基重排Favorskii rearrangement α-卤代酮在碱的作用下加热,重排生成相同碳原子数羧酸的反应。碱可以是醇钠或胺,经法伏尔斯基重排则生成相应的酯或酰胺。碱作用是夺取α-卤代酮的α-氢,生成碳负离子,碳负离子取代卤原子生成环丙酮中间体,然后碱再进攻羰基,开环而完成重排反应。法伏尔斯基重排是比较典型的也是比较重要的亲电重排。

科尔贝电解反应 Kolbe synthesis 羧酸盐电解,羧酸根负离子在阳极失去一个电子生成自由基,酰氧自由基脱羧,生成的烷基自由基偶联生成烃的反应。

康尼查罗反应 Cannizzaro reaction在浓碱的作用下,芳醛发生自身的氧化还原的反应。反应过程中有负氢离子的转移。

伯奇还原反应 Birch reduction 碱金属(锂或钠)的液氨溶液还原芳烃生成非共轭的环己二烯的反应,是一种选择性还原芳烃的方法,还原过程中有负离子基中间体和碳负离子中间体。

催化氢化 Catalytic hydrogenation 在过渡金属(Pt、Pd、Rh、Ru、Ni)或其化合物的催化下,不饱和化合物加氢还原的反应。催化氢化分为非均相催化氢化和均相催化氢化。催化氢化法具有操作简便、反应快速、产物纯、产率高等特点,应用范围很广。

林德拉催化剂 Lindlar Catalyst 简称为Lindlar Pd 。在Pd加入了抑制剂醋酸铅和喹啉使钯部分毒化,降低了催化活性,可将叁键部分催化氢化为双键。二取代的炔还原为顺式烯烃。

罗森孟德还原反应 Rosenmund reduction 含有控制剂喹啉-硫的Pd催化剂还原酰氯为醛的反应。是在催化氢化条件的反应条件下C-X键的氢解反应,分子中的硝基、醛基、酯基均无影响。

可溶金属还原活泼金属,主要有碱金属锂、钠和锌、镁等金属溶于液氨或悬浮于乙醚、甲苯等惰性溶剂中,通常以醇或水作质子源,构成还原体系。可用于还原多种官能团。反应为单电子转移的还原反应,活性中间体多为负离子基。

负氢转移还原反应硼氢化钠、氢化锂铝、硼烷等作为还原剂的还原反应称为负氢转移还原反应。硼氢化钠、氢化锂铝可被看成是金属氢化物的络合物,Complex metal hydride,络合负离子是提供负氢的有效质点,具有亲核性,它们可是极性重键还原。硼烷具有缺电性,是重要的亲电性负氢转移试剂。

克莱门森还原法 Clemmensen reduction 锌在浓盐酸中羰基还原至亚甲基的反应。一般将锌作成汞齐后使用。反应物分子中同时有羧基、酯基存在时,可不受影响。但当分子中有对酸敏感的基团时,该方法难以适用。可能的反应历程是锌首先从金属表面将电子转移给羰基。

沃尔夫-吉日聂尔-黄鸣龙还原 Wolff-Kishner-hongminglong

reduction 醛、酮经腙还原羰基为亚甲基的反应。沃尔夫-吉日聂尔首先发展了的方法需要在高压下进行,我国化学家黄鸣龙将它发展为常压还原法。该方法和克莱门森还原法可以互补。

米尔文-庞道夫-沃莱还原 Meerwein-Ponndorf-Verley reduction 异丙醇铝还原醛、酮为醇的反应。反应经六元环状过渡态而实现的,异丙基上的氢以负离子形式移到羰基碳上。如果用手性的S(+)-2-丁醇作还原剂,可用于手性合成

空间靠近控制Steric approach control 试剂从位阻小的一面进攻反应物,生成具有特定构型的产物的现象。

自由基链锁反应 Free radical chain reaction 在烷烃的自由基卤代反应中,链增长步骤可以周而复始、反复不断如链锁一样一环一环的的进行多次反应。

N-溴代丁二酰亚胺 N-bromosuccinimide 简称NBS 选择性地溴代烯烃和芳烃α位的溴化剂。

自由基加成反应 Free radical addition 自由基对烯烃的加成反应。自由基具有亲电性,许多化合物如溴化氢、醛和含有活泼亚甲基的酯等在自由基反应条件下,都可以和烯烃发生加成反应。不对称的烯烃一般生成反马氏规则的加成产物,一些烯烃的自由基加成反应有合成意义。

自动氧化反应 autooxidation 有机物与空气中的氧在常温或稍高温度下,温和地进行不发生燃烧、燃炸的反应。自动氧化反应是一类复杂的自由基链式反应,其中有机过氧化物是中间体或最终产物。分子中有容易被过氧自由基夺取的氢的有机物则易发生自动氧化反应,如醛类、醚类、氯仿、烯烃和芳烃等。醚类的过氧化物都具有高度的爆炸性,因此蒸馏前或使用这些化合物作溶剂、试剂时,必须进行检验和处理,除去基中可能含有的过氧化物。

抗氧剂 anti-oxdant 为阻止或抑制不必要的自动氧化反应,向其中加入少量的以阻止其引发过程或中断氧化反应链的物质。酚类和芳胺是广泛使用的抗氧剂,它们与过氧自由基交换氢原子,形成稳定的自由基,终止了自由基链反应,例如:

较稳定

抗氧剂也称为自由基反应抑制剂或自由基捕获剂协同反应 concerted reactions 化学键的断裂和生成同时发生的反应,周环反应是一种协同反应。典型的 S N2反应和E2反应也是协同反应,但不是周环反应。

周环反应 pericyclic reactions,是通过环状过渡态进行一种协同反应。周环反应主要有三种,即电环化反应、环加成反应和σ移位反应

分子轨道对称性守恒原理在协同反应中,反应物的的分子轨道必须转化为具有同样对称性的产物的分子轨道。或者更简捷地说:在协同反应中轨道对称性守恒。这是当代有机化学地重大进展之一。

电环化反应 electrocyclic reactions在光或热的作用下,链状共轭多烯分子的两端构成一个σ键形成环状分子的反应及其逆反应,是一类重要的周环反应。

环加成反应 cycloaddition reactions 两个或多个π体系相互作用,通过环状过渡态生成环状分子的反应。环加成反应的种类很多,它可以按照反应物的π电子数分为 [2+2]环加成和[4+2]环加成。Diels-Alder反应是最重要的环加成反应。其逆反应叫裂解或裂环(作用)(cycloreversion或retro-cycloaddition)。

狄尔斯-阿尔达尔反应 Diels-Alder reactions 简称D-A反应,一分子共轭二烯或其衍生物的4个π电子和一分子烯烃或其衍生物的2个π电子转变成环已烯或其衍生物的反应,属于[4+2]环加成反应。D-A反应中,共轭二烯或其衍生物称为二烯体,烯烃或其衍生物称为亲二烯体,反应产物称为加合物。该反应不仅在理论上而且在有机合成上都具有重要意义。

内向加成规则 endoaddition rule 在D-A反应中,当二烯体是环状共轭二烯如环戊二烯时,将生成刚性的二环化合物。如果亲二烯体是取代的乙烯,可能生成两种构型异构体。当加合物中的取代基与最短的二环桥(在这里是亚甲基)处于分子的相反两

侧时,这类化合物称为具有内向构型(endo configuration)。如果最短的桥和取代基在分子的同侧,称为外向构型(exocofiguration)。虽然外向构型通常是更稳定的异构体,但D-A反应的加合物一般是内向构型

σ移位反应 sigmatropic reactions在共轭π体系中,其中烯丙基位与其他原子或基团相连的一个σ键断裂,在至少有一个共轭π体系的另一端生成一个新的σ键,

同时伴随着π键转移,这类反应叫做σ移位反应,可分为[]j i,

移位反应和

[]j,1

移位反

应。前者主要是[3,3]碳移位反应,重要的反应有克莱森重排和蔻普重排;后者有

[]j,1

氢移位反应和[]j,1

碳移位反应,j=3、5、7。

蔻普重排 Cope rearrangement在加热下,1,5-二烯及其衍生物的异构化反应,属于[3,3]碳移位反应。

克莱森重排 Claisen rearrangement在加热下,烯丙基乙烯基或芳基醚分子中的烯丙基,从氧(一般是氧,也可是硫等)原子转移到碳原子上的反应,属于[3,3]碳移位反应。

最高已占分子轨道highest occupied molecular orbital通常用HOMO表示,已有电子占据的分子轨道中能量最高的分子轨道。

前线轨道 frontier orbital 已有电子占据的分子轨道中能量最高的分子轨道(HOMO)和未有电子占据的轨道中能量最低的分子轨道(LUMO),分子发生反应时,在很大程度上是由前线轨道决定的。

最低未占分子轨道 lowest unoccupied molecular orbital 通常用LUMO表示未有电子占据的轨道中能量最低的分子轨道。

莫比乌斯(Mobius)轨道体系在周环反应的环状过渡态中发现了这种扭转体系,但实际上并未找到这种结构的分子。它是指环状过渡态位相颠倒奇数次,最常见的是一次,莫比乌斯轨道理论断言:含有4n个电子时是芳香性的(稳定)。

芳香性过渡态理论利用休克尔和莫比乌斯体系及其所规定的芳香性的概念,对周环反应选择规律进行解释的理论,按照芳香性过渡态概念,对于周环反应,若能形成芳香性过渡态(休克尔体系含有4n+2个电子,莫比乌斯体系含有4n个电子),反应在加热下即可进行。

1,3-偶极环加成1,3-dipolar cycloadditions 1,3-偶极分子与不饱和化合物(亲偶极体)之间进行的环加成、生成五元环状化合物的反应。1,3-偶极分子是在分子1和3原子上带有相反电荷且具有离子结构的一类化合物,例如重氮烷、叠氮化合物、臭氧等。1,3-偶极环加成属于[4+2]环加成,常常被用来制备杂环化合物。

高考化学必备—有机化学知识点总结

高考化学必备——有机化学知识点总结 一、有机物的结构与性质 1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。 2、常见的各类有机物的官能团,结构特点及主要化学性质 (1)烷烃 A) 官能团:无 ;通式:C n H 2n +2;代表物:CH 4 B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C 原子的四个价键也都如此。 C) 化学性质: ①取代反应(与卤素单质、在光照条件下) , ,……。 ②燃烧 ③热裂解 (2)烯烃: A) 官能团: ;通式:C n H 2n (n ≥2);代表物:H 2C=CH 2 B) 结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。 C) 化学性质: ①加成反应(与X 2、H 2、HX 、H 2O 等) ②加聚反应(与自身、其他烯烃) ③燃烧 (3)炔烃: A) 官能团:—C≡C— ;通式:C n H 2n —2(n ≥2);代表物:HC≡CH B) 结构特点:碳碳叁键与单键间的键角为180°。两个叁键碳原子与其所连接的两个原子在同一条直线上。 C) 化学性质:(略) (4)苯及苯的同系物: A) 通式:C n H 2n —6(n ≥6) B)结构特点:苯分子中键角为120°,平面正六边形结构,6个C 原子和6个H 原子共平面。 CH 4 + Cl 2CH 3Cl + HCl 光 CH 3Cl + Cl 2 CH 2Cl 2 + HCl 光 CH 4 + 2O 2 CO 2 + 2H 2O 点燃 CH 4 C + 2H 2 高温 隔绝空气 C=C CH 2=CH 2 + HX CH 3CH 2X 催化剂 CH 2=CH 2 + 3O 2 2CO 2 + 2H 2O 点燃 n CH 2=CH 2 CH 2—CH 2 n 催化剂 CH 2=CH 2 + H 2O CH 3CH 2OH 催化剂 加热、加压 CH 2=CH 2 + Br 2BrCH 2CH 2Br CCl 4 原子:—X 原子团(基):—OH 、—CHO (醛基)、—COOH (羧基)、C 6H 5— 等 化学键: 、 —C ≡C — C=C 官能团

大学有机化学B知识点总结(精编版)

有机化学期末复习总结 一、有机化合物的命名 命名是学习有机化学的“语言”,因此,要求学习者必须掌握。有机合物的命名包括俗名、习惯命名、系统命名等方法,要求能对常见有机化合物写出正确的名称或根据名称写出结构式或构型式。 1.俗名及缩写:要求掌握一些常用俗名所代表的化合物的结构式,如: 甘油、石炭酸、蚁酸、水杨醛、水杨酸、草酸、呋喃、吡咯、吡啶、甘氨酸、丙氨酸、葡萄糖、果糖等。 2、习惯命名法:要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法,掌握常见烃基的结构,如:烯丙基、丙烯基、正丙基、异丙基、异丁基、叔丁基、苄基等。 3、系统命名法:系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则。其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视。要牢记命名中所遵循的“次序规则”。 4、次序规则:次序规则是各种取代基按照优先顺序排列的规则 (1)原子:原子序数大的排在前面,同位素质量数大的优先。几种常见原子的优先次序为:I>Br>Cl>S>P>O>N>C>H (2)饱和基团:如果第一个原子序数相同,则比较第二个原子的原子序数,依次类推。常见的烃基优先次序为:(CH3)3C->(CH3)2CH->CH3CH2->CH3(3)不饱和基团:可看作是与两个或三个相同的原子相连。不饱和烃基的优先次序为: -C≡CH>-CH=CH2>(CH3)2CH- 次序规则主要应用于烷烃的系统命名和烯烃中几何异构体的命名 烷烃的系统命名:如果在主链上连有几个不同的取代基,则取代基按照“次序规则”依次列出,优先基团后列出。 按照次序规则,烷基的优先次序为:叔丁基>异丁基>异丙基>丁基>丙基>乙基>甲基。 (4)、几何异构体的命名:烯烃几何异构体的命名包括顺、反和Z、E两种方法。简单的化合物可以用顺反表示,也可以用Z、E表示。用顺反表示时,相同的原

有机化学之官能团性质总结

有机物的鉴别 鉴别有机物,必须熟悉有机物的性质(物理性质、化学性质),要抓住某些有机物的特征反应,选用合适的试剂,一一鉴别它们。 1.常用的试剂及某些可鉴别物质种类和实验现象归纳如下: 试剂名称酸性高锰 酸钾溶液 溴水银氨 溶液 新制 Cu(OH)2 FeCl3 溶液 碘水 酸碱 指示剂Na NaOH Na2CO3 NaHCO3 被鉴别物质种类含碳碳双 键、三键的 物质、烷基 苯。但醇、 醛有干扰。 含碳碳双 键、三键 的物质。 但醛有干 扰。 苯酚 溶液 含醛基 化合物 及葡萄 糖、果 糖、麦芽 糖 含醛基化 合物及葡 萄糖、果 糖、麦芽 糖 苯酚 溶液 淀粉 羧酸 (酚不能 使酸碱指 示剂变色) 羧酸 现象酸性高锰 酸钾紫红 色褪色 溴水褪色 且分层 出现白 色沉淀 出现银 镜 出现红 色沉淀 呈现 紫色 呈现 蓝色 使石蕊或 甲基橙变 红 放出无色 无味气体 溴苯、氯苯归为卤代烃,不过水解是酚,不是醇啊。硝基能被还原为氨基(铁粉还原) 类型概念举例(化学方程式) 反应 物类 属 取代反应分子里 某些原 子或原 子团被 其它原 子或原 子团所 代替 卤代反应 CH 4 + Cl 2 CH 3 Cl + HCl 烷烃、 环烃、 芳烃 硝化反应 芳烃、 苯酚 磺化反应 芳烃 酯化反应 酸、醇 分子间脱水 2C 2 H 5 OH C 2 H 5 OC 2 H 5 + H 2 O 醇 水解反应 CH 3 CH 2 X + H 2 O CH 3 CH 2 OH + HX 卤代 烃、酯 加成反有机物 分子中 的双键加氢气 芳烃、 烯烃、 炔烃

应(或三 键)两端的碳原子与其它原子或原子团直接结合生成新的化合 物加卤素 烯烃、 炔烃 加水 CH 2 =CH 2 + H 2 O CH 3 -CH 2 OH(工业制醇) CH 2 ≡CH 2 + H 2 O CH 3 -CHO(工业制醛) 烯烃、 炔烃 加卤代烃 CH≡CH + HCl CH 2 =CHCl 烯烃、 炔烃 加氢气 CH 3 CHO + H 2 CH 3 CH 2 OH 醛 聚合反应由相对 分子质 量小的 化合物 互相结 合成相 对分子 质量大 的高分 子化合 物 加聚反应 烯烃、 炔烃、 醛、酚 等 缩聚反应:生成高分子的同时还 有小分子 消去反应有机化 合物在 一定的 条件 下,从 一个分 子中脱 去一个 小分子 而生成 不饱和 (含双 键或三 键)的 化合物 分之内脱水 CH 3 CH 2 OH CH 2 =CH 2 ↑+ H 2 O 醇、 烃、卤 代烃 等 卤代烃脱卤化氢 CH 3 CH 2 CH 2 Br + NaOH CH 3 CH=CH 2 + NaBr + H 2 O 裂化(深度裂化也叫裂解) C 4 H 10 CH 4 + C 3 H 6 C 16 H 34 C 6 H 18 + C 8 H 16 氧化反应分子中 加氧或 去氢以 及跟强 燃烧(得氧) CH 4 + 2O 2 CO 2 + 2H 2 O 有机 物的 燃烧、 烯、

有机化学学科建设发展规划

有机化学学科建设发展规划(2009~2011) 一、建设目的和意义 有机化学是理学化学学科下的一个二级学科。有机化学是揭示构成物质世界的有机化合物分子中各原子相互键合的本质以及有机化合物分子转化的规律学科;它为农业科学、生命科学、食品科学、环境科学等相关学科的发展提供了理论基础。有机化学是包括化学、农学、生命科学、食品科学、动物医学和环境科学等在内的诸多专业的一门重要的基础课程,同时也是一门原理性、概念性、结构性和实验性较强的课程。 现代有机化学的发展日新月异,波谱学及现代测试手段的飞跃发展,越来越深刻地揭示有机化学的微观历程,从而大大地促进了有机立体化学及有机合成化学的发展,除了在本学科纵深发展,有机化学还与各学科广泛渗透交叉,如有机化学与生物学交叉产生生物化学、分子生物学等。 21世纪,随着生命科学和材料科学的高速发展,有机化学日益发挥着更大的作用。人们能更多、更主动地合成出许多具有一定功能的以及复杂的天然有机化合物,为了跟踪学科的发展,各高等院校都把有机化学列为重点学科之一。 学科建设是事关该学科可持续健康发展的核心,是提高该学科教学水平和科研能力的关键。高等学校的竞争在本质上是学科优势、学科特色和学科水平的竞争。学科建设是高等学校持续发展的一项长期性、艰巨性、综合性的战略任务。为此,有机化学作为现代学科的基石,应当在我院作为一门重点学科来建设。我们希望把有机化学建设成为学科方向明确;学科特色鲜明;学科队伍结构合理,教学和科研能力较强,学科建设成果显著的重点学科,力争把有机化学建设成为有一定影响的,处于同类院校领先水平的省级重点学科。 二、学科概况 有机化学学科现有5名教师,其中副教授2名,高级实验师1名,讲师2名;博士2名,硕士1名。骨干教师大多具有高级职称或具有博士、硕士学位,现在已基本形

有机化学基础知识整理

有机化学知识整理 1.甲烷的空间结构为正四面体型结构。 ⒉烷烃的化学性质:烷烃在常温下比较稳定,不与强酸、强碱、强氧化剂起反应。 ⑴取代反应:有机物分子中的原子或原子团被其它原子或原子团所替代的反应。如:Cl2与甲烷在光照条件下可以发生取代反应,生成CH3Cl,CH2Cl2,CHCl3,CCl4及HCl的混合物。 取代反应,包括硝化、磺化、酯化及卤代烃或酯类的水解等。 ⑵氧化:烷烃可以燃烧,生成CO2及H2O ⑶高温分解、裂化裂解。 ⒊根、基:①根:带电的原子或原子团,如:SO42-,NH+4,Cl-。 ②基:电中性的原子或原子团,一般都有未成对电子。如氨基—NH2、硝基—NO2、羟基—OH。4.同系物:结构相似,在分子组成相差一个或若干个—CH2原子团的物质互相称为同系物。 判断方法:所含有的官能团种类和数目相同,但碳原子数不等。 ①结构相似的理解:同一类物质,即含有相同的官能团,有类似的化学性质。 ②组成上相差“—CH2”原子团:组成上相差指的是分子式上是否有n个—CH2的差别,而不限于分子中是否能真正找出—CH2的结构差别来。 ⒌乙烯分子为 C2H4,结构简式为CH2=CH2,6个原子共平面,键角为120°。 规律:碳碳双键周围的六个原子都共平面。 ⒍乙烯的实验室制法: ①反应中浓H2SO4与酒精体积之比为3:1。 ②反应应迅速升温至170C,因为在140℃时发生了如下的副反应(乙醚)。 ③反应加碎瓷片,为防止反应液过热达“爆沸”。浓H2SO4的作用:催化剂,脱水剂。 ⒎烯烃的化学性质(包括二烯烃的一部分) ①加成反应:有机物分子中的双键或叁键发生断裂,加进(结合)其它原子或原子团的反应。Ⅰ.与卤素单质反应,可使溴水褪色,CH2=CH2+Br2→CH2B—CH2Br Ⅱ.当有催化剂存在时,也可与H2O、H2、HCl、HCN等加成反应。 ②氧化反应: I.燃烧 II.使KmnO4/H+褪色 Ⅲ.催化氧化:2CH2=CH2+O2 2CH3CHO 有机反应中,氧化反应可以看作是在有机分子上加上氧原子或减掉氢原子,还原反应可看作是在分子内加上氢原子或减掉氧原子。以上可简称为“加氧去氢为氧化;加氢去氧为还原”。 ②聚合:小分子的烯烃或烯烃的取代衍生物在加热和催化剂作用下,通过加成反应结合成高分子化合物的反应,叫做加成聚合反应,简称加聚反应。 ⒏乙炔:HC≡CH ,键角为180°,规律:叁键周围的4个原子都在一条直线上。 ⒐乙炔的化学性质:

有机化学知识点全面总结

高中(人教版)《有机化学基础》必记知识点 目录 一、必记重要的物理性质 二、必记重要的反应 三、必记各类烃的代表物的结构、特性 四、必记烃的衍生物的重要类别和各类衍生物的重要化学性质 五、必记有机物的鉴别 六、必记混合物的分离或提纯(除杂) 七、必记有机物的结构 八、必记重要的有机反应及类型 九、必记重要的有机反应及类型 十、必记一些典型有机反应的比较 十一、必记常见反应的反应条件 十二、必记几个难记的化学式 十三、必记烃的来源--石油的加工 十四、必记有机物的衍生转化——转化网络图一(写方程) 十五、煤的加工 十六、必记有机实验问题 十七、必记高分子化合物知识 16必记《有机化学基础》知识点

一、必记重要的物理性质 难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 苯酚在冷水中溶解度小(浑浊),热水中溶解度大(澄清);某些淀粉、蛋白质溶于水形成胶体溶液。 1、含碳不是有机物的为: CO、CO2、 CO32-、HCO3-、H2CO3、CN-、HCN、SCN-、HSCN、SiC、C单质、金属碳化物等。2.有机物的密度 (1)小于水的密度,且与水(溶液)分层的有:各类烃、一氯代烃、酯(包括油脂) (2)大于水的密度,且与水(溶液)分层的有:多氯代烃、溴代烃(溴苯等)、碘代烃、硝基苯 3.有机物的状态[常温常压(1个大气压、20℃左右)] 常见气态: ①烃类:一般N(C)≤4的各类烃注意:新戊烷[C(CH3)4]亦为气态 ②衍生物类:一氯甲烷、氟里昂(CCl2F2)、氯乙烯、甲醛、氯乙烷、一溴甲烷、四氟乙烯、甲醚、甲乙醚、环氧乙烷。 4.有机物的颜色 ☆绝大多数有机物为无色气体或无色液体或无色晶体,少数有特殊颜色,常见的如下所示: ☆三硝基甲苯(俗称梯恩梯TNT)为淡黄色晶体; ☆部分被空气中氧气所氧化变质的苯酚为粉红色; ☆2,4,6—三溴苯酚为白色、难溶于水的固体(但易溶于苯等有机溶剂); ☆苯酚溶液与Fe3+(aq)作用形成紫色[H3Fe(OC6H5)6]溶液; ☆淀粉溶液(胶)遇碘(I2)变蓝色溶液; ☆含有苯环的蛋白质溶胶遇浓硝酸会有白色沉淀产生,加热或较长时间后,沉淀变黄色。 5.有机物的气味 许多有机物具有特殊的气味,但在中学阶段只需要了解下列有机物的气味: ☆甲烷:无味;乙烯:稍有甜味(植物生长的调节剂) ☆液态烯烃:汽油的气味;乙炔:无味 ☆苯及其同系物:特殊气味,有一定的毒性,尽量少吸入。 ☆C4以下的一元醇:有酒味的流动液体;乙醇:特殊香味 ☆乙二醇、丙三醇(甘油):甜味(无色黏稠液体) ☆苯酚:特殊气味;乙醛:刺激性气味;乙酸:强烈刺激性气味(酸味) ☆低级酯:芳香气味;丙酮:令人愉快的气味 6、研究有机物的方法 质谱法确定相对分子量;红外光谱确定化学键和官能团;核磁共振氢谱确定H的种类及其个数比。 二、必记重要的反应 1.能使溴水(Br2/H2O)褪色的物质

(物质的性质)高中有机化学知识点总结

(物质的性质)高中有机化学知识点总结 第五章 烃 第一节 甲烷 一、甲烷的分子结构 1、甲烷:CH 4,空间正四面体,键角109o28′,非极性分子 电子式: 天然气,沼气,坑气的主要成份是CH 4 2、甲烷化学性质: ①稳定性:常温下不与溴水、强酸、强碱、KMnO 4(H +)等反应。 ②可燃性:CH 4+2O 2???→点燃 CO 2+2H 2O(火焰呈蓝色,作燃料) ③取代反应:有机物分子里的某些原子或原子团被其它原子或原子团所代替的反应叫取代反应。CH 4 在光照条件下与纯Cl 2发生取代反应为: CH 4+Cl 2??→光 CH 3Cl+HCl(CH 3Cl 一氯甲烷,不溶于水的气体) CH 3Cl+Cl 2??→光 CH 2Cl 2+HCl(CH 2Cl 2二氯甲烷,不溶于水) CH 2Cl 2+Cl 2??→光 CHCl 3+HCl(CHCl 3三氯甲烷,俗名氯仿,不溶于水,有机溶剂) CHCl 3+Cl 2?? →光 CCl 4+HCl(CCl 4四氯甲烷,又叫四氯化碳,不溶于水,有机溶剂) ④高温分解:CH 4?? ?→高温 C+2H 2(制炭墨) 第二节 烷烃 一、烷烃 1、烷烃:碳原子间以单键结合成链状,碳原子剩余价键全部跟氢原子结合的烃称为烷烃(也叫饱和链烃) 2、烷烃通式:C n H 2n+2(n≥1) 3、烷烃物理通性: ①状态:C 1-C 4的烷烃常温为气态,C 5-C 11液态,C 数>11为固态 ②熔沸点:C 原子数越多, 熔沸点越高。 C 原子数相同时,支键越多, 熔沸点越低。 ③水溶性:不溶于水,易溶于有机溶剂 4、烷烃的命名 原则: ①找主链——C 数最多,支链最多的碳链 ②编号码——离最简单支链最近的一端编号,且支链位次之和最小 ③写名称:支链位次—支链数目—支链名称某烷 5、同系物:结构相似,在分子组成上相差一个或若干个“CH 2”原子团的物质互称为同系物。 特点:①结构相似,通式相同,分子式不同 ②化学性质相似 ③官能团类别和数目相同 6、同分异构体:具有相同的分子式但不同的结构的化合物互称为同分异构体。 特点:(1)分子式相同(化学组成元素及原子数目,相对分子质量均同);(2)结构不同 类别:碳链异构、官能团异构、官能团位置异构 碳链异构书写原则:主链由长到短,支链由整到散,支链位置由中心到边上,多个支链排布由对到邻到间,碳均满足四键 二、烷烃的化学性质(同CH 4) ①稳定性 ②燃烧:22222n 1()(1)2 n n C H n O nCO n H O ++++???→++点燃 ③取代反应 ④高温分解 (8)环烷烃:C 原子间以单键形成环状,C 原子上剩余价键与H 结合的烃叫环烷烃。 (9)环烷烃通式C n H 2n (n≥3) (10)环烷烃化学性质:(1)燃烧(2)取代反应 第三节乙烯 烯烃 一、不饱和烃 概念:烃分子里含有碳碳双键或碳碳三键,碳原子所结合氢原子数少于饱和链烃里的氢原子数,叫做不饱和烃。 二、乙烯的分子结构 分子式:C 2H 4 电子式: 结构式: 结构简式:CH 2=CH 2 乙烯分子中的2个碳原子和4个氧原子都处于同一平面上。 三、乙烯的物理性质 颜色 气味 状态 (通常) 溶解性 溶沸点 密度 无色 稍有气味 液体 难溶于水 较低 比水小 四、乙烯的化学性质 1、乙烯的氧化反应 (1)燃烧氧化CH 2=CH 2+3O 2?? ?→点燃 2CO 2+2H 2O 纯净的C 2H 4能够在空气中(或O 2中)安静地燃烧,火焰明亮且带黑烟。点燃乙烯前必须先检验乙烯的纯度 (2)催化氧化——乙烯氧化成乙醛 2、乙烯的加成反应 ①乙烯与Br 2的加成:乙烯能使溴的四氯化碳溶液(或溴水)褪色。化学上,常用溴的四氯化碳溶液(或溴水)鉴别乙烯与烷烃。CH 2=CH 2+Br 2 → CH 2Br —CH 2Br ②乙烯与水的加成:乙烯水化制乙醇 CH 2=CH 2+H —OH ????→催化剂 加热,加压 CH 3CH 2OH ③乙烯与H 2的加成:乙烯加氢成乙烷 ④乙烯与卤化氢的加成 CH 2=CH 2+HCl ???→催化剂 CH 3—CH 2CL CH 2=CH 2+HBr ??? →催化剂 CH 3—CH 2Br 3、乙烯的聚合反应 聚乙烯中,有很多分子,每个分子的n 值可以相同,也可以不同,因而是混合物。类推可知,所有的高分子化合物(高聚物)都是混合物。 4、加成反应

有机化学基础知识点归纳

有机化学知识要点总结 一、有机化学基础知识归纳 1、常温下为气体的有机物: ①烃:分子中碳原子数n≤4(特例:),一般:n≤16为液态,n>16为固态。 ②烃的衍生物:甲醛、一氯甲烷。 2、烃的同系物中,随分子中碳原子数的增加,熔、沸点逐渐_ _____,密度增大。同分异构 体中,支链越多,熔、沸点____________。 3、气味。无味—甲烷、乙炔(常因混有PH3、AsH3而带有臭味) 稍有气味—乙烯特殊气味—苯及同系物、萘、石油、苯酚刺激性—--甲醛、甲酸、乙酸、乙醛香味—----乙醇、低级酯 甜味—----乙二醇、丙三醇、蔗糖、葡萄糖苦杏仁味—硝基苯 4、密度比水大的液体有机物有:溴乙烷、溴苯、硝基苯、四氯化碳等。 5、密度比水小的液体有机物有:烃、苯及苯的同系物、大多数酯、一氯烷烃。 6、不溶于水的有机物有:烃、卤代烃、酯、淀粉、纤维素。 苯酚:常温时水溶性不大,但高于65℃时可以与水以任意比互溶。 可溶于水的物质:分子中碳原子数小于、等于3的低级醇、醛、酮、羧酸等 7、特殊的用途:甲苯、苯酚、甘油、纤维素能制备炸药;乙二醇可用作防冻液;甲醛的水溶 液可用来消毒、杀菌、浸制生物标本;葡萄糖或醛类物质可用于制镜业。 8、能与Na反应放出氢气的物质有:醇、酚、羧酸、葡萄糖、氨基酸、苯磺酸等含羟基的 化合物。 9、显酸性的有机物有:含有酚羟基和羧基的化合物。 10、能发生水解反应的物质有:卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐。 11、能与NaOH溶液发生反应的有机物: (1)酚;(2)羧酸;(3)卤代烃(NaOH水溶液:水解;NaOH醇溶液:消去) (4)酯:(水解,不加热反应慢,加热反应快);(5)蛋白质(水解) 12、遇石蕊试液显红色或与Na2C03、NaHC03溶液反应产生CO2:羧酸类。 13、与Na2CO3溶液反应但无CO2气体放出:酚; 14、常温下能溶解Cu(OH)2:羧酸; 15、既能与酸又能与碱反应的有机物:具有酸、碱双官能团的有机物(氨基酸、蛋白质等) 16、羧酸酸性强弱: 17、能发生银镜反应或与新制的Cu(OH)2悬浊液共热产生红色沉淀的物质有:醛、甲酸、 甲酸盐、甲酸酯、葡萄糖、麦芽糖等凡含醛基的物质。 18、能使高锰酸钾酸性溶液褪色的物质有: (1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物 (2)含有羟基的化合物如醇和酚类物质

有机化学知识点归纳

有机化学知识点归纳(一) 一、同系物 结构相似,在分子组成上相差一个或若干个CH 2原子团的物质物质。 同系物的判断要点: 1、通式相同,但通式相同不一定是同系物。 2、组成元素种类必须相同 3、结构相似指具有相似的原子连接方式,相同的官能团类别和数目。结构相似不一定完全相同, 如CH 3CH 2CH 3和(CH 3)4C ,前者无支链,后者有支链仍为同系物。 4、在分子组成上必须相差一个或几个CH 2原子团,但通式相同组成上相差一个或几个CH 2原子 团不一定是同系物,如CH 3CH 2Br 和CH 3CH 2CH 2Cl 都是卤代烃,且组成相差一个CH 2原子团,但不是同系物。 5、同分异构体之间不是同系物。 二、同分异构体 化合物具有相同的分子式,但具有不同结构的现象叫做同分异构现象。具有同分异构现象的化合物互称同分异构体。 1、同分异构体的种类: ⑴ 碳链异构:指碳原子之间连接成不同的链状或环状结构而造成的异构。如C 5H 12有三种同分异 构体,即正戊烷、异戊烷和新戊烷。 ⑵ 位置异构:指官能团或取代基在在碳链上的位置不同而造成的异构。如1—丁烯与2—丁烯、 1—丙醇与2—丙醇、邻二甲苯与间二甲苯及对二甲苯。 ⑶ 异类异构:指官能团不同而造成的异构,也叫官能团异构。如1—丁炔与1,3—丁二烯、丙 烯与环丙烷、乙醇与甲醚、丙醛与丙酮、乙酸与甲酸甲酯、葡萄糖与果糖、蔗糖与麦芽糖等。 ⑷ 其他异构方式:如顺反异构、对映异构(也叫做镜像异构或手性异构)等,在中学阶段的信 息题中屡有涉及。 各类有机物异构体情况: ⑴ C n H 2n +2:只能是烷烃,而且只有碳链异构。如CH 3(CH 2)3CH 3、CH 3CH(CH 3)CH 2CH 3、C(CH 3)4 ⑵ C n H 2n :单烯烃、环烷烃。如CH 2=CHCH 2CH 3、 CH 3CH=CHCH 3、CH 2=C(CH 3)2、 、 ⑶ C n H 2n -2:炔烃、二烯烃。如:CH ≡CCH 2CH 3、CH 3C ≡CCH 3、CH 2=CHCH=CH 2 ⑷ C n H 2n -6:芳香烃(苯及其同系物)。如: 、 、 ⑸ C n H 2n +2O :饱和脂肪醇、醚。如:CH 3CH 2CH 2OH 、CH 3CH(OH)CH 3、CH 3OCH 2CH 3 ⑹ C n H 2n O :醛、酮、环醚、环醇、烯基醇。如:CH 3CH 2CHO 、CH 3COCH 3、CH 2=CHCH 2OH 、 、 、 CH 2—CH 2 CH 2—CH 2 CH 2 CH 2—CH —CH 3 —CH 3 —CH 3 —CH 3 CH 3 —CH 3 CH 3— O CH 2—CH —CH 3 CH 2—CH 2 O CH 2 CH 2 CH 2—CH —OH

有机化学总结全部

一烃的衍生物性质对比 1.脂肪醇、芳香醇、酚的比较 2.苯、甲苯、苯酚的分子结构及典型性质比较 3.醛、羰酸、酯(油脂)的综合比较

4.烃的羟基衍生物性质比较 5.烃的羰基衍生物性质比较 6.酯化反应与中和反应的比较 7.烃的衍生物的比较

二、有机反应的主要类型

三、烃及其重要衍生物之间的相互转化关系

要点精讲 一、有机化合物的分类 1.按碳的骨架分类 2.按官能团分类 (1)官能团:决定化合物特殊性质的原子或原子团 又:链状烃和脂环烃统称为脂肪烃。 二、有机化合物的结构特点 1.有机化合物中碳原子的成键特点 (1)碳原子的结构特点 碳原子最外层有4个电子,能与其他原子形成4个共价键。 (2)碳原子间的结合方式 碳原子不仅可以与氢原子形成共价键,而且碳原子之间也能形成单键、双键或三键。多个碳原子可以形成 长短不一的碳链和碳环,碳链和碳环也可以相互结合,所以有机物种类纷繁,数量庞大。 2.有机化合物的同分异构现象 (1)概念 化合物具有相同的分子式,但具有不同结构的现象叫同分异构现象。具有同分异构现象的化合物互为同分异构体。 (2)同分异构体的类别 ①碳链异构:由于分子中烷基所取代的位置不同产生的同分异构现象,如正丁烷和异丁烷; ②位置异构:由于官能团在碳链上所处的位置不同产生的同分异构现象,如1--丁烯和2--丁烯; ③官能团异构:有机物分子式相同,但官能团不同产生的异构现象,如乙酸和甲酸甲酯; ④给信息的其他同分异构体:顺反异构,对映异构。 3.同分异构体的书写方法 (1)同分异构体的书写规律 ①烷烃 烷烃只存在碳链异构,书写时应注意要全面而不重复,具体规则如下:成直链,一条线;摘一碳,挂中间,往边移,不到端;摘二碳,成乙基;二甲基,同、邻、间。 ②具有官能团的有机物 一般书写的顺序:碳链异构→位置异构→官能团异构。

有机化学基础方程式总结(重点)

有机化学基础知识和方程式总结 一、脂肪烃: 1.烷烃【C n H2n+2(n≥1)】化学性质:不与强酸、强碱、强氧化剂和强还原剂反应,不能使溴的四氯化碳溶液或酸性高锰酸钾溶液褪色。(1)取代反应CH3CH3 + Cl2→ CH3CH2Cl + HCl (光照条件)(2)氧化反应—可燃性C n H2n+2 + (3n+1)/2O2→ nCO2 + (n+1)H2O (点燃) (3)分解反应:烷烃在隔绝空气的条件下加热或加催化剂可发生裂化或裂解。C8H18→ C4H10 + C4H8 , C4H10→ CH4 + C3H6 2.烯烃(CH2=CH2)【C n H2n (n≥2),二烯烃C n H2n-2(n≥4)】(1)烯烃通入酸性高锰酸钾溶液中会使溶液褪色 (2)催化氧化2CH2=CH2 + O2→ 2CH3CHO (催化剂,加热) (3)可燃性烯烃燃烧火焰明亮,伴有黑烟C n H2n + 3n/2O2→ nCO2 + nH2O (点燃) (4)烯烃与H2,X2,HX,H2O发生加成反应①氢气(H2) CH2==CH2 + H2→ CH3—CH3 (催化剂,加热) ②溴水,卤素单质(X2) CH2==CH2 + Br2→ CH2Br—CH2Br 常温下使溴水褪色 ③水CH2==CH2 + H—OH → CH2(OH)—CH3或CH3—CH2OH (催化剂,加热,加压) ④氯化氢CH2==CH2+ HCl → CH2Cl—CH3或CH3—CH2Cl (催化剂,加热) 3.炔烃(HC≡CH)【C n H2n-2(n≥2)】物理性质:无色无味,密度比空气略小,微溶于水,易溶于有机溶剂.有特殊难闻臭味. 化学性质:能发生加成反应、氧化反应和聚合反应。但比烯烃困难。 (1)乙炔的制取CaC2 (俗名电石)+ 2H2O → Ca(OH)2 + C2H2↑收集方法:排水集气法 (2)使酸性高锰酸钾溶液褪色(3)可燃性2C2H2 + 5O2→ 4CO2 + 2H2O (点燃)火焰明亮,伴有浓烈黑烟(4)加成反应氢气:HC≡CH + 2H2→ CH3CH3 (催化剂,加热) 水:HC≡CH + H2O → CH3CHO (催化剂,加热) 卤素:HC≡CH + 2Br2→ CHBr2—CHBr2 (1,1,2,2 –四溴乙烷)(5)加聚反应n HC≡CH → [CH==CH]n 二、卤代烃【R—Br】 1.物理性质(1)气味:具有一种令人不愉快的气味且蒸汽有毒。 (2)沸点①卤原子种类及个数相同时,卤代烃的沸点随碳原子数增加而升高;②卤代烃的同分异构体的沸点随烃基中支链的增加而降低;③同一烃基的不同卤代烃的沸点,随卤素原子的相对原子质量的增大而升高。 (3)溶解性难溶于水,易溶于有机溶剂,有些卤代烃本身就是良好的有机溶剂,如四氯化碳等。 2.化学性质(1)水解反应(取代反应)CH3CH2Br +NaOH → CH3CH2OH + NaBr (氢氧化钠的水溶液,加热)(2)消去反应(邻碳有氢)CH3—CH2Br + NaOH → CH2==CH2↑ + NaBr + H2O (氢氧化钠的醇溶液,加热) 补充:发生消去反应的条件①C原子数目≥2②与—X相连的C原子的邻位C上有H原子③与苯环上的H不能消去三、醇【R—OH】 1.醇的物理性质低级饱和一元醇为无色透明的液体,往往有特殊气味,能与水混溶。十二个碳原子以上的高级醇为蜡状固体,难溶于水。 2.醇的化学性质乙醇的燃烧C2H6O +3O2→ 2CO2 + 3H2O 乙醇与钠反应2CH3CH2OH + 2Na→2CH3CH2ONa + H2↑ (1)消去反应CH3—CH2OH → CH2=CH2↑ + H2O(浓硫酸.170℃,乙醇:浓硫酸=1:3)浓硫酸作用:催化剂,脱水剂(2)脱水反应C2H5—OH + HO—C2H5→ C2H5—O—C2H5 + H2O (浓硫酸,140℃) (3)取代反应←氢氧化钠的水溶液(逆反应)C2H5—OH + H—Br → C2H5—Br + H2O (加热) (4)氧化反应乙醇使酸性KMnO4,K2Cr2O7溶液褪色 CH3CH2OH →(氧化)CH3CHO(乙醛)→(氧化)CH3COOH(乙酸) 在Cu作催化剂时醇被氧化为醛或酮现象方程:CuO + 2CH3CH2O H → 2Cu + 2CH2CHO + 2H2O 总反应式:2CH3CH2OH + O2→ 2CH2CHO + 2H2O (条件:Cu,加热) 必须有—CH2OH才能被氧化,若没有则只能生成羰基。 四、醛【R—CHO】【还原反应:加氢去氧;氧化反应:加氧去氢】 1.氧化反应(1)银镜反应注意:a.试管必须洁净 b.水浴加热,使其受热均匀 c.实验完毕后,用稀HNO3清洗试管CH3CHO + 2Ag(NH3)2OH → CH3COONH4+ 2Ag↓ + 3NH3 + H2O (加热,用于检验醛基) (2)与新制氢氧化铜反应(用于检验醛基) CH3CHO + 2Cu(OH)2+ NaOH → CH2COONa + Cu2O↓(砖红色沉淀) + 3H2O (加热) (3)与空气氧化2CH3CHO + O2→ 2CH3COOH (催化剂,加热) 2.加成反应CH3CHO + H2→ CH3CH2OH (催化剂,加热)

有机化学知识点总结归纳(全)

催化剂 加热、加压 有机化学知识点归纳 一、有机物的结构与性质 1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。 2、常见的各类有机物的官能团,结构特点及主要化学性质 (1)烷烃 A) 官能团:无 ;通式:C n H 2n +2;代表物:CH 4 B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C 原子的四个价键也都如此。 C) 物理性质:1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。 一般地,C1~C4气态,C5~C16液态,C17以上固态。 2.它们的熔沸点由低到高。 3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。 4.烷烃都不溶于水,易溶于有机溶剂 D) 化学性质: ①取代反应(与卤素单质、在光照条件下) , ,……。 ②燃烧 ③热裂解 C 16H 34 C 8H 18 + C 8H 16 ④烃类燃烧通式: O H 2 CO O )4(H C 222y x y x t x +++????→?点燃 ⑤烃的含氧衍生物燃烧通式: O H 2 CO O )24(O H C 222y x z y x z y x +-+ +????→?点燃 E) 实验室制法:甲烷:3423CH COONa NaOH CH Na CO +→↑+ 注:1.醋酸钠:碱石灰=1:3 2.固固加热 3.无水(不能用NaAc 晶体) 4.CaO :吸水、稀释NaOH 、不是催化剂 (2)烯烃: A) 官能团: ;通式:C n H 2n (n ≥2);代表物:H 2C=CH 2 B) 结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。 C) 化学性质: CH 4 + Cl 2CH 3Cl + HCl 光 CH 3Cl + Cl 2 CH 2Cl 2 + HCl 光 CH 4 + 2O 2 CO 2 + 2H 2O 点燃 CH 4 C + 2H 2 高温 隔绝空气 C=C 原子:—X 原子团(基):—OH 、—CHO (醛基)、—COOH (羧基)、C 6H 5— 等 化学键: 、 —C ≡C — C=C 官能团 CaO △

(2020年7月整理)高等有机化学模拟考试题二.doc

《高等有机化学》模拟考试题(二) 一.填空 1、几种重要的有机反应活性中间体有------、 ----------、---------、--------、--------和---------。 2、萘磺化时,得到α-萘磺酸是-------控制产物,得到β-萘磺酸是------控制产物。 3、写出下列化合物最稳定的构象式: (1) HOCH 2CH 2F 用Newman 投影式表示为:------------; (2)反式十氢化萘 用构象式表示为:--------; (3)(S)-2-丁醇 用Fischer 投影式表示为:-----------; 4、α-蒎烯1H 3C CH 32 中1和2两个甲基上的亲核化学位移δ值较小者为 --------;这是由于----------所致。 5、 下列烷氧基负离子:(a ) C 6H 5O -,(b )CH 3CH 2CH 2CH 2O -,(c )(CH 3)3CO -,其中碱性最强的是---------,亲核性最强的是---------。 6、有机光化学反应中,分子的激发态常有-------和----------两种。但大多数光化学反应是按-----------进行的。在二苯甲酮与异丙醇的光化学反应中,当加入萘时,该反应中止,反应中的二苯甲酮是---------剂,而萘是二苯甲酮激发态的一种-------剂。 二.写出写列反应的主要产物 C C Ph H 3C CH 3 Ph H + 1 N(CH 2 )OH CH 3 2. C N CH 3OH H 2SO 4 3. OH H 3CO 2SO C O H 3C 4. 3 5. COCHN 2 1)Ag 2O 2) H 2O 6. CH 3 H 3C OCH 2CH=CHCH 3 7. C C 3 OTs H 3C CH 3CH 2ONa 328.

高中有机化学基础知识点归纳(全)

高中《有机化学基础》知识点 一、重要的物理性质 1.有机物的溶解性 (1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的, 下同)醇、醛、羧酸等。 (2)易溶于水的有:低级的[一般指N(C )≤4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都 能与水形成氢键)。 二、重要的反应 1.能使溴水(Br 2/H 2O )褪色的物质 (1)有机物① 通过加成反应使之褪色:含有 、—C ≡C —的不饱和化合物 ② 通过取代反应使之褪色:酚类 注意:苯酚溶液遇浓溴水时,除褪色现象之外还产生白色沉淀。③ 通过氧化反应使之褪色:含有—CHO (醛基)的有机物(有水参加反应)注意:纯净的只含有—CHO (醛基)的有机物不能使溴的四氯化碳溶液褪色 ④ 通过萃取使之褪色:液态烷烃、环烷烃、苯及其同系物、饱和卤代烃、饱和酯 (2)无机物① 通过与碱发生歧化反应 3Br 2 + 6OH - == 5Br - + BrO 3- + 3H 2O 或Br 2 + 2OH - == Br - + BrO - + H 2O ② 与还原性物质发生氧化还原反应,如H 2S 、S 2-、SO 2、SO 32-、I -、Fe 2+ 2.能使酸性高锰酸钾溶液KMnO4/H+褪色的物质 1)有机物:含有 、—C≡C —、—OH (较慢)、—CHO 的物质 苯环相连的侧链碳上有氢原子的苯的同系物 (但苯不反应) 2)无机物:与还原性物质发生氧化还原反应,如H 2S 、S 2-、SO 2、SO 32-、Br -、I -、Fe 2+ 3.与Na 反应的有机物:含有—OH 、—COOH 的有机物 与NaOH 反应的有机物:常温下,易与—COOH 的有机物反应加热时,能与卤代烃、酯反应(取代反应) 与Na 2CO 3反应的有机物:含有—COOH 的有机物反应生成羧酸钠,并放出CO 2气体; 与NaHCO 3反应的有机物:含有—COOH 的有机物反应生成羧酸钠并放出等物质的量的CO 2气体。 4.既能与强酸,又能与强碱反应的物质 (1)氨基酸,如甘氨酸等 H 2NCH 2COOH + HCl → HOOCCH 2NH 3Cl H 2NCH 2COOH + NaOH → H 2NCH 2COONa + H 2O (2)蛋白质分子中的肽链的链端或支链上仍有呈酸性的—COOH 和呈碱性的—NH 2,故蛋白质仍能与碱和酸反应。 5.银镜反应的有机物 (1)发生银镜反应的有机物:含有—CHO 的物质:醛、甲酸、甲酸盐、甲酸酯、还原性糖(葡萄糖、麦芽糖等) (2)银氨溶液[Ag(NH 3)2OH](多伦试剂)的配制: 向一定量2%的AgNO 3溶液中逐滴加入2%的稀氨水至刚刚产生的沉淀恰好完全溶解消失。 (3)反应条件:碱性、水浴加热....... 酸性条件下,则有Ag(NH 3)2+ + OH - + 3H + == Ag + + 2NH 4+ + H 2O 而被破坏。 (4)实验现象:①反应液由澄清变成灰黑色浑浊;②试管内壁有银白色金属析出 (5)有关反应方程式:AgNO 3 + NH 3·H 2O == AgOH↓ + NH 4NO 3 AgOH + 2NH 3·H 2O == Ag(NH 3)2OH + 2H 2O 银镜反应的一般通式: RCHO + 2Ag(NH 3)2OH 2 A g ↓+ RCOONH 4 + 3NH 3 + H 2O 【记忆诀窍】: 1—水(盐)、2—银、3—氨 甲醛(相当于两个醛基):HCHO + 4Ag(NH 3)2OH 4Ag↓+ (NH 4)2CO 3 + 6NH 3 + 2H 2O 乙二醛: OHC-CHO + 4Ag(NH 3)2OH 4Ag↓+ (NH 4)2C 2O 4 + 6NH 3 + 2H 2O 甲酸: HCOOH + 2 Ag(NH 3)2OH 2 A g ↓+ (NH 4)2CO 3 + 2NH 3 + H 2O 葡萄糖:(过量)CH 2OH(CHOH)4CHO +2Ag(NH 3)2OH 2A g ↓+CH 2OH(CHOH)4COONH 4+3NH 3 + H 2O

高中有机化学基础知识点归纳小结

高中有机化学基础知识点归纳小结 一、重要的物理性质 1.有机物的溶解性 (1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 (2)易溶于水的有:低级的[一般指N(C)≤4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都能与水形成氢键)。 二、重要的反应 1.能使溴水(Br2/H2O)褪色的物质 (1)有机物①通过加成反应使之褪色:含有、—C≡C—的不饱和化合物 ②通过取代反应使之褪色:酚类注意:苯酚溶液遇浓溴水时,除褪色现象之外还产生白色沉淀。 ③通过氧化反应使之褪色:含有—CHO(醛基)的有机物(有水参加反应)注意:纯净的只含有—CHO (醛基)的有机物不能使溴的四氯化碳溶液褪色 ④通过萃取使之褪色:液态烷烃、环烷烃、苯及其同系物、饱和卤代烃、饱和酯 (2)无机物①通过与碱发生歧化反应3Br2 + 6OH- == 5Br- + BrO3- + 3H2O或Br2 + 2OH- == Br- + BrO- + H2O ②与还原性物质发生氧化还原反应,如H2S、S2-、SO2、SO32-、I-、Fe2+ 2.能使酸性高锰酸钾溶液KMnO4/H+褪色的物质 1)有机物:含有、—C≡C—、—OH(较慢)、—CHO的物质苯环相连的侧链碳上有氢原子的苯的同系物(但苯不反应) 2)无机物:与还原性物质发生氧化还原反应,如H2S、S2-、SO2、SO32-、Br-、I-、Fe2+ 3.与Na反应的有机物:含有—OH、—COOH的有机物 与NaOH反应的有机物:常温下,易与含有酚羟基 ...、—COOH的有机物反应 加热时,能与卤代烃、酯反应(取代反应) 与Na2CO3反应的有机物:含有酚.羟基的有机物反应生成酚钠和NaHCO3; 含有—COOH的有机物反应生成羧酸钠,并放出CO2气体; 含有—SO3H的有机物反应生成磺酸钠并放出CO2气体。 与NaHCO3反应的有机物:含有—COOH、—SO3H的有机物反应生成羧酸钠、磺酸钠并放出等物质的量的CO2气体。4.既能与强酸,又能与强碱反应的物质 (1)2Al + 6H+ == 2 Al3+ + 3H2↑2Al + 2OH- + 2H2O == 2 AlO2- + 3H2↑ (2)Al2O3 + 6H+ == 2 Al3+ + 3H2O Al2O3 + 2OH-== 2 AlO2- + H2O (3)Al(OH)3 + 3H+ == Al3+ + 3H2O Al(OH)3 + OH-== AlO2- + 2H2O (4)弱酸的酸式盐,如NaHCO3、NaHS等等 NaHCO3 + HCl == NaCl + CO2↑ + H2O NaHCO3 + NaOH == Na2CO3 + H2O NaHS + HCl == NaCl + H2S↑NaHS + NaOH == Na2S + H2O (5)弱酸弱碱盐,如CH3COONH4、(NH4)2S等等 2CH3COONH4 + H2SO4 == (NH4)2SO4 + 2CH3COOH CH3COONH4 + NaOH == CH3COONa + NH3↑+ H2O (NH4)2S + H2SO4 == (NH4)2SO4 + H2S↑ (NH4)2S +2NaOH == Na2S + 2NH3↑+ 2H2O (6)氨基酸,如甘氨酸等 H2NCH2COOH + HCl → HOOCCH2NH3Cl H2NCH2COOH + NaOH → H2NCH2COONa + H2O

相关文档
最新文档