《点集拓扑学》第3章 §3.1 子空间

《点集拓扑学》第3章 §3.1 子空间
《点集拓扑学》第3章 §3.1 子空间

第3章子空间(有限),积空间,商空间

在这一章中我们介绍通过已知的拓扑空间构造新的拓扑空间的三种惯用的办法.为了避免过早涉及某些逻辑上的难点,在§3.2中我们只讨论有限个拓扑空间的积空间,而将一般情形的研究留待以后去作.

§3.1子空间

本节重点:掌握度量子空间、拓扑空间子空间的概念,子空间的拓扑与大空间拓扑之间的关系以及子空间的闭集、邻域、基、导集、闭包与大空间相应子集之间的关系及表示法.

讨论拓扑空间的子空间目的在于对于拓扑空间中的一个给定的子集,按某种“自然的方式”赋予它一个拓扑使之成为一个拓扑空间,以便将它作为一个独立的对象进行考察.所谓“自然的方式”应当是什么样的方式?为回答这个问题,我们还是先从度量空间做起,以便得到必要的启发.

考虑一个度量空间和它的一个子集.欲将这个子集看作一个度量空间,必须要为它的每一对点规定距离.由于这个子集中的每一对点也是度量空间中的一对点,因而把它们作为子集中的点的距离就规定为它们作为度量空间中的点的距离当然是十分自然的.我们把上述想法归纳成定义:

定义3.1.1 设(X,ρ)是一个度量空间,Y是X的一个子集.因此,Y×Y X×X.显然:Y×Y→R是Y的一个度量(请自行验证).我们称Y的度量,是由X的度量ρ诱导出来的度量.度量空间(Y,ρ)称为度量空间(X,ρ)的一个度量子空间.

我们常说度量空间Y是度量空间X的一个度量子空间,意思就是指Y是X的一个子集,并且Y的度量是由X的度量诱导出来的.我们还常将一个度量空间的任何一个子集自动地认作一个度量子空间而不另行说明.例如我们经常讨论的:实数空间R中的各种区间(a,b),

[a,b],(a,b]等;n+1维欧氏空间中的

n维单位球面:

n维单位开、闭球体:

以及n维单位开、闭方体和等等,并且它们也自然被认作是拓扑空间(考虑相应的度量诱导出来的拓扑).

定理3.1.1 设Y是度量空间X的一个度量子空间.则Y的子集U是Y中的一个开集当且仅当存在一个X中的开集V使得U=V∩Y.

证明由于现在涉及两个度量空间,我们时时要小心可能产生的概念混淆.对于x∈X

(y∈Y),临时记度量空间X(Y)中以x(y)为中心以ε>0为半径的球形邻域为,.

首先指出:有=∩Y.

这是因为z∈X属于当且仅当z∈Y且(z,y)<ε.

现在设U∈,由于Y的所有球形邻域构成的族是Y的拓扑的一个基,U可以表示为Y 中的一族球形邻域,设为A的并.于是

设,∴U=V∩Y

另一方面,设U=V∩Y,其中V∈.如果y∈U,则有y∈Y和y∈V.,

按照定理3.1.1的启示,我们来逐步完成本节开始时所提出的任务.

定义3.1.2 设A是一个集族,Y是一个集合.集族{A∩Y|A∈A}称为集族A在集合Y

上的限制,记作

引理3.1.2 设Y是拓扑空间(X,T)的一个子集.则集族是Y的一个拓扑.证明我们验证满足拓扑定义中的三个条件:

(1)由于X∈T和Y=X∩Y,所以Y∈;由于∈T,=∩Y,所以∈

(2)如果A,B∈,即

于是

(3)如果是集族的一个子集族,即对于每一个A∈,

定义3.1.3 设Y是拓扑空间(X,T)的一个子集.Y的拓扑称为(相对于X的拓扑T而言的)相对拓扑;拓扑空间(Y,,)称为拓扑空间的一个(拓扑)子空间.

我们常说拓扑空间Y是拓扑空间X的一个子空间,意思就是指Y是X的一个子集,并且Y的拓扑就是对于X的拓扑而言的相对拓扑.此外,我们也常将拓扑空间的子集认为是一个子空间而不另行说明.

假设Y是度量空间X的一个子空间.现在有两个途径得到Y的拓扑:一是通过X的度量诱导出Y的度量,然后考虑Y的这个度量诱导出来的拓扑;另一是先将X考虑成一个拓扑空间,然后考虑Y的拓扑为X的拓扑在Y上引出来的相对拓扑.事实上定理3.1.1已经指出经由这两种途径得到的Y的两个拓扑是一样的.下面把这层意思重新叙述一遍.

定理3.1.3 设Y是度量空间X的一个度量子空间.则X与Y都考虑作为拓扑空间时Y是X的一个(拓扑)子空间.

定理3.1.4 设X,Y,Z都是拓扑空间.如果Y是X的一个子空间,Z是Y的一个子空间,则Z是X的一个子空间.

证明当Y是X的一个子空间,Z是Y的一个子空间时,我们有;并且若设T为X的拓扑时,Z的拓扑是()={U∩Y|U∈T}

={U∩Y∩Z|U∈T}={U∩Z|U∈T}=

因此Z是X的一个子空间.

定理3.1.5 设Y是拓扑空间X的一个子空间,y∈Y.则

(l)分别记T和为X和Y的拓扑,则=;

(2)分别记F和为X和Y的全体闭集构成的族,则=;

(3)分别记和y为点y在X和Y中的邻域系,则y= .

证明(1)即是子空间和相对拓扑的定义.

(2)成立是因为:

={(X-U)∩Y|U∈T}={Y-U∩Y|U∈T}=

(3)设则,因此存在使得V=∩Y,令

,由于并且

=V∪U=U

所以U∈.以上证明.类似的论证指出

定理3.1.6 设Y是拓扑空间X的一个子空间,A是Y的一个子集.则

(1)A在y中的导集是A在X中的导集与Y的交;

(2)A在Y中的闭包是A在X中的闭包与Y的交.

证明为证明这个定理,我们仍分别记A在X中的导集和闭包为d(A)和;而记A

在Y中的导集和闭包分别为(A)和(A).

(l)一方面,设y∈(A).则对于y在X中的任何一个邻域U,根据定理3.1.5,U∩Y是y在Y中的一个邻域,所以因此y∈d (A).此外当然有y∈Y.所以y∈d(A)∩y.这证明(A)d(A)∩Y.

另一方面,设y∈d(A)∩Y,

所以y∈(A).这证明d(A)d(A)∩Y.

(2)成立是因为(A)=A∪(A)=A∪(d(A)∩Y)=(A∪d(A))∩(A∪Y)=∩Y

定理3.1.7 设Y是拓扑空间X的一个子空间,y∈Y.则

(1)如果B是拓扑空间X的一个基,则是子空间Y的一个基;

(2)如果是点y在拓扑空间X中的一个邻域基,则是点y在子空间Y中的一个邻域基.

证明(1)设B是X的一个基.对于Y中的任何一个开集U,存在X中的一个开集V使得U=V∩Y;存在B的一个子族,使得V=.因此U=由于上式中的每一个B∩Y是中的一个元素,所以在上式中U已经表示成了中的某些元素之并了.因此是Y的一个基.

(2)证明(略).

“子空间”事实上是从大拓扑空间中“切割”出来的一部分.这里有一个反问题,概言之就是:一个拓扑空间什么时候是另一个拓扑空间的子空间?换言之,一个拓扑空间在什么条件下能够“镶嵌”到另一个拓扑空间中去?当然假如我们拘泥于某些细节,例如

涉及的拓扑空间是由什么样的点构成的,那么问题会变得十分乏味,然而我们在§2.2中便提到过,拓扑学的中心任务是研究拓扑不变性质,也就是说我们不去着意区别同胚的两个拓扑空间.在这种意义下,以上问题可以精确地陈述如下:

定义3.1.4 设X和Y是两个拓扑空间,f:X→Y.映射f称为一个嵌入,如果它是一个单射,并且是从X到它的象集f(X)的一个同胚.如果存在一个嵌入f: X→Y,我们说拓扑空间X可嵌入拓扑空间Y.

事实上,拓扑空间X可嵌入拓扑空间Y意思就是拓扑空间X与拓扑空间Y的某一个子空间同胚.换言之,在不区别同胚的两个拓扑空间的意义下,X“就是”Y的一个子空间.

不能嵌入的一个简单例子是,一个离散空间,如果它含有多于一个点,就决不可能嵌入到任何一个平庸空间中去;反之,一个平庸空间,如果它含有多于一个点,也决不可能嵌入到任何一个离散空间中去.欧氏平面中的单位圆周是否可以嵌入到实数空间(即直线)中去呢?这个问题我们到第四章中再作处理.本书中我们还会涉及一些比较深刻的嵌入定理.

本节关键:掌握拓扑空间中的子集(这里称为子空间)的开集、闭集、闭包、导集”长”得什么模样.

作业:

P95 1.2.5.7.

ArcGIS专题操作之-空间分析建模

实验五、空间分析建模:Model Builder土壤侵蚀危险性建模分析专业年级:地信071 姓名:王媛媛学号:06407024 一、实验目的与要求 1.实验目的 空间分析建模是指运用GIS空间分析建立数学模型的过程,其过程包括:明确问题、分解问题、组建模型、检验模型结果和应用分析结果。模型生成器(Model Builder)是ArcGIS所提供的构造地理处理工作流和脚本的图形化建模工具。在模型中,分别定义不同的图形代表输入数据、输出数据、空间处理工具,它们以流程图的形式进行组合以创建高级的空间分析功能和流程,加速复杂地理处理模型的设计和实施。 通过对本次练习,我们可以认识如何在Model Builder 环境下通过绘制数据处理流程图的方式实现空间分析过程的自动化,加深对地理建模过程的认识,对各种GIS分析工具的用途有深入的理解。 2.实验要求 (1)确定目标,加载数据 (2)创建模型 (3)认识Model Builder操作界面 (4)编辑模型 (5)执行模型,查看结果:土壤侵蚀危险性分布图 (6)设置参数,保存模型 二、实验原理 利用 Model Builder 进行空间分析建模,实现土壤侵蚀危险性分析。 三、实验数据 矢量数据:研究区界线(Study Area)、植被(Vegetation); 栅格数据:土壤类型栅格(Soilsgrid)、elevation.dem 四、实验内容及步骤 1. 确定目标,加载数据 (1)明确问题 目标:获取《土壤侵蚀危险性分布图》 土壤侵蚀影响因子确定:坡度(由DEM生成,权重50%)、土壤类型(权重25%)、植被覆盖(权重25%)。 根据不同土壤类型对土壤侵蚀危险性的影响力,给各种土壤类型赋值(1表示土壤侵蚀危险度较低,9表示较高):Bedrock(基岩)1、Sandy loam(砂壤土)3、Clay(粘土)5、Clay loam(粘壤土)9。 根据不同植被类型对土壤侵蚀危险性的影响力,给各种植被类型赋值(1表示土壤侵蚀危险度较低,

20世纪十大算法

20世纪十大算法 本世纪初,美国物理学会(American Institute of Physics)和IEEE计算机社团(IEEE Computer Society)的一本联合刊物《科学与工程中的计算》发表了由田纳西大学的Jack Dongarra和橡树岭国家实验室的Francis Sullivan联名撰写的“世纪十大算法”一文,该 文“试图整理出在20世纪对科学和工程领域的发展产生最大影响力的十大算法”。作者苦于“任何选择都将是充满争议的,因为实在是没有最好的算法”,他们只好用编年顺序依次列出了这十项算法领域人类智慧的巅峰之作——给出了一份没有排名的算法排行榜。有趣的是,该期杂志还专门邀请了这些算法相关领域的“大拿”为这十大算法撰写十篇综述文章,实在是蔚为壮观。本文的目的,便是要带领读者走马观花,一同回顾当年这一算法界的盛举。1946蒙特卡洛方法 在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,呃,能帮我算算这个不规则图形的面积么?蒙特卡洛(Monte Carlo)方法便是解决这个问题的巧妙方法:随机向该正方形内扔N(N是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个:那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。别小看这个数黄豆的笨办法,大到国家的民意测验,小到中子的移动轨迹,从金融市场的风险分析,到军事演习的沙盘推演,蒙特卡洛方法无处不在背后发挥着它的神奇威力。 蒙特卡洛方法由美国拉斯阿莫斯国家实验室的三位科学家John von Neumann(看清楚了,这位可是冯诺伊曼同志!),Stan Ulam和Nick Metropolis共同发明。就其本质而言,蒙特卡洛方法是用类似于物理实验的近似方法求解问题,它的魔力在于,对于那些规模极大的问题,求解难度随着问题的维数(自变量个数)的增加呈指数级别增长,出现所谓的“维数的灾难”(Course of Dimensionality)。对此,传统方法无能为力,而蒙特卡洛方法却可以独辟蹊径,基于随机仿真的过程给出近似的结果。 最后八卦一下,Monte Carlo这个名字是怎么来的?它是摩纳哥的一座以博彩业闻名的城市,赌博其实是门概率的高深学问,不是么? 1947单纯形法 单纯形法是由大名鼎鼎的“预测未来”的兰德公司的Grorge Dantzig发明的,它成为线性规划学科的重要基石。所谓线性规划,简单的说,就是给定一组线性(所有变量都是一次幂)约束条件(例如a1*x1+b1*x2+c1*x3>0),求一个给定的目标函数的极值。这么说似乎也太太太抽象了,但在现实中能派上用场的例子可不罕见——比如对于一个公司而言,其能够投入生产的人力物力有限(“线性约束条件”),而公司的目标是利润最大化(“目标函数取 最大值”),看,线性规划并不抽象吧!线性规划作为运筹学(operation research)的一部分,成为管理科学领域的一种重要工具。而Dantzig提出的单纯形法便是求解类似线性规划问题的一个极其有效的方法,说来惭愧,本科二年级的时候笔者也学过一学期的运筹学,现在脑子里能想起的居然只剩下单纯形法了——不过这不也正说明了该方法的简单和直观么? 顺便说句题外话,写过《万历十五年》的黄仁宇曾说中国的传统是“不能从数目字上管理”,我们习惯于“拍脑袋”,而不是基于严格的数据做决定,也许改变这一传统的方法之一就是全民动员学习线性规划喔。 1950Krylov子空间迭代法 1951矩阵计算的分解方法 50年代初的这两个算法都是关于线性代数中的矩阵计算的,看到数学就头大的读者恐怕看到

子空间的和与直和

5.5 子空间的和与直和 授课题目: 子空间的和与直和. 教学目标: 1.理解并掌握子空间的概念. 2.掌握子空间的判别方法,熟悉几种常见的子空间. 3.掌握子空间的交与和的概念. 授课时数:3学时 教学重点:子空间的判别. 教学难点:子空间的交与和. 教学过程: 一 子空间的的和 回忆: 令W 是数域F 上向量空间V 的一个非空子集.如果W 对于V 的加法以及标量与向量的乘法来说是封闭的,那么就称W 是V 的一个子空间. 一个向量空间V 本身和零空间叫做V 的平凡子空间。V 的非平凡子空间叫做V 的真子空间。 1. 定义:设12,W W V ?,则称V 的子集{}121122/,W W αααα+∈∈ 为1212w w W W +与的和,记为 即12W W +={}121122/,W W αααα+∈∈ 定理5.5.1:若12,W W 均为V 的两个子空间,则12W W +仍然是子空间. 证明:12,W W θθθθθ∈∈∴=+∈ 12W W +故12W W +≠φ 对121212,,,,a b F W W αβαααβββ?∈?+=+=+有, 111222,,,W W αβαβ∈∈ 12W W +均为v 子空间. ∴ 111222,a b W a b W αβαβ+∈+∈ 于是 ()()()()1212112212a b a b a b a b W W αβααββαβαβ+=+++=+++∈+ ∴ 12W W +是V 的子空间。 推广:12,,,n W W W V n 为的个子空间,则 {}12121122/,,,n n n n W W W W W W αααααα+++=+++∈∈∈ 仍然是V 的子空间. 补充:若1W =L ()r ααα,,,21 ,()212,,,t W L βββ= 则12W W +=L ()t r βββααα,,,,,,,2121

ARCGIS空间分析操作步骤

ARCGIS空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、栅格重分类(Raster Reclassify)、栅格计算-查询符合条件的栅格(Raster Calculator)、面积制表(Tabulate Area)、分区统计(Zonal Statistic)、缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、栅格单元统计(Cell Statistic)、邻域统计(Neighborhood)等空间分析基本操作和用途。 3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。 二、实验准备 预备知识: 空间数据及其表达 空间数据(也称地理数据)是地理信息系统的一个主要组成部分。空间数据是指以地球表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。它是GIS所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。 在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。 有两种基本方法来表示空间数据:一是栅格表达; 一是矢量表达。两种数据格式间可以进行转换。 空间分析 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。 空间分析是地理信息系统的主要特征。空间分析能力(特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。 空间分析赖以进行的基础是地理空间数据库。 空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。 空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同,空间分析的步骤会有所不同。通常,所有的空间分析都涉及以下的基本步骤,具体在某个分析中,可以作相应的变化。 空间分析的基本步骤: a)确定问题并建立分析的目标和要满足的条件 b)针对空间问题选择合适的分析工具 c)准备空间操作中要用到的数据。

子空间的运算

§5 子空间的运算 教学目的 通过2学时的讲授,使学生理解子空间交、和的定义与性质,基本掌握子空间直和的刻画定理及初步应用. 教学内容 为了进一步把握向量空间的结构,本节学习向量空间的子空间的交与和两种运算,以及子空间和的重要特况:直和. 5.1 交与和 命题6.5.1 设W 1,W 2都是数域F 上向量空间V 的子空间,则W 1∩W 2也是V 的子空间,叫做W 1与W 2的交. 证 因为θ∈W 1∩W 2,所以W 1∩W 2≠?.设α,β∈W 1∩W 2,则α,β∈W i ,i =1,2.因为W i 是子空间,所以α+β∈W i ;k α∈W i ,?k ∈F ;i =1,2.于是α+β∈W 1∩W 2,k α∈W 1∩W 2,?k ∈F .因此,W 1∩W 2是V 的子空间. 由集合的交的定义可得出,子空间的交适合下列运算规则: 1)交换律 W 1∩W 2= W 2∩W 1; 2)结合律 (W 1∩W 2)∩W 3= W 1∩(W 2∩W 3). 由结合律,我们得到多个子空间的交: t i i t W W W W 121==, 且由归纳法易见, t i i W 1=也是V 的子空间. 注 类似命题 6.5.1的证明可得,设I 是任一指标集,若?i ∈I ,W i 是V 的子空间,则{ }I i W W i I i i ∈?∈=∈,αα 也是V 的子空间. 向量空间V 的两个子空间W 1与W 2的并集一般不是V 的子空间.例如,在V 3中,取W 1,W 2是通过原点的两个不同的平面,它们都是V 3的子空间.W 1∪W 2对加法一般不封闭,因此W 1∪W 2不是V 3的子空间.若我们想构造一个包含W 1∪W 2的子空间,则这个子空间应当包含W 1中的任一向量α1与W 2中的任一向量α2的和α1+α2 .由此受到启发.我们来证明 命题6.5.2 设W 1,W 2是数域F 上向量空间V 的两个子空间,则集合 },{221121W W ∈∈+αααα (1) 是V 的一个子空间,叫做W 1和W 2的和,记作W 1+W 2. 证 把集合(1)记作W .显然θ∈W (因为θ =θ +θ ).在W 中任取两个向量α,β,可设 21ααα+=, 21βββ+=, 其中α1,β1∈W 1,α2,β2∈W 2,则 )()(2211βαβαβα+++=+. 由于W 1,W 2是V 的子空间,所以α1+β1∈W 1,α2+β2∈W 2,从而α+β∈W .

GIS空间分析复习提纲及答案

空间分析复习提纲 一、基本概念(要求:基本掌握其原理及含义,能做名词解释) 1、空间分析:是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取和传输空间信息。 2、空间数据模型:以计算机能够接受和处理的数据形式,为了反映空间实体的某些结构特性和行为功能,按一定的方案建立起来的数据逻辑组织方式,是对现实世界的抽象表达。分为概念模型、逻辑模型、物理模型。 3、叠置分析:是指在同一地区、同一比例尺、同一数学基础、不同信息表达的两组或多组专题要素的图形或数据文件进行叠加,根据各类要素与多边形边界的交点或多边形属性建立多重属性组合的新图层,并对那些结构和属性上既互相重叠,又互相联系的多种现象要素进行综合分析和评价;或者对反映不同时期同一地理现象的多边形图形进行多时相系列分析,从而深入揭示各种现象要素的内在联系及其发展规律的一种空间分析方法。 4、网络分析:网络分析是通过研究网络的状态以及模拟和分析资源在网络上的流动和分配情况,对网络结构及其资源等的优化问题进行研究的一种空间分析方法。 5、缓冲区分析:即根据分析对象的点、线、面实体,自动建立它们周围一定距离的带状区,用以识别这些实体或主体对邻近对象的辐射范围或影响度,以便为某项分析或决策提供依据。其中包括点缓冲区、线缓冲区、面缓冲区等。 6、最佳路径分析:也称最优路径分析,以最短路径分析为主,一直是计算机科学、运筹学、交通工程学、地理信息科学等学科的研究热点。这里“最佳”包含很多含义,不仅指一般地理意义上的距离最短,还可以是成本最少、耗费时间最短、资源流量(容量)最大、线路利用率最高等标准。 7、空间插值:空间插值是指在为采样点估计一个变量值的过程,常用于将离散点的测量数据转换为连续的数据曲面,它包括内插和外推两种算法。,前者是通过已知点的数据计算同一区域内其他未知点的数据,后者则是通过已知区域的数据,求未知区域的数据。 8、空间量算:即空间量测与计算,是指对GIS数据库中各种空间目标的基本参数进行量算与分析,如空间目标的位置、距离、周长、面积、体积、曲率、空间形态以及空间分布等,空间量算是GIS获取地理空间信息的基本手段,所获得的基本空间参数是进行复杂空间分析、模拟与决策制定的基础。 9、克里金插值法:克里金插值法是空间统计分析方法的重要内容之一,它是建立在半变异函数理论分析基础上,对有限区域内的区域变化量取值进行无偏最优估计的一种方法,不仅考虑了待估点与参估点之间的空间相关性,还考虑了各参估点间的空间相关性,根据样本空间位置不同、样本间相关程度的不同,对每个参估点赋予不同的权,进行滑动加权平均,以估计待估点的属性值。 二、分析类(要求:重点掌握其原理及含义,能结合本专业研究方向做比较详细的阐述) 1、空间数据模型的分类? 答:分为三类: ①场模型:用于表述二维或三维空间中被看作是连续变化的现象; ②要素模型:有时也称对象模型,用于描述各种空间地物; ③网络模型:一种某一数据记录可与任意其他多个数据记录建立联系的有向图结构的数据模型,可 以模拟现实世界中的各种网络。

krylov子空间算法

Krylov 子空间的定义: 定义:令N R υ∈,由1m A υυυ-L ,,,A 所生成的子空间称之为由υ与A 所生成的m 维Krylov 子空间,并记(),m K A v 。 主要思想是为各迭代步递归地造残差向量,即第n 步的残差向量 ( ) n r 通过系数矩阵A 的某个多项式与第一个残差向量()0r 相乘得到。即 ()()( ) 0n r p A r =。 但要注意,迭代多项式的选取应该使所构造的残差向量在某种内积意义下相互正交,从而保证某种极小性(极小残差性),达到快速收敛的目的。 Krylov 子空间方法具有两个特征:1.极小残差性,以保证收敛速度快。2.每一迭代的计算量与存储量较少,以保证计算的高效性。 投影方法 线性方程组的投影方法 方程组Ax b =,A 是n n ?的矩阵。给定初始()0x ,在m 维空间K(右子空 间)中寻找x 的近似解()1x 满足残向量()1r b Ax =-与m 维空间L(左子空间)正交,即()1b Ax L -⊥,此条件称为Petrov-Galerkin 条件。 当空间K=L 时,称相应的投影法为正交投影法,否则称为斜交投影法. 投影方法的最优性: 1. (误差投影)设A 为对称正定矩阵,()0x 为初始近似解,且K=L,则()1x 为采用投影方法得到的新近似解的充要条件是()()()()0 1min z x K x z ??∈+= 其中,()()()1 2,z A x z x z ?=--

2.(残量投影)设A 为任意方阵,()0x 为初始近似解,且L AK =,则()1x 为采用投影方法得到的新近似解的充要条件是()()()()0 1min z x K x z ψψ∈+= 其中()() 12 2,z b Az b Az b Az ψ= -=-- 矩阵特征值的投影方法 对于特征值问题Ax x λ=,其中A 是n ×n 的矩阵,斜交投影法是在m 维右子空间K 中寻找i x 和复数i λ满足i i i Ax x L λ-⊥,其中L 为m 维左子空间.当L=K 时,称此投影方法为正交投影法. 误差投影型方法: 取L=K 的正交投影法 非对称矩阵的FOM 方法(完全正交法) 对称矩阵的IOM 方法和DIOM 方法 对称矩阵的Lanczos 方法 对称正定矩阵的CG 方法 残量投影型方法: 取L=AK 时的斜交投影法 GMERS 方法(广义最小残量法) 重启型GMERS 方法、QGMERS 、DGMERS Arnoldi 方法 标准正交基方法: Arnoldi 方法是求解非对称矩阵的一种正交投影方法。Arnoldi 算法就是对非对称矩阵A ,产生Krylov 子空间()()0,m A r K 的一组标准正交

子空间的基本内容

线性子空间的研究 数学与应用数学专业学生:罗柏平 指导老师:周绍杰 摘要:线性子空间理论是线性代数的核心内容之一,在数学及其它领域中有着广泛的应用.本文讨论了线性子空间及其交、和、直和的定义,并阐述了线性子空间、子空间直和的几个等价性定义,并做了一定的的推广;在此基础上,给出了求两个子空间交的基的一般方法.且对其作了进一步讨论,得到了一些有用的结果. 关键词:线性空间,线性子空间,子空间的交,维数 Abstract: Linear space and subspaces are one of linear algebra,and they have been applied to mathematics or other fields extensively.This paper discussed the linear subspace and pay, and and, and subspace straight.And we discussed the linear subspace, subspace straight and few equivalence definition,and did some promotion; Based upon these, draw subspace of mixed operation is for and included relation and its two subspaces, and further discussion was gived and several important conclusions were given. Keyword: linear space; linear subspace ; intersection of subspaces; dimensions 0引言 线性子空间理论是高等代数中的重要内容,线性子空间是线性空间的子集,线性子空间中的元素满足对原线性空间的加法与数量乘法封闭.要懂得利用定义及其线性子空间的相关定理来判定线性子空间. 线性子空间包括线性子空间的定义,子空间的交与和,直和等等. 它把具体、直观的平面与集合空间推广到抽象的线性空间.线性子空间是线性空间的子集,线性子空间中的元素满足对原线性空间的加法与数量乘法封闭.线性子空间的应用领域越来越广,在数学、物理、通信、化学、甚至医学等各方面有广泛应用.线性空间的概念是n维向量空间概念的抽象和提高,子空间的理论不仅是高等代数的核心,而且广泛渗透到各自然科学、工程技术、经济管理科学中.因而线性子空间在一定意义上值得广泛推广.为了对线性子空问作进一步的研究,先讨论有关线性子空间的一些基本问题,对线性空间有关的概念和部分结论作一回顾,然后再在应用中对线性子空间做更多的探讨.

GIS空间分析考试资料

《GIS空间分析原理与方法》期末复习资料 说明(注意):以下部分黑色粗斜体题干表示该题可能是未知题目具体所问,或者未知遗漏还是多出要求,或者表示答案不明确等。所以仍需进一步检查核实。欢迎大家改修补充。 第一章地理空间数据分析与GIS 1、什么是地理空间数据分析? 它是通过研究地理空间数据及其相应分析理论、方法和技术,探索、证明地理要素之间的关系,揭示地理特征和过程的内在规律和机理,实现对地理空间信息的认知、解释、预测和调控。 2、什么是地理系统数学模拟?其模拟的一般过程是? 建立地理系统数学模型的过程称为地理系统的数学模拟(简称地理模型)。 地理系统数学模拟的一般过程是:①从实际的地理系统或其要素出发,对空间状态、空间成分、空间相互作用进行分析,建立地理系统或要素的数学模型;②经验检查,若与实际情况不符,则要重新分析,修改模型;若大致相符,则选择计算方法,进行程序设计、程序调试和上机运算,从而输出模型解;③分析模型解,若模型解出错,则修改模型;若模型解正确,则对成果进行地理解释,提出切实可行的方案。 3、地理空间数据挖掘的体系结构? 地理空间数据挖掘是数据挖掘的一个研究分支,其实质是从地理空间数据库中挖掘时空系统中潜在的、有价值的信息、规律和知识的过程,包括空间模式与特征、空间与非空间数据之间的概要关系等。 地理空间数据挖掘的体系结构由以下四部分组成: (1)图形用户界面(交互式挖掘); (2)挖掘模块集合; (3)数据库和知识库(空间、非空间数据库和相关概念); (4)空间数据库服务器(如ESRI/Oracle SDE,ArcGIS以及其他空间数据库引擎)。 4、什么是地理空间数据立方体? 地理空间数据立方体是一个面向对象的、集成的、以时间为变量的、持续采集空间与非空间数据的多维数据集合,组织和汇总成一个由一组维度和度量值定义的多维结构,用以支持地理空间数据挖掘技术和决策支持过程。 5、地理空间统计模型的分为几类,它们的定义分别是什么? 地理空间统计模型大致可分为三类:地统计、格网空间模型和空间点分布形态。(1)地统计:是以区域化变量理论为基础,以变差函数为主要工具,研究空间分布上既具有随机性又具有结构性的自然现象的科学。它可以根据离散数据生成连续表面,通过空间自相关进行空间预测。 (2)格网空间模型:用以描述分布于有限(或无穷离散)空间点(或区域)上数据的空间关系。 (3)空间点分布形态:在自然科学研究中,许多资料是由点(或小区域)所构成的集合,比如,地震发生地点分布、树木在森林中的分布、某种鸟类鸟巢的分布、生物组织中细胞核的分布,太空中星球的分布等,称之为空间点分布形态,其中点的位置为

子空间的和与直和

子空间的和与直和 授课题目: 子空间的和与直和. 教学目标: 1.理解并掌握子空间的概念. 2.掌握子空间的判别方法,熟悉几种常见的子空间. 3.掌握子空间的交与和的概念. 授课时数:3学时 教学重点:子空间的判别. 教学难点:子空间的交与和. 教学过程: 一 子空间的的和 回忆: 令W 是数域F 上向量空间V 的一个非空子集.如果W 对于V 的加法以及标量与向量的乘法来说是封闭的,那么就称W 是V 的一个子空间. 一个向量空间V 本身和零空间叫做V 的平凡子空间。V 的非平凡子空间叫做V 的真子空间。 1. 定义:设12,W W V ?,则称V 的子集{}121122/,W W αααα+∈∈ 为1212w w W W +与的和,记为 即12W W +={}121122/,W W αααα+∈∈ 定理5.5.1:若12,W W 均为V 的两个子空间,则12W W +仍然是子空间. 证明:12,W W θθθθθ∈∈∴=+∈12W W +故12W W +≠φ 对121212,,,,a b F W W αβαααβββ?∈?+=+=+有, 111222,,,W W αβαβ∈∈ 12W W +均为v 子空间. ∴ 111222,a b W a b W αβαβ+∈+∈ 于是 ()()()()1212112212a b a b a b a b W W αβααββαβαβ+=+++=+++∈+

∴ 12W W +是V 的子空间。 推广:12,, ,n W W W V n 为的个子空间,则 {}12121122/,, ,n n n n W W W W W W αααααα++ +=++ +∈∈∈ 仍然是V 的子空间. 补充:若1W =L ()r ααα,,,21 ,()212,,,t W L βββ= 则12W W +=L ()t r βββααα,,,,,,,2121 证明:∈γ12W W +,有βαγ+=,12,W W αβ∈∈ 设r r k k k αααα+++= 2211 t t l l l ββββ+++= 2211 ∴ =+=βαγr r k k k ααα+++ 2211+βββt l l l +++ 2211 ∴ 12W W +=L ()t r βββααα,,,,,,,2121 定理5.5.2 维数定理。dim(12W W +)=dim ()1212dim dim W W W W +-? 证明: 设1 2dim()0,W W r => 取12W W 的一个基为12{,,,},r ααα 因为12W W 同是12,W W 的子空间, 所以可以分别扩充成1W 与2W 的基 121{,,,,,,},r s αααββ (2) 121{,, ,,, ,},r t αααγγ (3) 这里12dim ,dim .W r s W r t =+=+ 下面证明1211{,, ,,,,,,,}r s t αααββγγ (4)是12W W +的基. 显然, 12W W +中每个向量都可以由(4)线性表示, 只需证明(4)线性无关. 设112211110,r r s s t t a a a b b c c αααββγγ+++++++++= 则1122111112.r r s s t t a a a b b c c W W αααββγγ++ +++ +=-- -∈+ 于是在F 中存在12,,,,r k k k 使得1111,t t r r c c k k γγαα-- -=+ + 即11110.r r t t k k c c ααγγ+++++= 由于121,, ,,, ,r t αααγγ是2W 的基, 所以 1210,0.r t k k k c c ===== ==

ArcGIS空间分析教程之 网络分析

ArcGIS空间分析教程之网络分析 创建网络数据集 数据在https://www.360docs.net/doc/6d3367718.html, 中下载 1. 单击开始>所有程序> ArcGIS > ArcCatalog 10.1启动ArcCatalog。 2. 启用ArcGIS Network Analyst 扩展模块。 a. 单击自定义>扩展模块。 将打开扩展模块对话框。 b. 选中Network Analyst。 c. 单击关闭。 3. 在标准工具工具条上,单击连接到文件夹按钮。 将打开连接到文件夹对话框。 4. 导航到含有 Network Analyst 教程数据的文件夹。 教程数据的默认存储位置是C:\ArcGIS\ArcTutor\Network Analyst\Tutorial。 5. 单击确定。 文件夹的快捷方式将添加到目录树的文件夹连接下。 6. 在目录树中,展开...\ArcTutor\Network Analyst\Tutorial > Exercise01 > SanFrancisco.gdb。 7. 单击Transportation要素数据集。 要素数据集包含的要素类将列于ArcCatalog 的内容选项卡上。 8. 右键单击Transportation要素数据集并单击新建>网络数据集。

9. 将打开新建网络数据集向导。 注: 要在地理数据库中打开新建网络数据集向导,右键单击包含源要素类(如Streets)的要素数 据集并选择新建>网络数据集。对于基于shapefile 的网络数据集,右键单击Streets shapefile 本身,而不是包含shapefile 的工作空间,并选择新建>网络数据集。 产生这种差别的原因是地理数据库网络允许您使用要素数据集中存储的多个源来创建多方式 网络,而基于shapefile 的网络数据集只能够处理单个源要素类。 10. 输入网络数据集的名称Streets_ND。 11. 保持选择网络数据集的版本设置为最新版本。 如果需要与使用较旧版本ArcGIS 的用户共享网络数据集,此选项会非常有用。当您选择的ArcGIS 版本号小于或等于这些用户的版本时,这些用户就可以打开您创建并共享的网络数据集。然而,这样做的缺陷是您将无法纳入更高版本的ArcGIS 中引入的任何新增网络数据集功能,因为将禁用新建网络数据集向导中用于添加功能的控件。如果无需共享网络数据集,或者共享的用户与您使用相同的ArcGIS 版本,则选择最新版本将是最佳方案。 12. 单击下一步。 13. 选中Streets要素类并将其作为网络数据集的源。 14. 单击下一步。 15. 单击是在网络中构建转弯模型。 16. 选中RestrictedTurns以将其选作转弯要素源。应已选中<通用转弯>;这样您就能够添加默认 转弯惩罚值。 17. 单击下一步。 18. 单击连通性。 将打开连通性对话框。可在此处为该网络设置连通性模型。

ArcGIS空间分析基本操作教材

实验七、空间分析基本操作 一、实验目的 1. 掌握Spatial Analyst模块的使用方法。 2. 掌握矢量数据转换成栅格数据的方法。 3. 掌握用任意多边形剪裁栅格数据的方法。 4. 掌握重分类的方法及应用。 5. 掌握缓冲区分析的原理与方法。 6. 掌握空间属性查询和空间关系查询的方法。 7. 掌握采样数据的空间内插方法。 8. 了解邻域统计的原理及方法。 二、实验准备 软件:ArcGIS Desktop 数据: 知识: 空间分析是从空间数据中获取有关地理对象的空间位置、分布、形态、形成和演变等信息的分析技术,是地理信息系统的核心功能之一,它特有的对地理信息的提取、表现和传输的功能,是地理信息系统区别于一般管理信息系统的主要功能特征。在空间分析的研究和实践中,很多在应用领域具有一定普遍意义的、涉及空间位置的分析手段和方法被总结、提炼出来,形成了在GIS软件中均包含的一些固有的空间分析功能模块。这些功能具有一定的通用性质,故而称之为GIS基本空间分析,具体的有叠置分析、缓冲区分析、窗口分析和网络分析。了解GIS基本空间分析对于进一步掌握复杂空间分析方法,具有一定的指导意义。 利用空间分析模块(Spatial Analyst),你可以方便地对你的数据进行空间分析。有了空间分析模块,你既可以回答诸如“这个位臵的地形陡峭程度如何?”或“这个位臵面向什么方位?”之类的一些简单空间问题,也能够给更为复杂的空间问题如“一家新工厂的最佳位臵应该在哪儿?”或“从A到B的成本最小的路径是什么?”找到答案。当与ArcMap一起使用时,空间分析模块可以提供功能完备的工具集来浏览和分析空间数据,帮助你找到解决空间问题的方法。 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信 息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。 空间分析是地理信息系统的主要特征。空间分析能力(特别是对空间隐含信息的提取和 传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。 空间分析赖以进行的基础是地理空间数据库。 空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。 空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同,空间分析的步骤会有所不同。通常,所有的空间分 析都涉及以下的基本步骤,具体在某个分析中,可以作相应的变化。 空间分析的基本步骤: a) 确定问题并建立分析的目标和要满足的条件 b) 针对空间问题选择合适的分析工具

线性空间与子空间

第一讲线性空间 一、线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成的整体 集合的表示:枚举、表达式 集合的运算:并(),交() 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R)和复数域(C)。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1.线性空间的定义: 设V是一个非空集合,其元素用x,y,z等表示;K是一个数域,其元素用k,l,m等表示。如果V满足[如下8条性质,分两类] ∈时,有唯一的和(I)在V中定义一个“加法”运算,即当x,y V +∈(封闭性),且加法运算满足下列性质 x y V (1)结合律()() ++=++; x y z x y z (2)交换律x y y x +=+; (3)零元律存在零元素o,使x+o x =;

(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为 x y=xy , k k x x =o

ARCGIS10.0 空间分析方法与GIS典型应用例证

一、实验目的 1、掌握ArcGIS缓冲区分析、叠置分析、网络分析方法。 2、熟悉ArcGIS的空间统计、栅格计算方法。 3、综合利用矢量数据空间分析中的缓冲区分析和叠置分析解决实际问题。 4、学会用ArcGIS9 进行各种类型的最短路径分析,了解内在的运算机理。 5、熟练掌握利用ArcGIS上述空间分析功能分析和结果类似学校选址的实际应用问题的基本流程和操作过程。 二、主要实验器材(软硬件、实验数据等) 计算机硬件:lenovoideapadY460N 计算机软件:ArcGIS10.0软件 实验数据:《ArcGIS地理信息系统空间分析实验教程》随书光盘的第七章、第八章等 三、实验内容与要求 1、空间缓冲区分析。 (1)为点状、线状、面状要素建立缓冲区。 1)打开菜单“自定义”下的“自定义模式”,在对话框中选择“命令”,在“类别” 中选择“工具”,在右边的框中选择“缓冲向导”(如图 1 所示),拖动其放置 到工具栏上的空处。 图1提出“缓冲向导” 2)利用选择工具选择要进行分析的点状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图2及图3所示。

图2 线状缓冲区信息设置1 图3线状缓冲区信息设置2 3)利用选择工具选择要进行分析的线状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息。 4)利用选择工具选择要进行分析的面状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图4所示。 图4 面状缓冲区信息设置

2、学校选址。 要求: (1) 新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 (2) 各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势 位置因素各占0.125。 (3) 实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部 分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完 成。 (4) 最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。 具体操作: (1)打开加载地图文档对话框,选择E:\Chp8\Ex1\school.mxd。 (2)从DEM 数据提取坡度数据集: 打开工具箱→“Spatial Analyst 工具”→“表面分析”→“坡度”工具;在打开对话框中设置,如图5所示;生成坡度图,如图6所示。 图5 “坡度”对话框设置 图6 坡度图

实验4-1 GIS空间分析(空间分析基本操作)

实验4-1、空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、 栅格重分类(Raster Reclassify)、 栅格计算-查询符合条件的栅格(Raster Calculator)、 面积制表(Tabulate Area)、 分区统计(Zonal Statistic)、 缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、 栅格单元统计(Cell Statistic)、 邻域统计(Neighborhood)等空间分析基本操作和用途。 3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。 二、实验准备 预备知识: 空间数据及其表达 空间数据(也称地理数据)是地理信息系统的一个主要组成部分 。空间数据是指以地球表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。它是GIS 所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。 在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。有两种基本方法来表示空间数据:一是栅格表达; 一是矢量表达。两种数据格式间可以进行转换。 空间分析 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。 空间分析是地理信息系统的主要特征。空间分析能力(特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。 空间分析赖以进行的基础是地理空间数据库。空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同, 空间分析的步骤会有所不同。通常,所有 的空间分析都涉及以下的基本步骤,具体 在某个分析中,可以作相应的变化。 空间分析的基本步骤: a) 确定问题并建立分析的目标和要满足 的条件 b) 针对空间问题选择合适的分析工具 c) 准备空间操作中要用到的数据。 d) 定制一个分析计划然后执行分析操作。 e) 显示并评价分析结果

krylov子空间算法

Krylov 子空间的定义: 定义:令N R υ∈,由1m A υυυ-L ,,,A 所生成的子空间称之为由υ与A 所生成的m 维Krylov 子空间,并记(),m K A v 。 主要思想就是为各迭代步递归地造残差向量,即第n 步的残差向量()n r 通过系数矩阵A 的某个多项式与第一个残差向量()0r 相乘得到。即()()()0n r p A r =。 但要注意,迭代多项式的选取应该使所构造的残差向量在某种内积意义下相互正交,从而保证某种极小性(极小残差性),达到快速收敛的目的。 Krylov 子空间方法具有两个特征:1、极小残差性,以保证收敛速度快。2、每一迭代的计算量与存储量较少,以保证计算的高效性。 投影方法 线性方程组的投影方法 方程组Ax b =,A 就是n n ?的矩阵。给定初始()0x ,在m 维空间K(右子 空间)中寻找x 的近似解()1x 满足残向量()1r b Ax =-与m 维空间L(左子空间)正交,即()1b Ax L -⊥,此条件称为Petrov-Galerkin 条件。 当空间K=L 时,称相应的投影法为正交投影法,否则称为斜交投影法、 投影方法的最优性: 1、 (误差投影)设A 为对称正定矩阵,()0x 为初始近似解,且K=L,则()1x 为采用投影方法得到的新近似解的充要条件就是()()()()0 1min z x K x z ??∈+= 其中,()()()1 2,z A x z x z ?=--

2.(残量投影)设A 为任意方阵,()0x 为初始近似解,且L AK =,则()1x 为采用投影方法得到的新近似解的充要条件就是()()()()0 1min z x K x z ψψ∈+= 其中()() 12 2,z b Az b Az b Az ψ= -=-- 矩阵特征值的投影方法 对于特征值问题Ax x λ=,其中A 就是n ×n 的矩阵,斜交投影法就是在m 维右子空间K 中寻找i x 与复数i λ满足i i i Ax x L λ-⊥,其中L 为m 维左子空间、当L=K 时,称此投影方法为正交投影法、 误差投影型方法: 取L=K 的正交投影法 非对称矩阵的FOM 方法(完全正交法) 对称矩阵的IOM 方法与DIOM 方法 对称矩阵的Lanczos 方法 对称正定矩阵的CG 方法 残量投影型方法: 取L=AK 时的斜交投影法 GMERS 方法(广义最小残量法) 重启型GMERS 方法、QGMERS 、DGMERS Arnoldi 方法 标准正交基方法: Arnoldi 方法就是求解非对称矩阵的一种正交投影方法。Arnoldi 算法就就是对非对称矩阵A,产生Krylov 子空间()()0,m A r K 的一组标准

相关文档
最新文档