概率论与数理统计第五章习题解答.dot

概率论与数理统计第五章习题解答.dot
概率论与数理统计第五章习题解答.dot

第五章 假设检验与一元线性回归分析 习题详解

5.01

解:这是检验正态总体数学期望μ是否为32.0

提出假设:0.32:,

0.32:10≠=μμH H

由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验

当零假设H 0成立时,变量:)1,0(~61

.10

.320

N X n X U -=

-=

σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u

计算得: 6.31)6.318.310.326.310.306.32(6

1=+++++?=x

89.061

.10

.326.310

-=-=

-=

n x u σμ

因 0.89 1.96u =<

它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为

0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显著为

32.0kg/cm 2。

5.02

解:这是检验正态总体数学期望μ是否大于10

提出假设:10:,

10:10>≤μμH H 即:10:,

10:10>=μμH H

由题设,样本容量5n =,221.0=σ,1.01.020==σ,km

x 万1.10=

,所以用U 检验

当零假设H 0成立时,变量:)1,0(~51

.010

N X n X U -=

-=

σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251

.010

1.100

=-=

-=

n x u σμ 因 2.24 1.64u =>

它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ

所以可以认为这批新摩托车的平均寿命μ有显者提高。 5.03

解:这是检验正态总体数学期望μ是否小于240

提出假设:240:,240:10<≥μμH H 即:240:,

240:10<=μμH H

由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验

当零假设H 0成立时,变量:)1,0(~625

240

N X n X U -=

-=

σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.1625

240

2200

-=-=

-=

n x u σμ 因

1.959 1.64

u =-<-

它落入拒绝域,于是拒绝H 0,而接受H 1,即可以认为240<μ 所以可以认为今年果园每株梨树的平均产量μ显著减少。 5.04

解:这是检验正态总体数学期望μ是否为500

提出假设:01:500,

:500.H H μμ=≠

由题设,样本容量9n =,未知2σ,所以用T 检验 当零假设H 0成立时,变量:)8(~9500

t S

X n S

X T -=

-=

μ 因检验水平01.0=α,由01.0}|{|=≥λT P ,查表得355.3=λ 得到拒绝域: 355.3||≥t 计算得:

509)508515515510488524518506497(91

=++++++++?=

x 22221

[(497509)(506509)(518509)91

s =?-+-+--

222(524509)(488509)(510509)+-+-+-

2

2

2

(515509)(515509)(508509)]+-+-+- 2121.7511.04

==

45.2904

.11500

5099500=-=-=

s x t 因 2.45 3.355t =<

它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为

500=μ

所以可以认为这批袋装食糖每袋平均净重μ显著合乎标准。 5.05

解:这是检验正态总体数学期望μ是否大于150

提出假设:.150:,

150:10>≤μμH H 即:.150:,

150:10>=μμH H

由题设,样本容量9n =,未知2σ,所以用T 检验 当零假设H 0成立时,变量:)8(~9150

t S

X n S

X T -=

-=

μ 因检验水平01.0=α,由01.0}{=='≥αλT P ,查表得896.2'=λ 得到拒绝域: 896.2≥t

计算得:155)165145165155145150160140170(9

1=++++++++?=x

22222)155150()155160()155140()155170[(1

91

-+-+-+-?-=

s 2222)155145()155165()155155()155145(-+-+-+-+

226.105.112])155165(==-+

415.196

.10150

1550

=-=

-=

n s

x t μ

896

.2415.1<=t

它没有落入拒绝域,不能拒绝H 0,而拒绝H 1,即不能认为

150>μ.

所以不能认为这种肥料使得小麦的平均产量μ显著增加. 5.06

解:这是检验正态总体数学期望μ是否小于30

提出假设:01:30,

:30.H H μμ≥< 即:01:30,

:30.H H μμ=<

由题设,样本容量8n =,5.29=x ,9.0=s ,未知方差2σ,所以用T

当零假设H 0成立时,变量:)7(~830

t S

X n S

X T -=

-=

μ 因检验水平10.0=α,由10.0}{='-≤λT P ,查表得,415.1'=λ 于是得拒绝域 : 415.1-≤t . 计算得 :571.189

.030

5.290

-=-=

-=

n s

x t μ 因 415.1571.1-<-=t

它落入拒绝域,于是拒绝零假设H 0,而接受备择假设H 1,即可认为30>μ

所以可以认为该市7月份的平均气温μ显著低于30℃。 5.07

解:这是检验正态总体方差2σ是否为3

提出假设:.3:,

3:2120≠=σσH H

由题设,样本容量n=10,未知μ,所以用2

χ检验 当零假设H 0成立时,变量:)9(~3

)110()1(222

02

2

χσχS S n -=-=

因检验水平10.0=α,由05.02

}{}{2212==

≥=≤α

λχλχP P ,查表得

;325.31=λ 919.162=λ

于是得到拒绝域: 325.32≤χ或919.162

≥χ

计算得: 2)4352423212(101

=+++-+++-+?=

x 22222)23()22()21()22[(1

101-+--+-+-?-=s

2222)25()22()24()22(-+--+-+-+

78

.5])24()23(22=-+-+

34.173

78

.59)1(2

02

2

=?=

-=

σχs n 919

.163.172

>=χ

它落入拒绝域,于是拒绝零假设H 0,而接受备择假设H 1,即可以认为32≠σ

所以可以认为这推零件长度编差的方差2σ显著改变。 5.08

解:这是检验正态总体方差2σ是否为4

提出假设:4:,

4:2120≠=σσH H

由题设,样本容量n=7,未知μ,所以用2

χ检验 当零假设H 0成立时,变量:)6(~4

)17()1(222

02

2

χσχS S n -=-=

因检验水平05.0=α,由025.02

}{}{2212==≥=≤α

λχλχP P ,查表

得237.11=λ 449.142=λ

于是得到拒绝域: 237.12≤χ或449.142

≥χ

计算得: 29)31273029312728(7

1=++++++?=x

2222)2931()2927()2928[(1

71

-+-+-?-=

s 2222)2931()2927()2930()2929(-+-+-+-+ 3=

5.44

3

6)1(2

02

2

=?=

-=

σχs n 449

.145.4237.12

>=<χ

它没有落入拒绝域,于是不能拒绝零假设H 0,而接受零假设H 0,即可以认为42=σ

所以可以认为这批柴油发动机燃烧一升柴油的运转时间方差2

σ

无显著改变。 5.09

解:这是检验两个正态总体方差21σ与22σ是否相等

提出假设:.:,:2

221122

210σσσσ≠=H H

由题设,n 1=8,n 2=10,未知21,μμ,所以用F 检验

当零假设H 0成立时,变量:)9,7(~22

2

1

F S S F =

因检验水平10.0=α,由05.02

}{}{21==

≥=≤α

λλF P F P ,查表得

;27.068

.31

1==

λ 29.32=λ 于是得拒绝域: 27.0≤f 或29.3≥f

计算得: 0.15)2.158.141.152.150.158.145.154.14(8

1=+++++++?=x

222221)150.15()158.14()155.15()154.14[(1

81

-+-+-+-?-=

s 11.0])152.15()158.14()151.15(222=-+-+-+

8.14)2.157.146.149.146.148.146.148.148.140.15(10

1

=+++++++++?=

y 22222)8.148.14()8.148.14()8.140.15[(1

101

-+-+-?-=

s 2

222)8.149.14()8.146.14()8.148.14()8.146.14(-+-+-+-+

038.0])8.142.15()8.147.14()8.146.14(222=-+-+-+

89.204

.011

.02221===s s f

因 29.389.227.0<=

它没有落入拒绝域,于是不能拒绝零假设H 0,而接受零假设

H 0 ,即可以认为2

221σσ=

所以可以认为甲、乙两车间所生产的这两批螺栓直径方差21σ与

22σ无显著差异。

5.10

解:这是检验两个正态总体方差21σ与22σ是否相等

提出假设:.:,:2

221122

210σσσσ≠=H H

由题设,n 1=n 2=16,361191001022

2221====s s ,未知21,μμ,

所以用F 检验

当零假设H 0成立时,变量:)15,15(~22

21

F S S F =

因检验水平05.0=α,由025.02

}{}{21==≥=≤α

λλF P F P

查表得;35.086

.21

1==

λ 86.22=λ 于是得到拒绝域: 35.0≤f 或86.2≥f

计算得:28.0361

100

2221===s s f

35

.028.0<=f

它落入拒绝域,于是拒绝零假设H 0,即不能认为2

221σσ=.

所以不能认为甲、乙两校学生体重方差21σ与22σ无显著差

异。

5.11

解:这是检验两个正态总体方差21σ与22σ是否相等,

提出假假:.:,:2

22112

2

210σσσσ≠=H H

由题设,n 1=9,n 2=11,22.249.131

.382.122

2221====s s ,未知

21,μμ,所以用F 检验

当零假设H 0

成立时,变量:)

10,8(~22

2

1

F S S F =

因检验水平01.0=α,由005.02

}{}{21==≥=≤α

λλF P F P

查表得;14.021

.71

1==

λ 12.62=λ 于是得到拒绝域: 14.0≤f 或12.6≥f

计算得:49.122

.231

.32221===s s f

12

.649.114.0<=

它没有落入拒绝域,于是不能拒绝零假设H 0,而接受零假设

H 0,即可以认为2

221σσ=

所以可以认为A,B 两种提炼方法的收得率方差21σ与22σ无显著差异。

5.12

解:这是检验两个正态总体数学期望1μ与2μ是否相等

提出假设:.:,

:211210μμμμ≠=H H

由题设,n 1=10,n 2=12,3.2=x , 81.09.0221==s , 6.3=y ,

96.14.1222==s ,未知21σ,22σ,但已知21σ=22σ,说以用'T 检验

当零假设H 0成立时,变量:

)20(~)

12

1

101(21210)112()110()

1

1(2)1()1('22

2

1

2

12122

22

1

1t S S Y

X n n n n S n S n Y

X T +-+-+--=

+-+-+--=

因检验水平01.0=α,由01.0}'{=≥λT P ,查表得845.2=λ 于是得到拒绝域: 845.2'≥t 计

)

12

1

101(2121096.1)112(81.0)110(6

.33.2)

1

1(2)1()1('2

12122

22

1

1+-+?-+?--=

+-+-+--=

n n n n s n s n y

x t

528.2-=

845.2528.2'<=t

它没有落入拒绝域,于是不能拒绝H 0,而拒绝H 1 ,即不能认为21μμ≠。

所以不能认为一片A ,B 两种安眠药使得患者平均延长睡眠时间有显著差异。

5.13

解:这是检验两个正态总体数学期望1μ与2μ是否相等

提出假设:.:,

:211210μμμμ≠=H H

由题设n 1=n 2=n=21,84.0=x , 35.652.2221==s , 96.0=y ,

12.902.3222==s ,未知21σ,2

2σ,但已知21σ=22σ,说以用'T 检验

当零假设H 0成立时,变量:)40(~21

'2

2

212

2

21t S S Y

X n

S S Y

X T +-=

+-=

因检验水平10.0=α,由10.0}'{==≥αλT P ,查表得684.1=λ 于是得到拒绝域: 684.1'≥t 计算得:140.021

12

.935.696.084.0'2

2

21-=+-=

+-=

n

s s y

x t

684.1140.0'<=t

它没有落入拒绝域,于是不能拒绝H 0,而接受H 0 ,即可以认为

2

1μμ=。

所以可以认为甲、乙两城每户居民一年的平均日常生活费用1

μ与2μ无显著差异。

5.14

解(1):这是检验两个正态总体方差21σ与22σ是否相等

提出假设:.:,:2

22112

2

210σσσσ≠=H H

由题设,n 1= n 2=7,4.121=s ,9.222=s ,未知21,μμ,所以用F 检验

当零假设H 0成立时,变量:)6,6(~22

2

1

F S S F =

因检验水平05.0=α,由025.02

}{}{21==

≥=≤α

λλF P F P ,查表得

17.082

.51

1==

λ, 82.52=λ 于是得拒绝域: 17.0≤f 或82.5≥f

计算得:48.09

.24

.12221===s s f

82

.548.017.0<=

它没有落入拒绝域,于是不能拒绝零假设H 0,而接受H 0,即可

以认为2

221σσ=.

所以可以认为两个商店在11月份的一天销售额方差21σ与22σ无显著差异。

(2)这是检验两个正态总体数学期望1μ与2μ是否相等 提出假设:.:,

:211210μμμμ≠=H H

由题设n 1= n 2=7,4.5=x ,4.121=s ,2.7=y ,9.222=s ,未知

21σ,22σ,由(1)知21σ=22σ,所以用'T 检验

当零假设H 0成立时,变量:)12(~7

'22

21

22

21

t S S Y X n

S S Y X T +-=

+-=

因检验水平05.0=α,由05.0}'{==≥αλT P ,查表得179.2=λ 于是得到拒绝域: 179.2'≥t 计算得:297.27

9

.24.1(2.74.5'22

21

-=+-=

+-=

n

s s y x t

179.2297.2'>=t

它落入拒绝域,于是拒绝零假设H 0,即不能认为21μμ= 所以不能认为两个商店在11月份的平均一天销售额1μ与2μ无显著差异。

5.15

解:由题设,样本容量n=6,检验水平01.0=α,

由01.0}{==≥αλR P ,查表得9172.0=λ 列表计算

再计算 18121261

42)(616126

12=??-=-=∑∑==i i i i

xx x x l

10

2434)(616

126

1

2=-=-=∑∑==i i i i yy

y y l

概率论与数理统计考试试卷

2011 ~2012 学年第一学期《概率论与数理统计》考试试题A卷班级(学生填写): 姓名: 学号: 命题: 审题: 审批: --------------------------------------------------- 密 ---------------------------- 封 ----------------------- ---- 线 -------------------------------------------- ----- (答题不能超出密封线) 使用班级(老师填写):数学09-1,3班可以普通计算器 题号一二三四五六七八九总分得分 阅卷 人 一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填 在括号中) (本大题共 11 小题,每小题2分,总计 22 分) 1、设A,B为随机事件,则下列各式中不能恒成立的是(C ). A.P) B.,其中P(B)>0 C. D. 2、为一列随机事件,且,则下列叙述中错误的是(D ). A.若诸两两互斥,则 B.若诸相互独立,则 C.若诸相互独立,则 D. 3、设有个人,,并设每个人的生日在一年365天中的每一天的可能性为均 等的,则此个人中至少有某两个人生日相同的概率为( A ). A. B. C. D. 4、设随机变量X服从参数为的泊松分布,且则的值为( B ). A. B. C. D.. 解:由于X服从参数为的泊松分布,故.又故,因此 5、设随机变量X的概率密度函数为的密度函数为(B ). A. B. C. D. 解:这里,处处可导且恒有,其反函数为,直接套用教材64页的公式(5.2),得出Y的密度函数为 6、若,且X,Y相互独立,则( C ). A. B.

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计期末试卷+答案

一、单项选择题(每题2分,共20分) 1.设A 、B 是相互独立的事件,且()0.7,()0P A B P A ?==则 ()P B = ( A A. 0.5 B. 0.3 C. 0.75 D. 0.42 2、设X 是一个离散型随机变量,则下列可以成为X 的分布律的是 ( D ) A. 10 1p p ?? ?-??( p 为任意实数) B. 123450.1 0.3 0.3 0.2 0.2x x x x x ?? ??? C. 3 3()(1,2,...) ! n e P X n n n -== = D. 3 3()(0,1,2,...) ! n e P X n n n -== = 3.下列命题 不正确的是 ( D ) (A)设X 的密度为)(x f ,则一定有?+∞ ∞-=1 )(dx x f ; (B)设X 为连续型随机变量,则P (X =任一确定值)=0; (C)随机变量X 的分布函数()F x 必有01)(≤≤x F ; (D)随机变量X 的分布函数是事件“X =x ”的概率; 4.若()()() E XY E X E Y =,则下列命题不正确的是 ( B ) (A)(,)0Cov X Y =; (B)X 与Y 相互独立 ; (C)0=XY ρ; (D)()()D X Y D X Y -=+; 5. 已知两随机变量X 与Y 有关系0.80.7Y X =+,则X 与Y 间的相关系数 为 ( B ) (A)-1 ( B)1 (C)-0.8 (D)0.7 6.设X 与Y 相互独立且都服从标准正态分布,则 ( B ) (A)(0)0.25P X Y -≥= (B)(min(,)0)0.25P X Y ≥=

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

华东师范大学末试卷(概率论与数理统计)复习题

华东师范大学期末试卷 概率论与数理统计 一. 选择题(20分,每题2分) 1. 已知随机变量X ~N(0,1),则2X 服从的分布为: A .)1(χB 。)1(2 χC 。)1,0(N D 。)1,1(F 2. 讨论某器件的寿命,设:事件A={该器件的寿命为200小时},事件B={该器件的寿 命为300小时},则: A . B A =B 。B A ? C 。B A ? D 。Φ=AB 3.设A,B 都是事件,且1)(,0)(,1)(≠>=A P A P B A P ,则=)(A B P () A.1 B.0 C.0.5 D.0.2 4.设A,B 都是事件,且2 1 )(= A P ,A, B 互不相容,则=)(B A P () B.41 C.0 D. 5 1 5.设A,B 都是事件,且2 1 )(= A P , A, B 互不相容,则=)(B A P () B. 41 C.0 D. 5 1 B 。若A,B 互不相容,则它们相互独立 C .若A,B 相互独立,则它们互不相容 D .若6.0)()(==B P A P ,则它们互不相容 7.已知随机变量X ~)(λπ,且}3{}2{===X P X P ,则)(),(X D X E 的值分别为: A.3,3 B.9,9 C.3,9 D.9,3 8.总体X ~),(2 σμN ,μ未知,4321,,,X X X X 是来自总体的简单随机样本,下面估计量中的哪一个是μ的无偏估计量:、

A.)(31 )(21T 43211X X X X +++= C.)432(5 1 T 43213X X X X +++= A.)(4 1 T 43214X X X X +-+= 9.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,下列μ的无偏估计量哪一个是较为有效的估计量: A.54321141)(81)(41T X X X X X ++++= B.)(61 )(41T 543212X X X X X ++++= D.)2(6 1 T 543214X X X X X ++++= 10.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,记 ∑==n i i X n X 1 1, 21 21 )(11X X n S n i i --=∑=, 2 1 22 )(1X X n S n i i -=∑=, 21 23 )(1μ-=∑=n i i X n S ,21 24)(1μ-= ∑=n i i X n S ,则服从自由度为1-n 的t 分布的 1X t 2 --=n S μ C.n S 3X t μ-= D .n S 4 X t μ -= 11.如果存在常数)0(,≠a b a ,使1}{=+=b aX Y p ,且+∞<<)(0X D ,则Y X ,

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

天津理工大学概率论与数理统计同步练习册标准答案详解

天津理工大学概率论与数理统计同步练习册答案详解

————————————————————————————————作者:————————————————————————————————日期: 2

第一章 随机变量 习题一 1、写出下列随机试验的样本空间 (1)同时掷三颗骰子,记录三颗骰子点数之和 Ω= { }1843,,,Λ (2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω= { }Λ,,1110 (3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”, 如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。用“0”表示次品,用“1”表示正品。 Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,} (4)在单位圆内任意取一点,记录它的坐标 Ω= }|),{(122<+y x y x (5)将一尺长的木棍折成三段,观察各段的长度 Ω=},,,|),,{(1000=++>>>z y x z y x z y x 其中z y x ,,分别表示第一、二、三段的长度 (6 ) .10只产品中有3只次品 ,每次从其中取一只(取后不放回) ,直到将3只次品都取出 , 写出抽取次数的基本空间U = “在 ( 6 ) 中 ,改写有放回抽取” 写出抽取次数的基本空间U = 解: ( 1 ) U = { e3 , e4 ,… e10 。} 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 …、 10 ( 2 ) U = { e3 , e4 ,… } 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 … 2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件 (3)20>x 与18x 与22≤x 相容事件 (5)20个产品全是合格品与20个产品中只有一个废品 互不相容 (6)20个产品全是合格品与20个产品中至少有一个废品 对立事件

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论与数理统计试卷及答案

概率论与数理统计 答案 一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2 ()E ξ=29、4. 0.94、5. 3/4 三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P (A )=5/625=1/125------------------------------------------------------5 分 (2) 5个盒子中选一个放两个球,再选两个各放一球有 302415=C C 种方法----------------------------------------------------7 分 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故 125 72625360)(== B P --------------------------------------------------10分 四.解:(1) ?? ∞∞-==+=3 04ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)? ==+=<10 212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3 300()()[ln(1)]1Ax E xf x dx dx A x x x ξ∞-∞= ==-++?? 13(3ln 4)1ln 4ln 4 =-=-------------------------------------10分 五.解:(1)ξ的边缘分布为 ??? ? ??29.032.039.02 1 0--------------------------------2分 η的边缘分布为 ??? ? ??28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη?的分布列为

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶 3 发,事件表示“击中i发”,i = 0, 1, 2, 3。那么事件 表示 ( )。 ( A ) 全部击中; ( B ) 至少有一发击中; ( C ) 必然击中; ( D ) 击中 3 发 2.设离散型随机变量x 的分布律为则常数 A 应为( )。 ( A ) ; ( B ) ; (C) ; (D) 3.设随机变量,服从二项分布B ( n,p ),其中 0 < p < 1 ,n = 1, 2,…,那么,对于任一实数x,有等于 ( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时每人需用台秤的概率 为,则4人中至多1人需用台秤的概率为: __________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于 ___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查到次品时为止,用x表示检查次数,求的分布函数:

五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为 20%,不胖不瘦者患高血压病的概率为 10% ,瘦者患高血压病的概率为5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量, 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化? ( 分别取和 0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在 100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为: 0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为: 6.1517 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 1.2500 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A = 1.1189 2.0327 2.9813 3.9962 5.0175 6.0726 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 1.8205 1.1158 2.6263 2.7873 1.7057 1.0197 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

相关文档
最新文档