直梁的平面弯曲练习题 文档

直梁的平面弯曲练习题 文档
直梁的平面弯曲练习题 文档

练习六:直梁弯曲

练习六直梁弯曲

一、填空题

1.工程中通过对支座的简化后,将梁分为三种类型,分别是、、和

2.当梁只受集中力的时候,各段剪力为常数,但在集中力处产生突变,突变值为,各段弯矩

为函数。

3.在集中力偶处,弯矩产生突变,突变值为。

4.对于塑性材料的直梁,平面弯曲的强度条件是。

5.提高弯曲强度的措施主要有,,

6.如果某跟梁产生纯弯曲变形,则内力中为零。

7.高度等于宽度两倍的矩形截面梁,承受垂直方向的载荷,竖放截面时梁的强度是横放截面时

梁的强度的倍。

8.横截面面积相等的实心和空心的圆形梁,抗弯刚度大。

8.图示简支梁,C截面中性轴上某点,σ=( ), τ=( ).

二、选择题

1.悬臂梁受集中力P作用,P力方向与截面形状如图所示,试问下列各梁可能发生平面弯曲。的是

2. 图示简支梁中间截面B上的内力()

A. A. A. M=0,θ=0 B、M=0,θ≠0

C、M≠0,θ=0

D、M≠0,θ≠0

3 图示梁AB,如果材料为钢,则比较合力的截面形状为()

.

4.梁AB受载荷如图,试问:将支座A、B分别内移到C、D位置时,梁的承载能力()

A.增大 B。减小 C.不变 D.都有可能

5. 右端固定的悬臂梁,其M图如图,则在x =2m处()

A. 既有集中力,又有集中力偶

B. 既无集中力,也无集中力偶

C. 只有集中力

D. 只有集中力偶

6.长度和截形相同的两根梁,一根为钢材,一根为铜材。若两根梁受力情况也相同,则它们的

()

A、弯曲正应力相同,轴线弯曲程度不同

B、弯曲正应力不同,轴线弯曲程度相同

C、弯曲正应力与轴线弯曲程度均相同

D、弯曲正应力与轴线弯曲程度均不同

7、悬臂梁受力如图,其中()

A、AB是纯弯曲, BC是剪切弯曲

B、AB是剪切弯曲,BC是纯弯曲

C、全梁均是纯弯曲

D、全梁均为剪切弯曲

8.中性轴是梁的()的交线

A、纵向对称面与横截面

B、纵向对称面与中性层

C、横截面与中性层

D、横截面与顶面或底面

三、计算

1. 绘制下列各种受力情况下梁的内力图。

2.某简支梁受力如图所示,已知q=10kN/m,a=1m,截面尺寸如图所示,试画出该梁的内力图;如果该梁的许用应力[σ]=100Mpa,是按弯曲正应力强度条件校核此梁的强度。

5.如右图所示矩形截面外伸梁,在外伸端A、D处分别作用集中力F=1000N。已知材料的许用应力[σ]=12

0Mpa,b=30mm,h=60mm,试画出剪力图和弯矩图,并校核该梁的强度。(20分)

3. 图示悬臂梁AB,其横截面为矩形2b=h,已知P=10KN,a=2m。材料的许用应力[σ]=100Mpa,试根据正应力强度条件计算梁的最小截面尺寸。

第四章弯曲内力练习题

第四章 弯曲内力 一、选择题 1、具有中间铰的静定梁如图所示,在列全 梁的剪力和弯矩方程时,分段正确的是( ) A )二段:AC 、CE ; B )三段:A C 、C D 、D E ; C )四段:AB 、BC 、CD 、DE 。 2、简支梁部分区段受均布载荷作用,如图所示,以下结论错误的是( ) A )AC 段,剪力表达式qa x Q 41)(= B )A C 段,弯矩表达式qax x M 41 )(=; C )CB 段,剪力表达式)(41 )(a x q qa x Q --=; D )CB 段,弯矩表达式)(2 1 41)(a x q qax x M --=。 3、简支梁受集中力偶作用,如图所示,以下结论错误的是( ) A )AC 段,剪力表达式 l m x Q = )(; B )AC 段,弯矩表达式x l m x M =)(; C )CB 段,剪力表达式l m x Q =)(; D )CB 段,弯矩表达式m x l m x M +=)(。

4、外伸梁受均布载荷作用,如图所示,以下结论错误的是( ) A )A B 段,剪力表达式qx x Q -=)(; B )AB 段,弯矩表达式 22 1 )(qx x M -=; C )BC 段,剪力表达式l qa x Q 2)(2 =; D )BC 段,弯矩表达式)(2)(2 x l l qa x M --=。 5、悬臂梁受载荷的情况如图所示,以下结论错的是( ) A )qa Q 3max =; B )在a x a 43<<处,0=Q ; C )2 max 6qa M =; D )在a x 2=处,0=M 。 6、弱梁的载荷和支承情况对称于C 截面, 图示,则下列结论中错误的是( ) A )剪力图、弯矩图均对称,0=c Q ; B )剪力图对称,弯矩图反对称, 0=c M ; C )剪力图反对称,弯矩图对称,0=c M ; D )剪力图反对称,弯矩图对称,0=c Q 。

材料力学实验四 直梁弯曲实验

实验四 直梁弯曲实验 预习要求: 1、复习电测法的组桥方法; 2、复习梁的弯曲理论; 3、设计本实验的组桥方案; 4、拟定本实验的加载方案; 5、设计本实验所需数据记录表格。 一、 实验目的: 1. 电测法测定纯弯梁横截面上的正应变分布,并与理论值进行比较,验证理论公式; 2. 电测法测量三点弯梁横截面上的正应变分布及最大切应变,并 与理论值进行比较,验证理论公式; 3.学习电测法的多点测量方法及组桥练习。 二、实验设备: 1. 微机控制电子万能试验机; 2. 电阻应变仪; 三、实验试件: 本实验所用试件为中碳钢矩形截面梁,其横截面设计尺寸为h ×b =(50×30)mm 2 ,a=50mm , 材料的屈服极限MPa s 360=σ, 弹性模量 E=210GPa ,泊松比μ=0.28。 四.实验原理及方法: 处于纯弯曲状态的梁,在比例极限内,根据平面假设和单向受力假设,其横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为: ()()Z Z M y y E I M y y E I εεμ ?= ??'=-? (1) 距中性层为 y 处的纵向正应力为:

()()z M y y E y I σε?=?= (2) 本实验采用重复加载法,多次测量在一级载荷增量?M 作用下,产生的应变增量?ε和?ε’。于是式(1)和式(2)分别变为: ()()()Z Z Z M y y E I M y y E I M y y I εεμσ???= ???'?=-????= (3) (4) 在本实验中, /2M P a ?=?? (5) 最后,取多次测量的平均值作为实验结果: 1 1 1 () ()() ()() ()N n n N n n N n n y y N y y N y y N ε εεεσ σ===??= '?'?= ??= ∑∑∑ (6) 三点弯曲时,最大切应力理论值为: A s 2F 3max = 理论τ (7) 其实验值测量方法为在最大切应力所在中性层处沿与轴线成±45°布置单向应变片,测量出其应变值,则最大切应力的实验值为: ()()?+?===4545-max 2-G 2G G εεγτ实验 (8) 本实验采用电测法,测量采用1/4桥,如下图五所示。

实验五 直梁弯曲实验 实验报告

实验五 直梁弯曲实验 一、 实验目的: 1. 用电测法测定纯弯时梁横截面上的正应变分布规律,并与理论计算结果进行比较。 2. 用电测法测定三点弯梁某一横截面上的正应变分布与最大切应变,并与理论计算结 果进行比较。 3.学习电测法的多点测量。 二、实验设备: 1. 微机控制电子万能试验机; 2. 电阻应变仪; 三、实验试件: 本实验所用试件为两种梁:一种为实心中碳钢矩形截面梁,其横截面设计尺寸为h ×b=(50×28)mm 2 ;另一种为空心中碳钢矩形截面梁,其横截面设计尺寸为h ×b=(50×30)mm 2 ,壁厚t=2mm 。材料的屈服极限MPa s 360=σ,弹性模量E=210GPa ,泊松比=。 北京航空航天大学、材料力学、实验报告 实验名称: 学号 姓名 同组 实验时间:2010年12月1日 试件编号 试验机编号 计算机编号 应变仪编号 百分表编号 成绩 实验地点:主楼南翼116室 1 1 1 1 1 教师 年 月 日 图一 实验装置图(纯弯曲) 图二 实验装置图(三点弯)

四.实验原理及方法: 在比例极限内,根据平面假设和单向受力假设,梁横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为: ()()Z Z M y y E I M y y E I εεμ ?= ??'=-? (1) 距中性层为 y 处的纵向正应力为: ()()z M y y E y I ?=?= σε (2) 对于三点弯梁,梁横截面上还存在弯曲切应力: () ()S z z F S y I ωτδ ?= ? (3) 并且,在梁的中性层上存在最大弯曲切应力,对于实心矩形截面梁: max 32S F A = τ (4) 对于空心矩形截面梁: 22max [((2)(2)]16S z F bh b t h t I t = ---τ (5) 由于在梁的中性层处,微体受纯剪切受力状态,因此有: max max G τγ= (6) 实验时,可根据中性层处0 45±方向的正应变测得最大切应变: 45454545max 22)(εεεεγ-==-=-- (7) 本实验采用重复加载法,多次测量在一级载荷增量M 作用下,产生的应变增量、’ F F F a a a a 2a 图三 纯弯梁受力简图(a=90mm ) 图四 三点弯梁受力简图(a=90mm )

纯弯曲实验报告

《材料力学》课程实验报告纸 实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)内力图 分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的内力简图,如图2所示。 Page 1 of 10

《材料力学》课程实验报告纸 (3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

实验 杨氏模量的测定(梁弯曲法)

实验 杨氏模量的测定(梁弯曲法) 【实验目的】 用梁的弯曲法测定金属的杨氏模量。 【仪器用具】 攸英装置,光杠杆,望远镜及直尺,螺旋测微计,游标卡尺,米尺,千分表。 【实验原理】 将厚为a 、宽为b 的金属棒放在相距为l 的二刀刃上(图1),在棒上二刀刃的中点处挂上质量为m 的砝码,棒被压弯,设挂砝码处下降λ,称此λ为弛垂度,这时棒材的杨氏模量 λ b a mgl E 3 3 4= . (1) 下面推导上式。图(2)为沿棒方向的纵断面的一部分。在相距dx 的21O O 二点上的横断面, 在棒弯曲前互相平行,弯曲后则成一小角度?d 。显然在棒弯曲后,棒的下半部呈现拉伸状态,上半部为压缩状态,而在棒的中间有一薄层虽然弯曲但长度不变,称为中间层。 计算与中间层相距为y 、厚dy 、形变前长为dx 的一段,弯曲后伸长了?yd ,它受到的拉力为dF ,根据胡克定律有 dx yd E dS dF ? =. 式中dS 表示形变层的横截面积,即bdy dS =。于是

y d y d x d Eb dF ?=. 此力对中间层的转矩为dM ,即 dy y dx d Eb dM 2 ?=. 而整个横断面的转矩M 应是 dx d b Ea dy y dx d Eb M a ??3 2 2 12 12= =? . (2) 如果将棒的中点C 固定,在中点两侧各为2 l 处分别施以向上的力 mg 2 1(图3),则棒的弯曲情 况当和图1所示的完全相同。棒上距中点C 为x 、长为dx 的一段,由于弯曲产生的下降λd 等于 ?λd x l d )2 ( -= (3) 当棒平衡时,由外力mg 2 1对该处产生的力距 )2 ( 21x l mg -应当等于由式(2)求出的转距M , 即 dx d b Ea x l mg ?3 12 1)2 ( 2 1= -. 由此式求出?d 代入式(3)中并积分,可求出弛垂度 b Ea mgl dx x l b Ea mg 3 3210 2 3 4)2 ( 6= -=?λ, (4) 即 λ b a m g l E 3 3 4= . (1)

纯弯梁正应力分布电测实验(精)

实验七 纯弯梁正应力分布电测实验 实验内容一 纯弯梁正应力分布电测实验 一、实验目的 1、用电测法测定矩形截面梁在纯弯曲时的正应力的大小及其分布规律,并与理论值作比较。 2、初步掌握电测方法。 二、实验设备 1、弯曲梁实验装置一台(见图7.2) 2、YJ-4501A 静态数字电阻应变仪一台 3、温度补偿片 三、实验原理及方法 试件选用矩形截面,荷载及测量点的布置如图7.1。梁的材料为钢,其弹性模量a G E Ρ=210,转动实验装置上的加载手轮,可使梁受到如图7.1的荷载,梁的中段为纯弯曲段,荷载作用于纵向对称平面内,而且在弹性极限内进行实验,故为弹性范围内平面弯曲问题。梁的正应力公式为 y I M Z =σ 式中:M --纯弯曲段梁截面上的弯矩 Z I --横截面对中性轴的惯性矩 y --截面上测点至中性轴的距离。 为了测量梁纯弯曲时横截面上应力分布规律,在梁的纯弯曲段沿梁的侧面各点沿轴线方向粘贴应变片,其分布如图(图7.1)应变片1#粘贴在中性层上,应变片2#、3#、应变片4#和应变片6#、7#分别粘贴在距离中性层为、和上下表面。此外,在梁的上表面沿横向粘贴应变片8#,如果测得纯梁弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式4/h 8/3h εσE =,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,可得出测量误差。 式中:ε—各测量点的线应变 E —材料的弹性模量 σ--相应各测点正应力

若由实验,测得的应变片7#和8#的应变7ε和8ε满足 μεε=7 8 ,则证明 验采用等增量加载的方法测量应力的实验值及计算理论值,计算时均应以弯矩增量及应变增量的平均值代入。 4# 图7.1 图中:, mm c 150=mm h 40= mm b 20= , mm l 620= 1#--8#所示应变片粘贴位置及方向。 四、实验步骤 1、检查梁是否安放稳妥 2、把梁上的应变片接在静态电阻应变仪的A 、B 接线柱上。公共温度补偿片接在0通道接线柱B 、C 上。此接法为半桥接线法 3、打开实验装置和仪器的电源开关,转动加载系统给梁加载荷0.5kN 。 4、校对电阻应变仪上的灵敏度系数。对搭接的各测量通道置0操作。 5、用等增量加载法测量,分四次加载,。实验时逐级加载,并记录各应变片在各级荷载作用下的读数应变。 N P 1000=ΔN P 4500max =6、根据实验数据计算各测点应力的实测值及理论值,并作比较。 7、计算78εε值,若μεε=78,则说明纯弯曲梁为单向力状态。 五、注意事项 1、接线要牢固可靠。

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

实验四 悬臂梁弯曲实验汇总

实验四悬臂梁弯曲实验 一、电阻应变仪 各种不同规格及各种品种的电阻应变计现在有二万多种,测量仪器也有数百余种,但按其作用原理,电阻应变测量系统可看成由电阻应变计、电阻应变仪及记录器三部分组成。其中电阻应变计可将构件的应变转换为电阻变化。电阻应变仪将此电阻变化转换为电压(或电流)的变化,并进行放大,然后转换成应变数值。 其中电阻变化转换成电压(或电流)信号主要是通过应变电桥(惠斯顿电桥)来实现的,下面简要介绍电桥原理。 1、应变电桥 应变电桥一般分为直流电桥和交流电桥两种,本篇只介绍直流电桥。

电桥原理图所示,它由电阻R1、R2、R3、R4组成四个桥臂,AC两点接供桥电压U。图中U BD是电桥的输出电压,下面讨论输出电压与电阻间的关系。 通过ABC的电流为:I1=U/(R2+ R1) 通过ADC的电流为:I2=U/(R3+ R4) BD二点的电位差 U BD= I1R2-I2R3=(R2R4-R1R3)U /(R2+ R1)(R3+ R4) 当U BD=0,即电桥平衡。由此得到电桥平衡条件为: R1 R3 =R2R4 如果R1 =R2 =R3 =R4 =R,而其中一个R有电阻增 量, 式中2ΔR 与4R相比为高阶微量,可略去,上式化为 如果R1 =R2 =R3 =R4为电阻应变计并受力变形后产生的电阻增量为 、、、代入式中,计算中略去高阶微量,可得

将式代入上式可得 电桥可把应变计感受到的应变转变成电压(或电流)信号,但是 这一信号非常微弱,所以要进行放大,然后把放大了的信号再用应变 表示出来,这就是电阻应变仪的工作原理。电阻应变仪按测量应变的 频率可分为:静态电阻应变仪、静动态电阻应变仪、动态电阻应变仪 和超动态电阻应变仪,下面我们简要介绍常用的静态电阻应变仪中的 一种应变仪--数字电阻应变仪。 二、测量电桥的接法 各种应变计和传感器通常需采用某种测量电路接入测量仪表,测 量其输出信号。对于电阻应变计或者电阻应变计式传感器,通常采用 电桥测量电路,将应变计引起电阻变化转换为电压信号或电流信号。 电桥的测量电路由电阻应变计及电阻组成桥臂,电桥的应变计接桥方 式分为半桥和全桥。 在实际测量中,可以利用电桥的基本特性,采用各种电阻应变计在电桥中不同 的连接方法达到不同的测量目的:

(整理)北航-材料力学实验报告-直梁弯曲试验.

北京航空航天大学、材料力学、实验报告 实验名称:直梁弯曲试验 学号 390512---- 姓名 ----- 实验时间:2011 试件编号 试验机编号 计算机编号 应变仪编号 百分表编号 成绩 实验地点:主楼南翼116室 2&9 2&9 - 15 - 教师 年 月 日 一、实验目的: 1. 用电测法测定纯弯(或三点弯)时梁横截面上的正应力分布规律,并与理论计算结果进行比较,以验证梁 的弯曲理论。 2. 用电测法测定纯弯(或三点弯)时梁中性层上的切应力大小,与理论计算结果进行比较,并对实验结果 进行分析。 3.学习电测法的多点测量。 二、实验原理 三点弯曲实验装置简图 对于三点弯曲梁,距中性层为 y 处的纵向正应变和横向正应变为: ()()Z Z M y y E I M y y E I εεμ ?= ??'=-? (1) 距中性层为 y 处的纵向正应力为: ()()z M y y E y I σε?=?= (2) 本实验采用重复加载法,多次测量在一级载荷增量?M 作用下,产生的应变增量?ε和?ε’。于是式(1)和式(2)分别变为: a a 2a P b h

()()()Z Z Z M y y E I M y y E I M y y I εεμσ???= ???'?=-????= (3) (4) 在本实验中, /2M P a ?=?? (5) 最后,取多次测量的平均值作为实验结果: 1 1 1 () ()() ()() ()N n n N n n N n n y y N y y N y y N ε εεεσ σ===??= '?'?= ??= ∑∑∑ (6) 在梁的中性层处,切应力的理论计算公式为: 32S F bh τ= (7) 由于在纯剪切应力状态下,有: 0452γε=- (8) 因此在实验时,通过测量中性层处450 方向的正应变,即可得到中性层处的切应变,进一步由剪切胡克定律计算中性处的切应力,与理论值进行比较。 实验采用重复加载法,实验结果处理参照式(3)~(6)。 三、实验步骤 1. 设计实验所需各类数据表格; 2. 拟定加载方案; 3. 试验机准备、试件安装和仪器调整; 4. 确定组桥方式、接线、设置应变仪参数; 5. 检查及试车; 检查以上步骤完成情况,然后预加一定载荷,再卸载,以检查试验机和应 变仪是否处于正常状态。 6. 进行试验;

纯弯梁的弯曲应力测定实验报告

纯弯梁的弯曲应力测定 一.实验目的 1.掌握电测法的测试原理,学习运用电阻应变仪测量应变的方法 2.测定梁弯曲时的正应力分布,并与理论计算结果镜像比较,验证弯梁正应力公式。二.实验设备 1.钢卷尺 2.游标卡尺 3.静态电阻应变仪 4.纯弯梁实验装置 三.实验原理 本实验采用的是用低碳钢制成的矩形截面试件,实验装置如图所示。 计算各点的实测应力增量公式:i i E 实实εσ?=?计算各点的理论应力增量公式:z i i I My ?= ?σ式中?M=12?P×a ,Iz=bh312 四.试验方法 1.测定弯梁试件尺寸:h,b,L,a 2.电阻应变仪大调整与桥路连接 3.接通力传感器显示屏电源,当试件未受力时,调节电阻应变仪零点。 4.缓慢转动手轮,每增加1KN 载荷,测相应测点的应变值,直到载荷为4.5KN 为止。 5.卸去载荷,应变仪,力传感器显示屏复位。应变测量结束。 五.实验数据测定 试件材料的弹性模量E =210GPa

2.试件尺寸及贴片位置 试件尺寸/m贴片位置/m b0.02y6-0.020 3.应变读数记录 读 次 载荷 P/kN 载荷 增量 Δ P/k N 电阻应变仪读数(με) 测点1测点2测点3测点4测点5测点6测点7 S1Δ S 1 S2Δ S2 S3Δ S3 S4Δ S4 S5Δ S5 S6Δ S6 S7Δ S7 10.51010-290340-460480-61062 2 1.51-2934-4648-6162 1.51-1-3631-4848-6764 3 2.50-6565-9496-12 812 6 16-2333-4256-6369 4 3.56-8898-13 615 2 -19 1 19 5 12-3139-4648-5964 5 4.58-11137-1820-2525

纯弯梁正应力分布规律实验

中国矿业大学(北京) 工程土木工程_______专业_______班_________组 实验者姓名:__________实验日期:___________年____月___日 实验六纯弯曲正应力分布规律实验 一.实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)的 分布规律。 2.验证纯弯曲梁的正应力计算公式。 二.实验仪器与设备 1.多功能工程力学实验台。 2.应力&应变综合参数测试仪一台。 3.矩形截面钢梁。 4.温度补偿块(或标准无感电阻)。 5.长度测量尺。 三.实验原理及方法 四.实验步骤

1.测量梁矩形截面的宽度b 和高度h 、载荷作用点到梁支点的距离a ,并测量各应变片到中性层的距离y I 。 2.将拉压传感器接至应力&应变综合参数测试仪中。 3.应变片连接采用1/4桥连接方式,将待测试应变片连接在A 、B 两端,将B 、B 1短接,在桥路选择上,将A 、D 两端连接补偿片,D 1、D 2短线连接即可。 4.本次实验的载荷范围为0~2kN ,在此范围内,采用分级加载方 式(一般分4~6级),实验时逐级加载,分别记录各应变片在各级载荷作用下的应变值。 五.实验结果处理 1.按实验记录数据求出各点的应力实验值,并计算出各点的应 力理论值。计算出它们的相对误差。 2.按同一比例分别画出各点应力的实验值和理论值沿横截面高度 的分布曲线,将两者进行比较,如两者接近,则说明弯曲正应 力的理论分析是可行的。 3.计算6#和5#的比值,若 μεε≈5 6 ,则说明纯弯曲梁为单向应力状 态。

4.实验数据可参照下表: 应变片至中性层的距离 梁宽度b= 20.84 mm;梁高度h= 40.15mm;施力点到支座距离l= 106 mm 应变片在各级载荷下的应变值 各测试点应力实验结果 P=400N

纯弯曲实验报告

实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度 变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)力图 分析主梁的受力特点,进行求解并画出其力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的力简图,如图2所示。 Page 1 of 10

(3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

实验杨氏模量的测定(梁弯曲法)

【实验目的】 用梁的弯曲法测定金属的杨氏模量。 【仪器用具】 攸英装置,光杠杆,望远镜及直尺,螺旋测微计,游标卡尺,米尺,千分表。 【实验原理】 将厚为a 、宽为b 的金属棒放在相距为 丨的二刀刃 上 (图1),在棒上二刀刃的中点处挂上质量为 m 的砝码, 棒被压 弯,设挂砝码处下降 ■,称此-为弛垂度,这时 棒材的杨氏模 量 下面推导上式。图(2)为沿棒方向的纵断面的一部分。在 相距 dx 的0Q 2二点上的横断面, 在棒弯曲前互相平行,弯曲后则成一小角度 d :。显然在棒弯曲后,棒的下半部呈现拉伸状态, 上半部 为压缩状态,而在棒的中间有一薄层虽然弯曲但长度不变,称为中间层。 计算与中间层相距为 y 、厚dy 、形变前长为dx 的一段,弯曲后伸长了 yd 「,它受到的拉 力为dF ,根据胡克定律有 dF —匚 yd? dS dx . 式中dS 表示形变层的横截面积,即 dS 二bdy 。于是 实验 杨氏模量的测定(梁弯曲法) E 審. (1)

d? dF =Eb ydy. dx 此力对中间层的转矩为dM ,即 d? 2 dM -Eb y dy . dx 而整个横断面的转矩M应是 d—a 2 1 3d? M =2Eb 2 y2dy Ea'b . (2) dx 012 dx 1 1 如果将棒的中点C固定,在中点两侧各为处分别施以向上的力mg (图3),则棒的弯曲情 2 2 况当和图1所示的完全相同。棒上距中点C为x、长为dx的一段,由于弯曲产生的下降d等于 (3) 1 1 l 当棒平衡时,由外力mg对该处产生的力距mg( x)应当等于由式(2)求出的转距M , 2 2 2 即 1 J 、 1 3少: mg( x) Ea b - 2 2 12 dx 由此式求出d代入式(3)中并积分,可求出弛垂度

纯弯梁弯曲的应力分析实验报告

一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺 三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:i i E 实实εσ?=? 计算各点的理论应力增量公式:z i i I My ?= ?σ 2.测定泊松比 计算泊松比数值:ε εμ' = 四、实验步骤 1.测量梁的截面尺寸h 和b ,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:[]σa bh 3F 2 max ≤ ,然后确定量程,分级载荷和载荷重量; 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F 的初应变,以后每增加一级荷载就记录一次应变值,直至加到n F ;

5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 梁试件的弹性模量11101.2?=E Pa 梁试件的横截面尺寸h = 40.20 ㎜,b = 20.70 ㎜ 支座到集中力作用点的距离d = 90 ㎜ 各测点到中性层的位置:1y = 20.1 ㎜ 2y = 10.05 ㎜ 3y = 0 ㎜ 4y = 10.05 ㎜ 5y = 20.1 ㎜

六、应力分布图(理论和实验的应力分布图画在同一图上) 七、思考题 1.为什么要把温度补偿片贴在与构件相同的材料上? 答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。 2.影响实验结果的主要因素是什么? 答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。

第四章弯曲练习题

材料力学(弯曲)部分 一、选择题 1.外伸梁受均布载荷作用,如图所示。以下结论中( )是错误的。 AB 段剪力表达式为()qx x F Q -=; B 、AB 段弯矩表达式为2 21)(qx x M -=; C.BC 段剪力表达式为()L qa x F Q 22=; D 、BC 段弯矩表达式为) (2)(2 x L L qa x M --=。 2.外伸梁受集中力偶作用,如图所示,以下结论中( )是错误的。 A .当力偶作用点C 位于支座 B 的右侧时,梁的弯矩图为梯形;B.当 C 点位于支座B 的右侧时,梁上各截面的弯矩()0≥x M ;C.当C 点在梁上移动时,梁的剪力图不改变; D.当C 点在梁上移动时,梁的中央截面上弯矩不改变。 3.简支梁受集中力作用如图所示,以下结论中( )是错误的。 A .AC 段,剪力表达式为 ()L Fb x F Q =;B .AC 段,弯矩表达式为x L Fb x M = )(;C.CB 段,剪力表达式为 ()L Fa x F Q =; D.CB 段,弯矩表达式为)()(x L L Fa x M -=。 4.简支梁受集中力偶作用如图所示。以下结论中( )是错误的。 A .AC 段,剪力表达式为()L M x F o Q = ; B.AC 段,弯矩表达式为x L M x M o = )(;C.CB 段,剪力表达式为 ()L M x F o Q =; D.CB 段,弯矩表达式为o o M x L M x M +=)(。 5.外伸梁受集中力偶作用如图所示。下列结论中( )是错误的。 A .支座A 的反力F A =M 0 /L ;B.支座 B 的反力F B =M 0 /L ;C.AB 段上各截面剪力相同;D.CB 段上各截面的弯矩均为负值。 6.梁在集中力作用的截面处,则( )。 A .剪力图有突变,弯矩图光滑连续 ; B.剪力图有 突变,弯矩图有折角;C.弯矩图有突变,剪力图光滑连续; 题1图 题2图 题3图 题4图

纯弯梁弯曲的应力分析实验报告

纯弯梁弯曲的应力分析实验报告 一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:,,,E,,实i实i ,Myi,,,计算各点的理论应力增量公式: iIz 2.测定泊松比 ',,计算泊松比数值: ,, 四、实验步骤 1.测量梁的截面尺寸h和b,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:

2bhF,,,,,然后确定量程,分级载荷和载荷重量; max3a 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F的初应变,以后每增加一级荷载就记录一次应变值,直至加到 ; Fn 5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 11E,2.1,10梁试件的弹性模量Pa 梁试件的横截面尺寸, 40.20 ?,, 20.70 ? hb 支座到集中力作用点的距离, 90 ? d 各测点到中性层的位置:, 20.1 ? , 10.05 ? , 0 ? yyy312 , 10.05 ? , 20.1 ? yy54 ,6静态电子应变仪读数 (,10)载荷(N) 1点 2点 3点 4点 5点 6点 读数增量读数增量读数增量读数增量读数增量增量读数 F,F ,,,,,,,,, ,,,,,,,,,335566112244 0 0 0 0 0 0 0 492 -27 -12 1 16 26 -10 492 -27 -12 1 16 26 -10 506 -31 -14 1 16 28 -8 998 -58 -26 2 32 54 -18 450 -10 -6 3 8 15 -4 1448 -68 -32 5 40 69 -22 262 -20 -6 1 8 12 -2 ,,,,,, ,,,,,,,F 3561241710 -88 -38 6 48 81 -24 427.5 -22 -9.5 1.5 12 20.25 -6 应变片位置 1点 2点 3点 4点 5点 6点 实验应力值/MPa -4.62 -2.00 0.32 2.52 4.25 -1.26

北航-材料力学实验报告-直梁弯曲试验共7页

用电测法测定纯弯(或三点弯)时梁横截面上的正应力分布规律,并与理论计算结果进行比较,以验证梁的弯曲理论。 一、实验目的: 北京航空航天大学、材料力学、实验报告 实验名称:直梁弯曲试验 学 号 390512---- 姓 名 ----- 实验时间:2011 试件编 号 试验机编号 计算机编号 应变仪编号 百分表编号 成 绩 实验地点:主楼南 翼116室 2&9 2&9 - 15 - 教 师 年 月 日 1. 比较,并对实验结果进行分析。 3.学习电测法的多点测量。 二、实验原理 三点弯曲实验装置简图 a a 2a P b h

对于三点弯曲梁,距中性层为 y 处的纵向正应变和横向正应变为: ()()Z Z M y y E I M y y E I εεμ ?= ??'=-? (1) 距中性层为 y 处的纵向正应力为: ()()z M y y E y I σε?=?= (2) 本实验采用重复加载法,多次测量在一级载荷增量M 作用下,产生的应变增量和 ’。于是式(1)和式(2)分别变为: ()()()Z Z Z M y y E I M y y E I M y y I εεμσ???= ???'?=-????= (3) (4) 在本实验中, /2M P a ?=?? (5) 最后,取多次测量的平均值作为实验结果: 1 1 1 () ()() ()() ()N n n N n n N n n y y N y y N y y N ε εεεσ σ===??= '?'?= ??= ∑∑∑ (6) 在梁的中性层处,切应力的理论计算公式为: 32S F bh τ= (7) 由于在纯剪切应力状态下,有:

直梁弯曲试验

北京航空航天大学、材料力学、实验报告 实验名称:直梁弯曲试验 学号 390512---- 姓名 ----- 实验时间: 试件编号 试验机编号 计算机编号 应变仪编号 百分表编号 成绩 实验地点:主楼南翼116室 2&9 2&9 - 15 - 教师 年 月 日 一、实验目的: 1. 用电测法测定纯弯(或三点弯)时梁横截面上的正应力分布规律,并与理论计算结果进行比较,以验证梁 的弯曲理论。 2. 用电测法测定纯弯(或三点弯)时梁中性层上的切应力大小,与理论计算结果进行比较,并对实验结果 进行分析。 3.学习电测法的多点测量。 二、实验原理 三点弯曲实验装置简图 对于三点弯曲梁,距中性层为 y 处的纵向正应变和横向正应变为: ()()Z Z M y y E I M y y E I εεμ ?= ??'=-? (1) 距中性层为 y 处的纵向正应力为: ()()z M y y E y I σε?=?= (2) 本实验采用重复加载法,多次测量在一级载荷增量?M 作用下,产生的应变增量?ε和?ε’。于是式(1)和式(2)分别变为: ()()()Z Z Z M y y E I M y y E I M y y I εεμσ???= ???'?=-????= (3) (4) a a 2a P b h

在本实验中, /2M P a ?=?? (5) 最后,取多次测量的平均值作为实验结果: 1 1 1 () ()() ()() ()N n n N n n N n n y y N y y N y y N ε εεεσ σ===??= '?'?= ??= ∑∑∑ (6) 在梁的中性层处,切应力的理论计算公式为: 32S F bh τ= (7) 由于在纯剪切应力状态下,有: 0452γε=- (8) 因此在实验时,通过测量中性层处450 方向的正应变,即可得到中性层处的切应变,进一步由剪切胡克定律计算中性处的切应力,与理论值进行比较。 实验采用重复加载法,实验结果处理参照式(3)~(6)。 三、实验步骤 1. 设计实验所需各类数据表格; 2. 拟定加载方案; 3. 试验机准备、试件安装和仪器调整; 4. 确定组桥方式、接线、设置应变仪参数; 5. 检查及试车; 检查以上步骤完成情况,然后预加一定载荷,再卸载,以检查试验机和应 变仪是否处于正常状态。 6. 进行试验; 将载荷加至初载荷,记下此时应变仪的读数或将读数清零。逐级加载,每增加一级,记录一次相应的应变值。同时检查应变变化是否符合线性。实验至少重复两次,如果数据稳定,重复性好即可。 7. 数据经检验合格后,卸载、关闭电源、拆线并整理所用设备。 四、实验数据: 2号试件尺寸,ΔP=8kN

纯弯曲梁的正应力测定的实验报告

实验四 纯弯曲梁的正应力测定 一. 实验目的: 1. 测定纯弯曲的梁的 正应力分布,验证纯弯正应力公式。 2. 学习电测法。 二. 实验设备: 1. 弯曲实验装置。 2. 电阻应变仪和预调平衡箱。 三. 实验原理及方法: 梁受纯弯曲时,根据平面假设和纵向纤维间无挤压的假设,得纯弯曲时正应力公式: Z I M =σ 图1 在矩形截面梁纯弯曲部分(见图1,CD 段),贴有四个应变片,其中3在中性层上,1,2和4,5分别贴在离中性

层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出个测量点的纵向应变1ε,可确定横截面上正应力分 布规律。 由单向应变状态胡可定律求出各测点的实验应力:11εσE =,各测点的理论应力N σ按公式Z n N I My =σ算得,将N σ和d σ进行比较。 本实验在专门的实验装置上进行,采用砝码或差动螺纹机构进行连续加载。 应变片的连接线采用半桥接线法(如图2),且利用预调平衡箱(图2)。 工作片 温度补偿片 图2

实验预习报告 课程名称:工程力学 实验名称:纯弯曲梁的正应力测定 实验目的:1:测定纯弯曲梁的正应力分布,验证纯弯曲梁 正应力公式。 2:学习电测法。 主要实验仪器:1:弯曲试验装置。 2:电阻应变仪和预调平衡箱。 主要实验步骤: 一:取一矩形截面的等截面剪支梁AB,其上作用两个对称的集中力P/2,未加载前,在中间CD段表面画些平行于梁轴线的纵向线和垂直于梁轴线的横向线。加载后在梁的AC和DB两段内,各横截面上有不同的剪力和弯矩M。

二;在矩形截面梁弯曲部分,贴有四个应变片,其中3在中性层上,1,2,4,5分别在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出各测量点的纵向应变,可确定横截面上的应变分布规律。 三:记录数据并且处理数据。 四:完成实验报告。

相关文档
最新文档