红外光谱图解析方法

红外光谱图解析方法
红外光谱图解析方法

红外识谱歌

红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。

2960、2870是甲基,2930、2850亚甲峰。

1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。

面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。

顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。

C-O伸展吸收大,伯仲叔醇位不同。

1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。

苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。

缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。

吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。

1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。

1600兔耳峰,常为邻苯二甲酸。

氮氢伸展三千四,每氢一峰很分明。

羰基伸展酰胺I,1660有强峰;N-H变形酰胺II,1600分伯仲。

伯胺频高易重叠,仲酰固态1550;碳氮伸展酰胺III,1400强峰显。

胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。

1600碳氢弯,芳香仲胺千五偏。

八百左右面内摇,确定最好变成盐。

伸展弯曲互靠近,伯胺盐三千强峰宽,仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可见。

硝基伸缩吸收大,相连基团可弄清。

1350、1500,分为对称反对称。

氨基酸,成内盐,3100~2100峰形宽。

1600、1400酸根展,1630、1510碳氢弯。

盐酸盐,羧基显,钠盐蛋白三千三。

矿物组成杂而乱,振动光谱远红端。

钝盐类,较简单,吸收峰,少而宽。注意羟基水和铵,先记几种普通盐。

1100是硫酸根,1380硝酸盐,1450碳酸根,一千左右看磷酸。硅酸盐,一峰宽,1000真壮观。勤学苦练多实践,红外识谱不算难。

图6 蒙脱石原土的红外图谱

钠基蒙脱石的红外图谱在3434cm-1处归属为层间水分子的伸缩振动;1635cm-1为层间水分子的弯曲振动;1091cm-1、1041cm-1双峰为Si-O-Si伸缩振动;518cm-1可能是Si-O-Mg弯曲振动引起的;470cm-1可能是Si-O-Fe弯曲振动引起的,其峰较高,说明铁的含量较高。

图8 Fe-D2000高温复合柱撑蒙脱石的红外图谱比较

先无机后有机柱撑得到的红外图谱在2974cm-1、2875cm-1和2931cm-1出现C-H 对称与反对称伸缩振动峰,1457cm-1、1378cm-1和1344cm-1出现C-H弯曲振动峰,证明有-CH3和-CH2-;由于层间水分子部分被有机物取代,中频区1621cm-1层间水分子的弯曲振动峰明显减弱,469cm-1处Si-O-Fe的弯曲振动峰增强;酸

熏蒸后没有明显变化;煅烧后,C-H的伸缩振动峰和弯曲振动峰均消失

2993.98 1763.26 1378.54 1243.20 1053.65 1763.26 对应的是羰基即—CO—1053.65 对应的是醚基即—O—其他的都是指C—H的~~要在指纹区找~~

2993.98 C-H stretching 1763.26 C=O (carbonyl) stretching 1378.54 C-O single bond stretching 1243.20 C-O single bond stretching 1053.65 can be too many things, not

characteristic

红外图谱分析方法大全

红外光谱图解析 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。 公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600、1580、1500、1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 3000-2850 cm-1C-H伸缩振动 1465-1340 cm-1C-H弯曲振动 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃 3100~3010 cm-1烯烃C-H伸缩 1675~1640 cm-1C=C伸缩 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 2250~2100 cm-1C≡C伸缩振动 3300 cm-1附近炔烃C-H伸缩振动 4.芳烃 3100~3000 cm-1芳环上C-H伸缩振动 1600~1450 cm-1C=C 骨架振动 880~680 cm-1C-H面外弯曲振动) 芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理 1)红外光谱的产生 能量变化 ν νhc h= = E - E = ?E 1 2 ν ν h ?E = 对于线性谐振子 μ κ π ν c 2 1 = 2)偶极矩的变化 3)分子的振动模式 多原子分子振动 伸缩振动对称伸缩 不对称伸缩 变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆 AX3:对称变形、反对称变形 . 不同类型分子的振动 线型XY2: 对称伸缩不对称伸缩 弯曲

弯曲型XY2: 不对称伸缩对称伸缩面内弯曲(剪式) 面内摇摆面外摇摆卷曲 平面型XY3: 对称伸缩不对称伸缩面内弯曲 面外弯曲 角锥型XY3: 对称弯曲不对称弯曲

面内摇摆 4)聚合物红外光谱的特点 1、组成吸收带 2、构象吸收带 3、立构规整性吸收带 4、构象规整性吸收带 5、结晶吸收带 2 聚合物的红外谱图 1)聚乙烯 各种类型的聚乙烯红外光谱非常相似。在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜) 中压聚乙烯(热压薄膜) 高压聚乙烯(热压薄膜)

2.聚丙烯 无规聚丙烯

等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。 3.聚异丁烯 CH3 H2 C C n CH3

红外谱图解析基本知识

红外谱图解析基本知识 基团频率区 中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。 基团频率区可分为三个区域 (1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。 当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。 胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。 C-H的伸缩振动可分为饱和和不饱和的两种: 饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。 不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。 苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。 不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。 叁键oCH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。 (2) 2500~1900 cm-1为叁键和累积双键区,主要包括-CoC、-CoN等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。 对于炔烃类化合物,可以分成R-CoCH和R¢-C oC-R两种类型: R-CoCH的伸缩振动出现在2100~2140 cm-1附近; R¢-C oC-R出现在2190~2260 cm-1附近; R-C oC-R分子是对称,则为非红外活性。 -C oN 基的伸缩振动在非共轭的情况下出现2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子,-C oN基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C oN基越近,-C oN基的吸收越弱,甚至观察不到。

红外光谱图的解析经验

红外光谱图的解析经验 首先应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔, 芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600,1580,1500,1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 C-H伸缩振动(3000-2850cm^-1) C-H弯曲振动(1465-1340cm^-1) 一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。 2.烯烃 烯烃C-H伸缩(3100~3010cm^-1) C=C伸缩(1675~1640 cm^-1) 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 伸缩振动(2250~2100cm^-1) 炔烃C-H伸缩振动(3300cm^-1附近)。 4.芳烃 3100~3000cm^-1 芳环上C-H伸缩振动 1600~1450cm^-1 C=C 骨架振动

如何解析红外光谱图解读

如何解析xx 光谱图 、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度n 4+1+(n 3-n 1)/2 其中: n4 :化合价为4价的原子个数(主要是C原子),n3 :化合价为3价的原子个数(主要是N原子),n1化合价为1价的原子个数(主要是H,X原子) (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界: 高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合 物;而低于3000cm-1 一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100cm-1,烯1680~1640cm-1 芳环1600,1580,1500,1450cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1 的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1. 烷烃:

C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1) —般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2. 烯烃: 烯烃C-H伸缩(3100~3010cm-1), C=C伸缩(1675~1640cm-1),烯烃C-H 面外弯曲振动( 1000~675cm-1)。 3. 炔烃: 炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm- 1)。 4. 芳烃: 芳环上C-H 伸缩振动3100~3000cm-1,C=C骨架振动1600~1450cm-1,C-H面外弯曲振动880~680cm-1。 芳烃重要特征: 在1600,1580,1500和1450cm-1 可能出现强度不等的4个峰。 C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。 5.醇和酚: 主要特征吸收是0-H和C-0的伸缩振动吸收, 自由羟基0-H的伸缩振动:3650~3600cm-1为尖锐的吸收峰, 分子间氢键0-H伸缩振动:3500~3200cm-1,为宽的吸收峰; C-O 伸缩振动:1300~1000cm-1,0-H 面外弯曲:769-659cm-1 6. 醚特征吸收:1300~1000cm-1的伸缩振动, 脂肪醚:1150~1060cm-1 一个强的吸收峰 芳香醚:1270~1230cm-1(为Ar-O 伸缩),1050~1000cm-1(为R-O伸缩) 7. 醛和酮:

如何解析红外光谱图解读.doc

1 如何解析红外光谱图一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: n4:化合价为4价的原子个数(主要是C原子), n3:化合价为3价的原子个数(主要是N原子), n1:化合价为1价的原子个数(主要是H,X原子) (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-

1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动 (2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动 1600~1450cm-1, C-H面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。 C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。 2 5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收, 自由羟基O-H的伸缩振动:3650~3600cm-1,为尖锐的吸收峰, 分子间氢键O-H伸缩振动:3500~3200cm-1,为宽的吸收峰; C-O 伸缩振动:1300~1000cm-1,O-H 面外弯曲:769-659cm-1 6. 醚特征吸收:1300~1000cm-1 的伸缩振动, 脂肪醚:1150~1060cm-1 一个强的吸收峰 芳香醚:1270~1230cm-1(为Ar-O伸缩),1050~1000cm-1(为R-O伸缩) 7.醛和酮: 醛的特征吸收:1750~1700cm-1(C=O伸缩),2820,2720cm-1(醛基C-H

如何解析红外光谱图

如何解析红外光谱图——红外识谱歌 红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。 解析红外光谱的时候,我们可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。但很多时候我们手边并没有化合物的标准红外光谱或红外光谱谱图库,这时候就需要自己对红外谱图进行解析。解析红外谱图最重要的是确定化合物的官能团。要想快速分辨官能团,需要知道红外谱图中常见官能团的峰位置和峰形。下面分享一些红外谱图歌,方便大家快速解析红外谱图。 红外谱图歌 2960、2870是甲基,2930、2850亚甲峰。1470碳氢弯,1380甲基显。二个甲基同一碳,1380分二半。面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烃。末端烯烃此峰强,只有一氢不明显。化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。910端基氢,再有一氢990。

顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强峰形大而尖。三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特别,1600~1430,1650~2000,取代方式区分明。900~650,面外弯曲定芳氢。五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。C-O伸展吸收大,伯仲叔基易区别。1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。苯环若有甲氧基,碳氢伸展2820。次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。缩醛酮,特殊醚,1110非缩酮。酸酐也有C-O键,开链环酐有区别,开链峰宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。吸电效应波数高,共轭则向低频移。张力促使振动快,环外双键可类比。

红外光谱图解析方法

红外识谱歌 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。 末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。 若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。 1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展三千四,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰;N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550;碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。 1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。

第三章-红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外谱图解析方法大全

红外光谱解析顺口溜 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。识图先学饱和烃,3000以下看峰形。2960、2870甲基,2930、2850亚甲峰。1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。末端烯烃此峰强,只有一氢不明显。化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。 炔氢伸展3300,峰强很大峰形尖。 三键伸展2200,炔氢摇摆680。 芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢 醇酚羟基易缔合,3000处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动, 900上下反对称,800左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别,开链强宽1100,环酐移至1250。 羰基伸展1700,2720定醛基。 吸电效应波数高,共轭则向低频移。张力促使振动快,环外双键可类比。2500到3300,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、 酸酐千八来偶合,双峰60严相隔, 链状酸酐高频强,环状酸酐高频弱。羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。1180甲酸酯,1190是丙酸, 1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展3400,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰; N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550; 碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展3300,叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。

红外光谱的吸收

红外光谱的吸收

第六章红外吸收光谱法 基本要点: 1. 红外光谱分析基本原理; 2. 红外光谱与有机化合物结构; 3. 各类化合物的特征基团频率; 4. 红外光谱的应用; 5. 红外光谱仪. 学时安排:3学时 第一节概述 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。 红外吸收光谱也是一种分子吸收光谱。 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产

生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。 一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为 0.75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5μm ),中红外光区(2.5 ~25μm ),远红外光区(25 ~ 1000μm )。 近红外光区(0.75 ~ 2.5μm ) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。中红外光区(2.5 ~ 25μm ) 绝大多数有机化合物和无机离子的基频吸收带出现在该 光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 远红外光区(25 ~ 1000μm )该区的吸收带主要是由气体分子中的纯转动跃迁、 振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 红外吸收光谱一般用T~ 曲线或T~ 波数曲线表示。纵坐标

红外光谱基团解析方法

按基团顺序解析红外吸收光谱的方法如下。 1、首先查对νC=O 1850~1600cm-1(s)最强大的吸收是否存在,如存在,则可进一步查对下列羰基化合物是否存在。 ①酰胺查对νN-H约3500 cm-1(m-s),有时为等强度双峰是否存在。 ②羧酸查对νO-H3300~2500 cm-1宽而散的吸收峰是否存在。 ③醛查对CHO基团的νC-H约2720cm-1和2830 cm-1特征吸收峰是否存在。 ④酸酐查对νC=O约1820 cm-1和约1760cm-1的双峰是否存在。 ⑤酯查对νC-O1300~1000 cm-1(m-s),特征吸收峰是否存在。(两个吸收峰) ⑥酮查对以上基团吸收都不存在时,则此羰基化合物很可能是酮;另外,酮的 νas,C-C-C在1300~1000 cm-1有一弱吸收峰。 2、如果谱图上无νC=O吸收带,则可查对是否为醇、酚、胺、醚等化合物。 ①醇或酚查对是否存在νO-H3600~3200

cm-1(s,宽)和νC-O1300~1000 cm-1(s)特征吸收。 ②胺查是否存在νN-H3500~3100cm-1和δN-H1650~1580 cm-1(s)特征吸收。 ③醚查是否存在νC-O-C1300~1000cm-1特征吸收,且无醇、酚的νO-H3600~3200 cm-1特征吸收。 3、查对是否存在C=C双键或芳环。 ①查对有无链烯的νC=C(约1650cm-1)特征吸收;有无芳环的νC=C(约1600cm-1和约1500cm-1)特征吸收; ②查对有无链烯或芳环的ν=C-H(约3100cm-1)特征吸收。 4、查对是否存在C≡C 或C≡N 叁键吸收带。 ①查对有无νC≡C(约2150cm-1,w,尖锐)特征吸收;查有无ν≡C-H(约3300 cm-1,m,尖锐)特征吸收; ②查对有无νC≡N(2260~2220 cm-1,m-s)特征吸收。 5、查对是否存在硝基化合物查对有无νas,(约1560cm-1,s)和νs,NO2(约1350 cm-1)NO2 特征吸收。

红外吸收光谱解析

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。

第二节 红外吸收光谱的基本原理 一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红外的高频率区。 2、多原子分子的振动 1πμ2c K m 1m 2m 1m2+ K μ

红外光谱峰值分析的方法修订稿

红外光谱峰值分析的方 法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

傅里叶红外光谱分析 第一节?一般原理 电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱。 第二节紫外光谱 一、紫外光谱的基本原理 用波长范围200 nm~800 nm的光照射含有共轭体系的的不饱和化合物的稀溶液时,部分波长的光被吸收,被吸收光的波长和强度取决于不饱和化合物的结构。以波长l为横座标,吸收度A为纵座标作图,得紫外光谱,或称电子光谱。 是化合物紫外光谱的特征常数。 紫外光谱中化合物的最大吸收波长λ max 可见-紫外光谱适用于分析分子中具有π键不饱和结构的化合物。 二、紫外光谱在有机结构分析中的应用 随着共轭体系的延长,紫外吸收向长波方向移动,且强度增大(π→π*),因此可判断分子中共轭的程度。 利用紫外光谱可以测定化合物的纯度或含量。 第三节红外光谱 一、红外光谱的基本原理 用不断改变波长的红外光照射样品,当某一波长的频率刚好与分子中某一化学键的振动频率相同时,分子就会吸收红外光,产生吸收峰。用波长(λ)或波长的倒数—波数(cm-1)为横坐标,百分透光率(T%)或吸收度(A)为纵坐标

做图,得到红外吸收光谱图(IR)。分子振动所需能量对应波数范围在400 cm-1~4000 cm-1。 二、红外吸收峰的位置和强度 分子中的一个化学键可有几种不同的振动形式,而产生不同的红外吸收峰,键的振动分为两大类。 伸缩振动,用n表示,原子间沿键轴方向伸长或缩短。 弯曲振动用δ表示,形成化学键的两个原子之一与键轴垂直方向作上下或左右弯曲。 组成化学键的原子的质量越小,键能越高,键长越短,振动所需能量越大,吸收峰所在的波数就越高。 红外光谱的吸收峰分为两大区域: 4000 cm-1~1330 cm-1区域:特征谱带区,是红外光谱分析的主要依据。 1330 cm-1~650 cm-1区域:指纹区。每一化合物在指纹区都有它自己的特征光谱,对分子结构的鉴定能提供重要信息。 红外吸收峰的强弱用下列符号表示:v (很强);s(强);m(中强);w s (很弱);b(宽峰)。 (弱);v w 凡能使键增强的因素,引起峰位向高波数方向移动,反之,则向低波数方向移动。 三、各类化合物的红外光谱举例 (一)烃类化合物 注:烷烃,即饱和烃,是只有碳碳和碳氢键的链烃。烷烃的为CnH2n+2。

红外光谱分析

可以按如下步骤来: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), 例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键 加一个环,正好为4个不饱和度; (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm- 1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔 2200~2100 cm-1 烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即 1000~650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;

(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判 定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明 醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! 1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1) C=C伸缩(1675~1640 cm-1) 烯烃C-H面外弯曲振动(1000~675cm-1)。 3.炔烃:伸缩振动(2250~2100cm-1) 炔烃C-H伸缩振动(3300cm-1附近)。 4.芳烃:3100~3000cm-1 芳环上C-H伸缩振动 1600~1450cm-1 C=C 骨架振动 880~680cm-1 C-H面外弯曲振动 芳香化合物重要特征:一般在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。 880~680cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常常用此频区的 吸收判别异构体。 5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收, O-H 自由羟基O-H的伸缩振动:3650~3600cm-1,为尖锐的吸收峰,

相关文档
最新文档