陶瓷材料的微波烧结及研究进展

陶瓷材料的微波烧结及研究进展
陶瓷材料的微波烧结及研究进展

功能陶瓷材料研究进展综述

功能陶瓷材料的应用 研究 姓名:刘军堂___________ 学号: 23122837________ 班级: 机械1201_________ 任课老师:张志坚__________

功能陶瓷材料的应用研究 1.选择一个课题进行相关检索,要求对课题作简要分析,并在分析的基础上确定检索词,准确描述检索过程。(10分)(可选择其他课程中以论文方式考核的科目,如无此类题目,可自选或用备选题目) 功能陶瓷 功能陶瓷材料是具有特殊优越性能的新型材料,各国在基础与应用研究以及工程化方面,均给予了特殊重视,特别是在信息、国防、现代交通与能源产业中均将其置于重要地位。根据功能陶瓷材料的应用前景,本文介绍了功能陶瓷新材料的性能、应用范围,市场的开发应用现状和开发应用新领域,以及正在研发的高性能陶瓷材料;同时介绍了功能陶瓷材料今后的发展趋势。 关键词:功能陶瓷材料;应用现状;趋势 检索过程 第一步:进入“中国知网”主页,网址是“https://www.360docs.net/doc/6d1985918.html, 第三步:登录成功后会进入操作界面, 第四步:选择要检索的文献数据库。在操作界面上,中国知网将其文献分成了不同的库,我们根据自己的文献范围属性进行选择。 第五步:检索参数设置。在操作界面的上部,有搜索参数设置对话框。最好逐一填写。(1)检索项,系统对文献进行了检索编码,每一个文献都有一一对应的编码,一个编码就是一种检索项。点击检索项框右边的向下箭头,就能弹出所有检索项,选中一个就好。(2)检索词,填入要求系统搜索的内容。没有明确严格要求,不一定是词语。但是需要考虑到它应当与你选中的检索项相一致。如检索项用了“关键词”,就不能用一个长句等作检索词了。(3)文献时间选择,根据文献可能出现的年代,点击对话框右边的小三角就可以选了。需要说明的是,中国知网建立时间是1994年,所以1994年及其后的数据才是最全的。现在他们在逐渐补充1994年以前的文献数据,但是,全面性可能要差些。(4)排序,提示系统将找到的文献按什么顺序呈现。(5)匹配,即要求系统按自己的检索要求进行哪种精确程度的检索。如果你确定你的文献参数,那么选择“精确”,如果不确定,就选择“模糊”。 第六步:点击“搜索”就完成了第一阶段的操作了。然后就进入检索结果呈现的界面:中国知网2.rar(点击打开查看),中国知网的结果呈现表中,对文献的基本信息:文献题目、文献的载体、发表时间及在中国知网中的收藏库名进行了说明。

微波介质陶瓷的介电特性数值计算

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
《计算材料学》课程设计
指导老师:江建军
教授
电子科学与技术系 2004 年 6 月
电子 0102B3 组
1

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
微波介质陶瓷的介电特性数值计算
万文涛 洪毅 黄文佳 陈婷 杨伟伟 王旭曦 袁大双 黄钏 饶伟 贺策林 李树平 (华中科技大学电子科学与技术系,武汉 430074)
摘要:对于微波介质陶瓷,建立数学模型,
讨论了介电常数与组分,温度,频率的关系。对于组分,重
点讨论运用蒙特卡罗有限元法计算出波介质陶瓷的宏观介电常数 ε m ,结果显示由二维模型和三维模型计 算得出的介电常数 ε m 大小位于串并联模型之间,而且由二维模型计算得出的介电常数 ε m 比由三维模型得 出的结果小,因为实际的一个由两相构成的微波介质陶瓷的相都是以三维形式分布的,所以由三维模型计 算出的介电常数 ε m 比用二维计算的结果要精确;对于频率,介电常数随它的变化不明显;由于温度的变 化灰引起结构以及组成物质的相的变化,只讨论了BaTiO3一类MWDC和温度的变化关系。
关键词:微波介质陶瓷;蒙特卡罗有限元法;介电常数;二相化合物
Dielectric Properties Culculated of MicroWave Dielectric Ceremoes(MWDC) ( Department of Electronics Science & Technology,Huazhong university,Wuhan 430074,China)
Abstract: As to the MicroWave Dielectric Ceremoes, the mathematics model is established,and the relations between dielectric constant and many factors is discussed,such as component,temperature and frequency.In the aspect of component, great importance is taken to using monte carlo and finite element method to culculate the macro dielectric constant of MWDC 。 The results are displayed in curves ,which use two-dimension and three-dimension models and are manifested between the results of serial model and parallel
model.Furthermore,the values which are simulated in two-dimension model are smaller than the ones in three-dimension,for the two-phase MWDC are distributed in three dimensions actually.So it’s preciser to use the three-dimemsion model.In the frequency of microwave,the dielectric constant doesn’t vary obviously.Besides, the changes of temperature can lead to the varieties of the construction and phases of materials,so we only discuss the changes with temperature of BaTiO3。 Keywords:MWDC,Monte Carlo method,finite element method,two-phased materies
电子 0102B3 组
2

现代陶瓷研究进展

材料与化工学院 2012级材料科学与工程二班 课程作业:无机非金属材料工艺学学生姓名:刘健 学生学号: 授课老师:

目录 1.传统陶瓷材料------------------------------------------------------------------------------------------------3 2.新型陶瓷材料------------------------------------------------------------------------------------------------3 2.1生物陶瓷材料------------------------------------------------------------------------------------------4 2.1.1生物陶瓷研究背景------------------------------------------------------------------------------4 2.1.2生物陶瓷研究的一些成果---------------------------------------------------------------------4 2.1.3生物陶瓷在国外的研究动态和发展趋势-------------------------------------------------4 2.1.4我国生物陶瓷材料研究设想与展望--------------------------------------------------------5 2.2高温压电陶瓷材料-------------------------------------------------------------------------------------5 2.2.1改性钛酸铅压电陶瓷----------------------------------------------------------------------------5 2.2.2 PZT基多元系压电陶瓷--------------------------------------------------------------------------6 2.3超级亲水易洁陶瓷材料-------------------------------------------------------------------------------6 2.4热障涂层陶瓷材料--------------------------------------------------------------------------------------7 2.4.1几类热障陶瓷涂料研究近况-------------------------------------------------------------------7 2.4.1.1氧化物稳定的ZrO2---------------------------------------------------------------------------7 2.4.1.2焦绿石或萤石结构A2B2O7陶瓷----------------------------------------------------------7 2.4.2需要达到的目标------------------------------------------------------------------------------------8 3.结语----------------------------------------------------------------------------------------------------------------8

微波介质陶瓷的应用

螂微波介质陶瓷(MWDC)是应用于微波频段(主要是UHF、SHF频段,300MHz~300GHz)电路中作为介质材料并完成一种或多种功能的陶瓷,是近年来国内外对微波介质材料研究领域的一个热点方向。近年来,移动通讯、卫星通信、军用雷达、全球卫星定位系统(GPS)、蓝牙技术、无线局域网等现代通信技术得到了快速发展。这些通信装置中使用的微波电路一般由谐振器、滤波器、振荡器、衰减器、介质天线、微波集成电路基片等元件组成,微波介质陶瓷(MWDC)是其制备的关键基础材料。用微波介质陶瓷制作的元器件具有体积小、质量轻、性能稳定、价格便宜等优点。目前微波陶瓷材料和器件的生产水平以日Murata公司、德EPCOS公司、美Trans-Tech公司、Narda MICROW A VE-WEST公司、英Morgan Electro Ceramics、Filtronic等公司为最高。其产品的应用范围已在300MHz~40GHz系列化,年产值均达十亿美元以上。国外介质陶瓷材料发展具有综合领先水平的是日本、美国等发达国家。日本在介质陶瓷材料领域中一直以全列化、产量最大、应用领域最广、综合性能最优,占据了世界电子陶瓷市场50%的份额。美国在电子陶瓷的技术研发方面走在世界前列,但是产业化应用落后于日本,大部分技术停留在实验室阶段。目前,美国电子陶瓷产品约占世界市场份额的30%,居全球第二位。目前世界电子陶瓷的市场规模达到1300亿美元左右。未来几年需求量每年将以15~20%的速度增长,到2015年需求量将突破2100亿美元。 我国特陶企业集中分布在北京、上海、天津、江苏、山东、浙江、福建、广东等沿海城市和地区以及华中部分城市地区,西南西北等偏远地区以原军工三线企业为主。在我国电子陶瓷行业中,股份制和三资企业具有最强的竞争力。国内微波介质陶瓷材料及器件的生产,在技术水平、产品品种和生产规模上与国外相比有较大差距。我国特种陶瓷产业目前主要存在产业规模小、技术创新弱、研发投入少、品牌知名度不高、工艺和装备水平低、能耗高、融资困难、无序竞争等问题,特别是企业缺乏创新能力,产业缺乏创新平台,严重制约了特种陶瓷产业由量向质的飞跃提升。我国从事特种陶瓷开发研制的高校、科研院所和生产企业已超过300家,其中研发生产功能陶瓷的单位占63.6%,研发生产结构陶瓷的单位占36.4%。中国科学院、上海硅酸盐研究所、清华大学等对我国特种材料研究起到了重要的推动作用。目前微波介质陶瓷已在便携式移动电话、汽车电话、无绳电话、电视卫星接收器、军事雷达等方面被用来广泛制造微波介质滤波器和谐振器,在现代通信工具的小型化、集成化过程中正发挥着越来越大的作用。2009年国内通信设备市场投资达1743亿人民币,增速14.6%;预计2010年和2011年的电信设备市场投资为1850亿元和1880亿元,无疑会给微波介质陶瓷行业带来巨大需求。预计到2015年,我国电子陶瓷产品需求量将突破280亿元。 本研究咨询报告在大量周密的市场调研基础上,主要依据了国家统计局、国家商务部、国家海关总署、国家发改委、国务院发展研究中心、国家信息中心、中国通信企业协会、中国陶瓷工业协会、国内外相关刊物的基础信息以及各产业研究单位等公布和提供的大量资料。本报告对我国微波介质陶瓷行业发展现状、发展趋势、竞争格局、投资前景等进行了分析,是微波介质陶瓷制造企业、研究单位、销售企业以及相关企业和单位、计划投资于微波介质陶瓷行业的企业等准确了解目前中国微波介质陶瓷市场发展动态,把握行业发展趋势,制定市 场策略的必备的精品。 滤波器的用途 羂[日期:2010-01-04] 聿来源:深圳市西凯士电气有限公司作者:a dmin 蚆[字体:大中小]

特种陶瓷材料的研究进展[1]

文章编号:1006-2874(2010)05-0071-04 特种陶瓷材料的研究进展 葛伟青 (唐山学院,唐山:063000) 中图分类号:TQ174.75文献标识码:A 特种陶瓷也称为先进陶瓷、现代陶瓷、新型陶瓷、高性能陶瓷、高技术陶瓷和精细陶瓷,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的、具有独特和优异性能的陶瓷材料。已成为现代高性能复合材料的一个研究热点。特种陶瓷于二十世纪发展起来,在近二、三十年内,新产品不断涌现,在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必将占据十分重要的地位。 特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等领域。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此,特种陶瓷的发展十分迅速,在技术上也有很大突破。 1概述 特种陶瓷通常包括结构陶瓷、功能陶瓷(电子陶瓷)和生物陶瓷等.结构陶瓷具有高强度、高硬度、高耐磨、耐高温、耐腐蚀等特性,功能陶瓷具有导电、半导性、绝缘、压电、透光、光电、电光、声光、磁光等性能,生物陶瓷具有医疗(人工关节.骨、牙齿等)和催化等功能,在现代工业技术,特别是在高新技术领域中的地位日趋重要。 中国科学院上海硅酸盐研究所所长罗宏杰在佛山市加快发展特种陶瓷推介会上发言说,特种陶瓷具备传统陶瓷不具备的多种特性,消耗低、利润高,应用前景十分广阔。预计2010年全国的市场规模将达到400亿元。世界的市场规模将达到1500亿美元。中国经济的高速发展,将为特种陶瓷制造业提供广阔的市场与发展空间。 目前,高温结构陶瓷研究的主要目标仍然是燃气轮机、活塞发动机和磁流体发电机用的材料。高温结构陶瓷的应用在汽车、飞机、火箭等领域获得了成功。福特公司研制的汽车用轮机的机头、定子和叶轮都是用氮化硅制作的,热交换器是用蜂窝状结构的结晶化玻璃制成的。超音速飞机发动机和火箭燃烧室内壁、隔热衬层等高温部位都利用到了陶瓷材料。美国研制成功了AGT100和AGT101型全陶瓷汽车发动机,其进口温度分别达到了1290℃和1370℃,比超合金高200 ~260℃。 2粉末制备技术进展情况 目前最引人注目的粉末制备技术是超高温技术。利用超高温技术可廉价地研制特种陶瓷。 超高温技术具有如下优点:能生产出用以往方法所不能生产的物质,能够获得纯度极高的物质,生产率会大幅度提高,可使作业程序简化、易行。目前,在超高温技术方面居领先地位的是日本。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶-凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。 3特种陶瓷成形方法及特点 3.1干法成型 干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等方法。 3.1.1钢模压制成型(干压法) 将含有少量增塑剂、具有一定粒度配比的陶瓷粉末放在金属模内,在压机上受压,使之密实成型。钢模压制的优点是易于实现自动化,所以在工业生产中得到较大的应用。 3.1.2等静压成型 等静压成型是通过施加各项同性压力而使粉料一边压缩一边成型的方法。等静压力可达300MPa左右。在常温下成型时称为冷等静压成型,在几百摄氏度到2000℃温区内成型时称为热等静压成型。等静压有两种方式:干袋法和湿袋法。湿袋法是将粉末或颗粒密封于成型橡胶模型内,置于高压容器 收稿日期:2010-04-15 通讯联系人:葛伟青,E-mail:hbtsgwq@https://www.360docs.net/doc/6d1985918.html, CHINACERAMICINDUSTRYOct.2010Vol.17,No.5 中国陶瓷工业 2010年10月第17卷第5期

陶瓷简介

陶瓷 陶瓷是陶器和瓷器的总称。人早在约公元前8000年前的新石器时代就发明了陶器。陶瓷材料大多是氧化物、氮化物、硼化物和碳化物等。常见的陶瓷材料有粘土、氧化铝、高岭土等。陶瓷材料一般硬度较高,但可塑性较差。除了在食器、装饰的使用上,在科学、技术的发展中亦扮演重要角色。陶瓷原料是地球原有的大量资源黏土经过淬取而成。而粘土的性质具韧性,常温遇水可塑,微干可雕,全干可磨;烧至700度可成陶器能装水;烧至1230度则瓷化,可几乎完全不吸水且耐高温耐腐蚀。其用法之弹性,在今日文化科技中有各种创意的应用。 陶瓷英文Ceramic(或者China);陶瓷拼音Táocí;陶瓷是以天然粘土以及各种天然矿物为主要原料经过粉碎混炼、成型和煅烧制得的材料的各种制品。以前人们把用陶土制作成的在专门的窑炉中高温烧制的物品称作陶瓷,陶瓷是陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。由最粗糙的土器到最精细的精陶和瓷器都属于它的范围。对于它的主要原料是取之于自然界的硅酸盐矿物(如粘土、石英等),因此与玻璃、水泥、搪瓷、耐火材料等工业,同属于“硅酸盐工业”的范畴。陶瓷的主要产区为景德镇、醴陵、高安、丰城、萍乡、黎川、佛山、潮州、德化、淄博、北流等地。 早在欧洲掌握制瓷技术之前一千多年,中国已能制造出相当精美的瓷器。从我国陶瓷发展史来看,一般是把“陶瓷”这个名词一分为二,为陶和瓷两大类。中国传统陶瓷的发展,经历过一个相当漫长的历史时期,种类繁杂,工艺特殊,所以,对中国传统陶瓷的分类除考虑技术上的硬性指标外,还需要综合考虑历来传统的习惯分类方法,结合古今科技认识上的变化,才能更为有效地得出归类结论。 作为汉族传统文化之一的陶瓷文化,在民族母体中孕育、成长与发展,它以活生生的凝聚着创作者情感、带着泥土的芬芳、留存着创作者心手相应的意气的艺术形象,表现着汉族文化,叙述着一个个动听的故事,展现着广阔的社会生活画卷,记录着芸芸众生的悲欢离合,描述着民族的心理、精神和性格的发展与变化,伴随着民族的喜与悲而前行。 新石器时期彩陶中的陶塑作品,记录着先民生存的愿望。那陶塑的猪、牛、狗,模仿着打猎而来或者豢养而食的动物形象,演示着与大自然搏斗的酷烈,表达着文明的演化与发展。摩娑这些与实物逼真无二的作品,想象着先民的困惑、喜悦和奋争,那在洪荒、野蛮中奔突与呼叫的景象,撼人心魄。

微波介质陶瓷材料体系研究综述.doc

微波介质陶瓷材料体系研究综述 (桂林理工大学) 摘要:介绍了微波介质陶瓷的应用及其性能要求,按照应用频域的不同,对微波介质 陶瓷的材料体系进行分类讨论,将其划分为低频端、中频端以及高频端等三大类,指明了微波介质陶瓷的发展展望。 关键词: 微波陶瓷;介质陶瓷 引言 微波介质陶瓷是近十多年来发展起来的一种新型的功能陶瓷材料。它是指应用于微波频率(主要是300MHz-30GHz频段)电路中作为介质材料并完成一种或多种功能的陶瓷材料,是制造微波介质滤波器和谐振器的关键材料。它具有高介电常数、低介电损耗、温度系数小等优良性能,适于制造多种微波元器件,能满足微波电路小型化、集成化、高可靠性和低成本的要求。用微波介质陶瓷材料做成的各类高性能器件,已被广泛应用于卫星电视、雷达、移动通讯、电子计算机及现代医学等众多领域[1]。随着移动通信的发展,微波介质陶瓷已成为高技术陶瓷研究的重点项目之一[2]。 1 微波介质陶瓷的应用及性能要求 1.1微波介质陶瓷的应用 微波介质陶瓷应用范围广泛,在微波电路中的应用主要有如下几个方面[ 3, 4]: (1)用作微波电路的介质基片,起着电路元器件及线路的承载、支撑、绝缘的作用;(2)用作为微波电路的电容器,起着电路或元件之间的耦合及储能作用;(3)用作微波电路的介质天线, 起着集中吸收储存电磁波能量的作用;(4)用作微波电路的介质波导,起着引导电磁波沿一定方向传播的作用;(5)用作微波电路的介质谐振器件,起着类似一般电子电路中LC谐振电路的作用。其中,最后一项的应用是最主要

的。因为实现微波设备的小型化、高稳定性和廉价的途径是微波电路的集成化,早期金属谐振腔和金属波导体积和重量过大,大大限制了微波集成电路的发展, 由微波介质陶瓷做成的介质谐振器,可按设计要求将若干谐振器耦合在一起, 制成一系列为满足微波电路各方面需要的腔体块状微波器件,如:滤波器、稳频震荡器及放大器等介质谐振式选频器件,体积小、重量轻介质谐振器件的出现能排除微波电路小型化与集成化方向上的最大障碍。陶瓷介质微波器件体积小、损耗低、稳定好、承受功率高、可在恶劣条件下工作, 最高应用频率可达90GHz,不仅在民用中广泛应用,而且在军用通信中受到重视。腔体块状陶瓷介质微波器件有分体和联体两种结构,前者是由几个谐振器耦合而成; 后者是在一个陶瓷块体上制作几个谐振器及其间的耦合结构,使器件体积大大减小,但小型化有限,不能满足移动通信市场日益发展的要求。利用低温烧结微波介质陶瓷与导体浆料的共烧技术和精细叠层工艺,制成片式多层微波频率器件具有小型化、可表面贴装、性能优良、可靠性高、可承受波峰焊和再流焊等诸多优点。LTCC技术的出现,微波器件小型化得到迅速发展,如天线、双工器、滤波器、平衡--不平衡转换等叠层微波器件获得广泛应用[5]。 1.2微波介质陶瓷的性能要求[6~8] 评价微波介质陶瓷介电性能的参数主要有三个:相对介电常数εr、品质因数Q·f、谐振频率τf。应用于微波电路的介质陶瓷,除了必备的机械强度、化学稳定性及经时稳定性外,还应满足如下介电特性的要求: (1)在微波频率下材料相对介电常数εr应大,以便于器件小型化。由微波传输理论可知: 微波在介质体内传输,无论采用何种模式,谐振器的尺寸都大约在λ/2~λ/4的整数倍间。微波在介质体内传输时的波长λ与它在自由空间传输时的波长λ0有如下关系:λ=λ0/ε0.5。所以,相同的谐振频率下,εr 越大,介质谐振器的尺寸就越小,电磁能量越能集中于介质体内,受周围环境的影响也小。这既有利于介质谐振器件的小型化,也有利于其高品质化。另一方面,谐振频率越高,波长越短,介质谐振器的尺寸在相对介电常数不是很大的情况下也可以很小,不同的应用领域,对εr的要求不同,通常要求εr>10。 (2)在微波频率下的介电损耗tanδ应很小,即介质的品质因子Q(=1/tanδu )要高,

陶瓷材料的研究进展

论文 题目:陶瓷材料的研究进展 姓名: 专业:化学工程与工艺 学号: 日期:2009-6-21

陶瓷材料的研究进展 摘要:近年来,随着科学的进步,陶瓷材料越来越多的进入我们的生产和生活,并且在性能和作用上体现出出乎意料的优越性。就我所知,陶瓷材料大体上可以分为四个类型:传统工艺陶瓷,结构陶瓷,功能陶瓷和生物陶瓷。本文仅对后三种新型陶瓷材料的研究进展做一个简单综述。 关键词:结构陶瓷功能陶瓷生物陶瓷纳米技术Abstract: In recent years, along with the science progress, the ceramic material more and more entered our production and the life, and manifested the superiority unexpectedly in the performance and the function. I know, the ceramic material may divide into four types on the whole: Traditional process ceramics, structure ceramics, functional ceramic and biological ceramics. This article only makes a simple summary to the latter three kind of new ceramic material's research development. Key word: Structure ceramics,functional ceramic,biology ceramics ,nanotechnology

陶瓷材料的微波烧结特性及应用

第24卷 第5期 2002年5月武 汉 理 工 大 学 学 报JOURNAL OF W UHAN UN I VERSI T Y OF TECHNOLOG Y V o l .24 N o.5 M ay .2002文章编号:167124431(2002)0520043204 陶瓷材料的微波烧结特性及应用3 王 念 周 健(武汉理工大学)  摘 要: 介绍了微波烧结陶瓷材料的应用历史、基本原理,分析了陶瓷材料的微波烧结特性和微波烧结在氧化物陶瓷、非氧化物陶瓷及透明陶瓷方面的应用,指出了应用中存在的一些亟待解决的问题,展望了微波烧结陶瓷材料的应用前景。 关键词: 微波加热; 微波烧结; 陶瓷材料 中图分类号: TQ 17012文献标识码: A 收稿日期:2001212208. 作者简介:王 念(19772),男,硕士生;武汉,武汉理工大学材料复合新技术国家重点实验室(430070).3武汉市晨光计划(20005004034)1 微波是一种电磁波,它遵循光的有关定律,可以被物质传递、吸收或反射,同时还能透过各种气体,很方便地实现在各种气氛保护下的微波加热及有气相参与的合成反应[1]。材料在微波场中可简要地分为下列三种类型[2]:(1)微波透明型材料:主要是低损耗绝缘体,如大多数高分子材料及部分非金属材料,可使微波部分反射及部分穿透,很少吸收微波。这类材料可以长期处于微波场中而不发热,可用作加热腔体内的透波材料。(2)全反射微波材料:主要是导电性能良好的金属材料,这些材料对微波的反射系数接近于1,仅极少数 入射的微波能量能透入,可用作微波加热设备中的波导、微波腔体、搅拌器等。 (3)微波吸收型材料:主要是一些介于金属与绝缘体之间的电介质材料,包括纺织纤维材料、纸张、木材、陶瓷、水、石蜡等。 微波加热技术早在20世纪40年代末期就已产生,50年代美国的V on H i ppel 在材料介质特性方面的开创性研究为微波加热的应用奠定了基础[3]。微波烧结就是利用微波加热原理来对材料进行的烧结。作为一种新型的陶瓷加工技术,微波烧结的应用时间并不长。加拿大的W .R .T inga 等人在60年代末期最早尝试了用微波加热及烧结陶瓷材料,并获得了初步成功[2]。进入80年代以后,人们对微波烧结技术进行了广泛而深 入的研究,并成功的制备出了A l 2O 3、B 4C 、Y 2O 32Zr O 2、Si O 2、T i O 2、ZnO 等陶瓷材料[3]。 1 微波烧结陶瓷材料的基本原理 1.1 微波烧结的微观机理 陶瓷材料在微波电磁场的作用下,会产生如电子极化、原子极化、偶极子转向极化和界面极化等介质极化[4],参加极化的微观粒子种类不同,建立或消除极化的时间周期也不一样。由于微波电磁场的频率很高,使材料内部的介质极化过程无法跟随外电场的变化,极化强度矢量P 会滞后于电场强度矢量E 一个角度,导致与电场同相的电流产生,这就构成了材料内部的耗散。在微波波段,主要是偶极子转向极化和界面极化产生的吸收电流构成材料的功率耗散。 微波烧结的成功与否,关键取决于材料自身的特性,如介电性能、磁性能以及导电性能等。当微波穿透和传播到介电材料中时,内部电磁场使电子、离子等产生运动,而弹性惯性和摩擦力使这些运动受到阻碍,从而引起了损耗,这就产生了体加热[5]。从满足微波烧结的角度出发,陶瓷材料应具有的最重要特性是损耗正切 tg ?[6],它表征了材料将所吸收的微波能转化为热能的能力;同时为达到材料与微波的最佳耦合状态,一个 适中的相对介电常数Ε 和较高的介电损耗因子Ε 是必须的,因为Ε 表征了微波通过材料的能力,而Ε 则表

陶瓷材料

简介 陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。 编辑本段分类 陶瓷材料分为普通陶瓷(传统陶瓷)材料和特种陶瓷(现代陶瓷)材料两大类。 普通陶瓷材料 采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。 特种陶瓷材料 采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。本节主要介绍特种陶瓷。 编辑本段性能特点 力学性能 陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。 热性能 陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。 电性能 大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。 化学性能 陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。 光学性能 陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。 编辑本段常用特种陶瓷材料 根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。 1.结构陶瓷 氧化铝陶瓷主要组成物为Al2O3,一般含量大于45%。氧化铝陶瓷具有各种优良的性能。耐高温,一般可要1600℃长期使用,耐腐蚀,高强度,其强度为普通陶瓷的2~3倍,高者可达5~6倍。其缺点是脆性大,不能受受突然的环境温度变化。用途极为广泛,可用作坩埚、发动机火花塞、高温耐火材料、热电偶套管、密封环等,也可作刀具和模具。氮化硅陶瓷主要组成物是Si3N4,这是一种高温强度高、高硬度、耐磨、耐腐蚀并能自润滑的高温陶瓷,线膨胀系数在各种陶瓷中最小,使用温度高达1400℃,具有极好的耐腐蚀性,除氢氟酸外,能耐其它各种酸的腐蚀,并能耐碱、各种金属的腐蚀,并具有优良的电绝缘性和耐

先进陶瓷材料研究现状及发展趋势

先进陶瓷材料研究现状及发展趋势 概述:结构陶瓷和功能陶瓷,结构陶瓷是指能作为工程结构材料使用的陶瓷,它具有高强度、高硬度、高弹性模量、耐高温、耐磨损、抗热震等特性;结构陶瓷大致分为氧化物系、非氧化物系和结构用陶瓷基复合材料。功能陶瓷是指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。功能陶瓷在先进陶瓷中约占70%的市场份额,其余为 结构陶瓷。 粉体特性: 粉体的特性对先进陶瓷后续成型和烧结有着显著的影响,特别是显著影响陶瓷的显微结构和机械性能。通常情况下,活性高、纯度高、粒径小的粉体有利于制备结构均匀、性能优良的陶瓷材料。同时,粉体的高效分散技术也存在较大差距。 粉体制备方法:陶瓷粉体的制备主要包含固相反应法、液相反应法和气相反应法3大类, 固相反应法:其中固相反应法特点是成本较低、便于批量化生产,但杂质较多, 主要包括碳热还原法〔碳化硅(Si C)粉体、氧氮化铝(Al ON)粉体)〕、高温 固相合成法(镁铝尖晶石粉体、钛酸钡粉体等)、自蔓延合成法氮化硅〔(Si3N4) 粉体等300余种〕和盐类分解法〔三氧化二铝(Al2O3)粉体〕等。 液相法:液相反应法生产的粉料粒径小、活性高、化学组成便于控制,化学掺杂 方便,能够合成复合粉体,主要包括化学沉淀法、溶胶——凝胶法、醇盐水解法、 水热法、溶剂蒸发法。 气相法:气相反应法包括物理气相沉积和化学气相沉积2种。与液相反应法相 比,气相反应制备的粉体纯度高、粉料分散性好、粒度均匀,但是投资较大、成 本高 先进陶瓷的成型技术:(4种) 干法压制成型:干压成型、冷等静压成型; 塑性成型:挤压成型、注射成型、热蜡铸成型、扎膜成型; 浆料成型:注浆成型、流延成型、凝胶注模成型和原位凝固成型; 固体无模成型:熔融沉积成型、

功能陶瓷的简介

功能陶瓷的简单介绍 功能陶瓷是具有电、磁、声、光、热、化学及生物体特性,具有相互转化功能的陶瓷。它主要是利用纳米技术使陶瓷的性能发生改变的。 热学功能陶瓷、生物功能陶瓷、化学功能陶瓷、电磁功能陶瓷、光学功能陶瓷,还是在涂层/薄膜和复合材料死当今比较主要的几种功能陶瓷。 生物功能陶瓷 在生物功能陶瓷方面: 利用纳米技术生产的纳米抗菌材料有三类:一类Ag+系抗菌材料(当高价银离子与细菌接触时使细菌体内的蛋白质变性。);第二类是是ZnO,Tio2:等光触媒型纳米抗菌材料(通过催化反应,将细菌的尸体分解得一干二净,一般还有除臭,自洁,防霉,防锈,高效防老化,全能净化空气,自造“负离子雨林”气候等功能);第三类是C-18A纳米蒙脱土等无机材料。将前两类加人陶瓷中可制成对病菌、细菌有强的杀菌和抑菌作用的陶瓷产品。北京陶瓷厂和日本东陶机器株式会社合资生产的高档卫生洁具“TOTO”产品,即是应用这一技术生产的具有抗菌性能的卫生洁具。生物陶瓷材料亦可作为作为无机生物医学材料,且没有毒副作用,与生物组织有良好的生物相容性、耐腐蚀性等优点,已越来越爱人们的重视。 主要有以下几种活性材料; (1)羟基磷灰石生物活性材料。人工听小骨羟基磷灰石听小骨临床应用效果优于其它各种听小,具有优良的声学性质,平均提高病人的听力20-30db。在特定语言频率范围提高45-60db。微晶与人体及生物关系密切,在生物和医学中已有成功应用,利用ha 微晶能使细胞内部结构发生变化,抑制癌细胞生长和增殖,可望成为治疗癌症的“新药”。(2)磷酸钙生物活性材料。磷酸钙又称生物无机骨水泥,是一种广泛用于骨修补和固定关节的新型材料。有望部分取代传统的pm-ma有机骨水泥。国内研究抗压强度已达到60mpa以上;磷酸钙陶瓷纤维:磷酸钙陶瓷纤维具有一定机械强度和生物活性,可用于无机骨水泥的补强及制务有机与无机复合型植入材料。 (3)磁性材料。生物磁性陶瓷材料主要为治疗癌症用磁性材料,植入肿瘤灶内,在外部交变磁场的作用下,产生磁滞热效应,导致磁性材料区域内局部温度升高,借以杀死肿瘤细胞,抑制肿瘤的发展。

现代工业上陶瓷材料的应用与发展

现代工业上陶瓷材料的应用与发展 摘要:阐述陶瓷材料的结构相、分类和陶瓷基复合材料的特性,以及陶瓷材料 在车辆上的应用。简要介绍手机电池中正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)和它们所起的不同作用。 关键词:传统陶瓷新型陶瓷传感器 PTC热敏电阻 NTC热敏电阻特性应用 引言:本文主要介绍陶瓷材料在汽车和手机这两个在当今社会中最具代表性的 工业中的应用与发展。陶瓷是古老而又新型的材料,它是用天然或人工合成的无机粉状物料,经过成型和高温烧结而制成的一种多相固体材料。利用天然硅酸盐矿物(如粘土、长石、石英等)为原料制成的陶瓷叫普通陶瓷,也叫传统陶瓷。这类陶瓷原料来源广,成本低,用量大。天然原料中的杂质对陶瓷的性能不利,人们用纯度高的人工合成原料(如氧化物、氮化物、碳化物、硅化物、硼化物、氟化物等),用传统陶瓷工艺方法制造的新型陶瓷,也叫现代陶瓷或特种陶瓷。新型陶瓷材料在现代工业的许多方面都已经发挥了巨大作用,现代工业应用多属精细陶瓷。比如在汽车上很早以前就有火花塞、窗玻璃、水泵的机械式密封使用了陶瓷。而且作为排放对策,触媒载体、氧传感器、爆震传感器等功能陶瓷相继出现。目前,已有许多发动机零件采用结构陶瓷制造,不久将来,陶瓷发动机将会出现。而在当今社会不可或缺的通讯工具——手机中,也可以看到精细陶瓷材料的身影。 1.陶瓷的结构相 陶瓷一般由晶相、玻璃相和气相组成。 (1)晶相晶相是体现陶瓷材料性质的主要组成相。大多数陶瓷材料是由离子键(如MgO、CaO、Al203等)和共价键(如金刚石、SiC等)为主要结合键。晶体中非金属元素的原子直径大,可排列成不同的晶系,形成晶体"骨架",金属原子的直径小,处于骨架的间隙中。 陶瓷晶体中主要的两类结构是硅酸盐结构和氧化物结构。陶瓷材料是多相多晶体材料,其物理化学性能主要由晶相决定。晶相中晶粒的大小对陶瓷的性能影响很大。晶粒越细,晶界越多,裂纹扩展越不容易,材料的强度越高。这一点和金属材料很相似。 (2)玻璃相玻璃是非晶态材料,由熔融的液体凝固得到。陶瓷中玻璃相的作用是将分散的晶相粘结在一起;降低烧成温度;抑制晶体长大以及填充气孔空隙。但玻璃相的机械强度比晶相低,热稳定性差,在较低的温度下就开始软化。而且往往因带有一些金属离子而降低陶瓷的绝缘性能。工业陶瓷要控制玻璃相的数量,一般约为20%~40%。

生物陶瓷材料的研究进展

摘要:生物陶瓷是一种具有与生物体或生物化学有关的区别于传统材料的新型材料,生物陶瓷有着传统陶瓷所不具备的优异性能。生物陶瓷在医学上的应用将极大的促进生物陶瓷的发展。与有机高分子材料相比生物体陶瓷耐热性好,便于进行高压灭菌等。本文通过大量的文献阅读介绍了生物陶瓷的分类,生物陶瓷的物理化学性质以及生物陶瓷的应用前景。此外本文还对一些生物陶瓷生产工艺做了简单介绍,并对生物陶瓷未来的发展做了合理展望。 关键词:特殊功能,纳米生物医用,生产工艺 1.生物陶瓷的分类及应用 生物陶瓷材料根据其在生物体内的活性可分为惰性生物陶瓷材料和活性生物陶瓷材料。 1.1惰性生物用瓷 生物惰性陶瓷主要是指化学性能稳定, 生物相溶性好的陶瓷材料。这类陶瓷材料的结构都比较稳定, 分子中的键力较强, 而且都具有较高的机械强度, 耐磨性以及化学稳定性, 它主要有氧化铝陶瓷、单晶陶瓷、氧化锆陶瓷、玻璃陶瓷等, 又分为以下几种: 1.1.1单晶、多晶和多孔氧化铝 单晶氧化铝:具有相当高的抗弯强度,耐磨性能好, 耐热性好, 可以直接与骨固定。已被用作人工骨、牙根、关节、螺栓。并且该螺栓不生锈, 也不会溶解出有害离子, 与金属螺栓不同, 勿需取出体外。60 年代后期, 广泛用作硬组织修复。多晶化学性能十分稳定, 几乎不与组织液发生任何化学反应, 硬度高,机械强度高。总之氧化铝陶瓷具有良好的组织亲和性, 这是因为其表面具有亲水性, 即氧化铝结晶表面氧原子能捕获水分子而产生极化现象, 结果在其表面覆盖一层羟基, 它能吸附水分子, 在表面形成亲水层, 使表面呈强极性, 易被组织液浸润。在极性层外间构成水——金属离子——蛋白质的“三明治”式结构, 形成周期的氧化铝生物相容性。 氧化铝陶瓷和单晶氧化铝。氧化铝陶瓷由氧化铝粉料烧结制成, 单晶氧化铝可用引上法或火焰熔融法制取。氧化铝陶瓷表面为亲水性, 与生物体组织有良好的生物亲合性。目前, 在临床实用中除做人造骨、人造关节外, 还可制接骨用螺钉。 1.1.2氧化锆陶瓷 部分稳定的氧化锆和氧化铝一样, 生物相容性良好, 在人体内稳定性高, 且比氧化铝断裂韧性、耐磨性更高, 有利减少植入物尺寸和实现低摩擦、磨损, 用以制造牙根、骨、股关节、复合陶瓷人工骨、瓣膜等。 1.1.3碳素类陶瓷 包括碳素、玻璃碳、碳纤维及热解石墨等, 其成分是碳元素, 玻璃碳的强度差, 在1300~ 1500℃加热分解碳氢化合物得到的热解石墨微粒, 质地致密 坚硬; 碳纤维强度大, 挠性好。在20 世纪60 年代人们发现它们具有血液相容

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷,而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展,各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各行各业。 3.1应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作航天发动机

相关文档
最新文档