(整理)TBBF-106型高压并联电容器成套装置.

(整理)TBBF-106型高压并联电容器成套装置.
(整理)TBBF-106型高压并联电容器成套装置.

TBB(F)-10(6)型高压并联电容器成套装置

使用说明书

苏杭电气有限公司

一、概述

TBB(F)型高压并联电容器装置用于工频电力系统,作为提高

功率因数,改善和提高供电重量,减少网路损失。

警示:客户在投切电容器装置进行验收试验时,应带上负荷,

不应在无负荷的情况下投切电容器装置,避免发生谐振,产生

高电压损坏设备。

二、使用环境条件

海拔不超过1000米;周围空气温度-40℃~+45℃;相对湿度日

平均不大于95%月平均不但要90%;周围空气应不受腐蚀性或

可燃性气体、水蒸气等明显污染;无经常性剧烈振动。

三、结构特点

高压并联电容器装置的结构形式分为户内柜体式和户内外柜架

式两大类。

户内柜体式由规范化的电容器柜、限流器柜、放电线圈避雷器

柜,以及开关柜(包括测量、保护与控制系统)等组成。可根

据装置容量大小、电气接线方式,以及安装现场条件进行相应

的排列组合。柜体式装置装设了“机电一体多网门联锁装置”,保护了人身设备安全。

四、型号说明

T BB 口(F)-口-口/口-**

T-装置

BB-并联电容器装置

口-设计序号

(F)-防误型

口-额定电压(KV)

口-电容器组总容量(Kvar)

口-单台电容器额定容量(Kvar)

**-尾注号

注:设计序号用于区别某一系列产品的不同结构形式,设计序号第一个字母1表示单列布置,2表示双列布置。第二个字母1表示单层布置,2表示双层布置,3表示三层布置。

尾注号表示主接线方式和电容器组的继电保护方式,用两个大写汉语拼音字母表示,第一个字母表示主接线方式:A-单星型(Y接线);B-双星型(Y-Y接线);C-单三角形(△接线)。第二个字母表示电容器组的继电保护方式:C-电压差动保护,L-不平衡电流保护,K-开口三角电压保护,Y-不平衡电压保护。

五、技术参数

a.装置额定电压:6KV、10KV。

b.装置额定容量:1000Kvar~6000Kvar可根据用户要求而定;

c.配套多网门联锁装置操作电源:DC-110V、DC-220V、AC-220V

等;

d.一次接线方式:单星型接线、双星型接线。

六、二次保护与防误操作功能

1、二次保护控制方式

a.电容器组采用单星型接线时,保护方式采用开口三角零序电

压保护;

b.电容器组采用双星型接线时,保护方式采用中性点不平衡电

流保护。

2、防误操作功能

a.真空开关与电容器组主网门的闭锁

真空开关分闸,电容器组的主网门才能打开,反之,只有当

电容器组的主网门关好后,真空开关才能合闸。

b、电容器组主网门与其他网门的闭锁

系机械联锁,电容器组的主网门打开后,其他网门才能打开,反之,其他网门全部关好后,主网门才能关好(只要其中有任何一扇网门没有关好,主网门就无法关上)。

设计图纸

工程名称:珠海华润包装材料有限公司(原名华源雷迪斯)

型号规格:TBB(F)-10-2400/200AK

设备名称:10KV高压并联电容器装置

吴江市苏杭电气有限公司

TBB(F)-10-2400/200AK高压并联电容器装置一次原理图

TBB(F)-10-2400/200AK高压并联电容器装置二次原理图

TBB(F)-10-2400/200AK高压并联电容器装置端子排图

9、14至电容器开关柜2*1.5

21、31至交流屏2*2.5

24、25、34、36至电容器开关柜4*1.5

高压并联电容器外保护用熔断器BR8型系列喷射式熔断器使用说明书吴江市苏杭电气有限公司

苏杭电气●吴江市胜天熔断器厂

1、产品的适用范围与用途

BR8型系列改进型喷射式熔断器(注:原称喷逐式熔断器)适用于频率50H Z 66KV及以下高压并联电容器装置,作为单台电容器内部故障保护用熔断器(以下简称熔断器)。

熔断器的作用在于:当电容器内部元件发生击穿短路故障时,与其串联的熔断器能可靠地、迅速地断开故障电容器,从而避免发生电容器外壳爆裂事故,确保高压并联电容器装置及其相

连电网的安全。

2、型号说明

BR 8(W)-口/ 口P / 口

BR-并联电容器外保护用熔断器

8-设计序号(改进型)

(W)-户外型

口-熔断器额定电压(KV)

/口-熔断器额定电流(A)

P-喷射式

/口-熔丝额定电流(A)

例如,“BR8(W)-7/100P/80”表示用于户外额定电压为7KV,额定电流为100A,熔丝额定电流为80A的喷射式熔断器。

3、结构特性与工作原理

2.1结构特性

熔断器主要由管体、熔丝和防摆装置等三部分组成:

a)管体:由环氧酚醛布管、金属管帽和安装螺丝等三部分组成。

采取熔管喷涂防紫外线绝缘漆和金属管帽表面防腐措施或

者采用不锈钢材质管帽(用于大电流规格),安装时用螺母

和垫片将熔断器固定于折成120°角的接线板上,而后再固

定连接在汇流排上。管体上有熔断器型号等标志。

b)熔丝:由连接端子、双金属复合式熔体、尾线及灭弧管等组

成,是熔断器的关键部分。采取连接端子与管帽紧密螺纹镶

嵌并与接线板直接连接方式、熔体与尾线机械冲压与灭弧管自攻螺纹固定方式等措施,以改进性能。熔丝上有额定电流标识。

c)防摆装置-由支架、弹簧及环氧酚醛布管等组成。支架和弹簧

采用不锈钢材料适用于户外使用。熔丝的尾线穿过环氧布管与支架端头一起安装在电容器接线端子上,并使环氧布管受力平衡处于垂直状态。当熔体熔断,尾线在弹簧拉力和气体喷逐力的作用下弹出时,该防摆装置能限制尾线摆动范围,并能防止带电尾线与电容器外壳或安装构架短路放电,同时可适当减小电容器组安装尺寸。

2.2工作原理

并联电容器的内部芯子由多个元件并联组成,当某一元件因某种原因发生击穿短路,在故障电容器内部该故障元件所在串联段短路引起电容器内部串联段减少,电容量增大,流过电容器的电流也相应增大,健全的各串联元件段上电压降亦随之增大,故障有可能继续发展,当击穿短路的串联元件段数达到一定数值时,与电容器相串联的熔断器中的熔丝流过电流增长到足以使熔体熔断,其尾线在弹簧反弹压力的作用下,使熔断点的电弧拉长,同时灭弧管产生的气体使熔管内压力迅速增大,致使电弧迅速熄灭,故障电容器与系统隔离,从而起到保护作用。根据现行国标GB50277《并联电容器装置设计规范》和电力行标DL442《高压并联电容器单台保护用熔断器订货技术条件》

的规定要求,熔断器熔丝的额定电流按1.43~1.55倍电容器额定

电流配置,熔断器在通过该电流时应不熔断,而在电容器内部

有50%~75%串联元件段击穿短路时适时熔断。如电容器内部元

件发生贯穿性短路,熔断器能在电容器外壳爆裂前开断,切除

电容器组中故障电容器,避免事故扩大。

2.3熔断器保护配合导则

2.3.1保护顺序:按照GB/T11024.1~2001《标称电压1KV以上交流电力系统并联电容器第一部分:总则、性能、试验和定额、安全要求、安装和运行导则》中附录C的规定-“电容器组的各种保护器件应按规定顺序动作。通常第一级是单元的熔断器动作。第二级时电容器组的继电保护(例如电流或不平衡保护)动作。第三极是网络或设备的保护动作。

2.3.2保护配合整定原则:按照GB50227中第6.1.2条款的规定---“采用熔断器(外熔丝)保护的电容器组,其不平衡保护应按单台电容器过电压允许值整定。”

2.3.3熔断器保护灵敏度与电容器组接线方式有关,如电容器组串联段数过多并联台数过少,经校验熔断器仅在跨越套管闪络或单元中的介质完全击穿时方能动作。在这种情况下,不平衡保护是第一级保护,而熔断器作为后备保护。

4、安装要求

4.1 安装前应按照设计要求核对熔断器的型号和熔丝的额定电流正确无误,并按DL442-91中第4.1.3条款的要求进行交接验收试验(包

括外观及外部尺寸检查、测量电阻值,其他项目及试品数量由用户与厂家商定)。

4.2 熔断器的安装:熔管与水平夹角以30°为宜。尾线应拉紧且不宜过长。

4.3 熔管口的气流喷射方向不得有任何障碍物,以防止熔断器动作时喷出气流,以及尾线与电容器外壳或安装支架碰触使故障扩大。5、熔丝的选配与更换

5.1 熔丝的额定电流的选配

熔丝的额定电流应不低于被保护的并联电容器的额定电流的1.43倍,一般推荐在1.43~1.55倍的范围内选取。

5.2 熔丝更换

5.2.1更换的熔丝必须符合5.1的规定要求。

5.2.2更换熔丝前,电容器装置必须处于检修状态,且电容器经逐台短接放电后,方可拆、卸熔断器与更换熔丝。

5.2.3更换熔丝前应检查熔断器动作原因是属于电容器内部故障正确动作,抑或自身误动。切忌未查明原因,或者未更换故障电容器即行更换熔丝重新合闸。

5.2.4更换熔丝前,须检查管体是否完好,熔管内外是否干净(可加适当清刷),如管体已损坏则需同时更换。其他部件如有异常亦需更换。

5.2.5更换熔丝后,重新按上述要求安装熔断器。

干式串联电抗器

安装使用说明书

昆山市特种变压器制造有限公司

作用:

1、对6KV电压等级变压器,环氧包封部位对地及外壳间最小尺寸

为36mm,罗路部位对地及外壳间的电气安全距离为90mm. 2、对10KV电压等级变压器,环氧包封部位对地及外壳间最小尺

寸为50mm,罗路部位对地及外壳间的电气安全距离为125mm.

3、对20KV电压等级变压器,环氧包封部位对地及外壳间最小尺

寸为90mm,罗路部位对地及外壳间的电气安全距离为225mm.

4、对35KV电压等级变压器,环氧包封部位对地及外壳间最小尺

寸为170mm,罗路部位对地及外壳间的电气安全距离为340mm.

一、产品用途、性能

该产品系针对电力系统改善功率因数,通常采用并联电容器组来补偿电力系统的无功功率,为了限制电力系统高次谐波电流引起的电容器组过电流及电容器的合闸涌流,保护电容器组安全运行,通常在电容器组上加装串联电抗器。

本产品能在32U N端电压峰值下,及1.35I N额定电流下正常连续运行,也能在三次和五次谐波电流含量均不大于35%的总电流有效值为1,2I N额定电流下连续运行。串联电抗器与并联电容

器串联联结,并联电容器组通常联结成星型,串联电抗器可以

联结在线端,也可以联结在中性点端。

二、电抗器型号含义如下:

C K S C - 口/口-口

C-串联

K-电抗器

S-三相

C-环氧浇注式

-口-额定容量(Kvar)

/口-电压等级(KV)

--口-额定电抗率(%)

三、工作条件

1、海拔不超过1000米;

2、最高气温不超过+40℃;

3、最低气温不低于-30℃;

4、年平均温度不高于+20℃;

5、无爆炸危险的介质中,且介质中无足以腐蚀金属和破坏绝缘的气体与尘埃环境中。

四、结构特征

1、线圈选用优质F级无氧铜电磁线绕制;

2、线圈由带环氧树脂填料浇注成一个整体,机械强度好。防潮、防腐蚀、防火特性极好,并留有通风散热气道,确保线圈良好的通风

散热性能。

3、铁芯均为三柱式结构,用优质取向硅钢片迭积而成,上下铁轭截面均为矩形,芯柱截面为圆形,芯柱由若干气隙及硅钢片迭积而成的铁饼组成。

五、运行前的检查

1、检查所有的紧固件、连接件、标准件是否松动,并重新紧固一次。

2、检查晕死时拆卸的零部件安装是否妥当,并检查电抗器内是否有异物存在。

3、检查铁心对夹件的绝缘电阻是否大于50Ω。

4、检查电抗器的外壳和金属部件是否已作永久性接地。

六、为了保证电抗器能正常运行,需进行定期检查和维护

1、一般在干净清洁的场所,每年进行一次检查,在其他环境比较恶劣场所例如:可能有灰、各种化学烟雾污染的空气进入时,每三个月必须进行一次检查。

2、检查时如发现有过多的灰尘聚集,则必须清除,以保证空气流通和防止绝缘击穿,特别要注意清洁电抗器的绝缘子、绕线装配的顶部和底部,并使用干燥的压缩空气吹净通风气道中的灰尘。

3、检查紧固件、连接件是否松动,导电零件以及部件有无生锈、腐蚀的痕迹,并观察绝缘表面有无爬电痕迹和碳化现象,必要时应采取相应的措施接线处理。

七、安全注意事项

1、安装环境周围不得有导磁物体。

2、电抗器安装完毕投入运行之前,对于无外壳的电抗器,应在电抗器的周围安装隔离栏栅,以避免人或物的意外事故发生。

3、电抗器投入运行以后,禁止靠近电抗器主体,以防事故发生。

高压并联电容器装置说明书

高压并联电容器装置说明书 一.概述 1.1产品适用范围与用途 TBB型高压并联电容器装置(以下简称装置),主要用于3~ 110kV,频率为50Hz的三相交流电力系统中,用以提高功率因数,调整网络电压,降低线路损耗,改善供电质量,提高供配电设备的使用效率的容性无功补偿装置。 1.2型号、规格 及外形尺寸 1.2.1型号说明 装置的保护方式通常与电容器组的接线方式有关系,一般的有

AK、AC、AQ和BC、BL之分。 1.2.2执行标准 GB 50227 标称电压1kV以上交流电力系统用并联电容器 GB 10229 电抗器 GB 311.1 高压输变电设备的绝缘配合 GB 50060 3~110kV高压配电装置设计规范 JB/T 5346 串联电抗器 JB/T 7111 高压并联电容器装置 DL/T 840 高压并联电容器使用技术条件 其它现行国家标准。 DL/T 604 高压并联电容器装置订货技术条件 1.2.3产品规格与外形尺寸 常用的产品规格与柜体外形尺寸如表1~5所示。装置的外形和基础的示意图分如图1、图2所示。 产品规格与外形尺寸 注:以下尺寸仅供参考,实际尺寸根据用户情况而定。以单台电容额定电压11/3kV 表格 1 卧式-阻尼电抗后置 单位:mm

序 号型号规格额定容量L1 L2 H 额定电 流 (A) 1 TBB10-600/100A K 600 1200 2800 2600 94.5 2 TBB10-900/100A K 900 1200 3100 2600 141.7 3 TBB10-1000/334A K 1000 1200 2100 2600 157.5 4 TBB10-2000/334A K 2000 1200 2800 2600 315 5 TBB10-2400/200A K 2400 1200 3400 2600 378 6 TBB10-3000/334A K 3000 1200 3000 2600 472.4 7 TBB10-3600/200A K 3600 1200 4000 2600 566.9 8 TBB10-4008/334A K 4008 1200 3400 2600 631.2 9 TBB10-4200/200A K 4200 1200 4400 2600 661.4 10 TBB10-4800/200A4800 1200 4600 2600 755.9

预防高压并联电容器事故措施示范文本

预防高压并联电容器事故措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

预防高压并联电容器事故措施示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 总则 1.1 为预防并联电容器事故发生,保障电网安全、可 靠运行,特制定本预防措施。 1.2 本措施是依据国家的有关标准、规程和规范设备 运行经验和检修而制定的。 1.3 本措施针对并联电容器设备在运行中容易导致典 型、频繁出现的事故提出了具体的预防措施。 1.4 本措施适用于中电投某风电场系统的35(6.3、) kV电压等级并联电容器。 2 引用标准 以下为设备设计、制造及试验所应遵循的国家、行业

和企业的标准及规范,但不仅限于此: GB 6915-1986 高原电力电容器 GB 3983.2-1989 高电压并联电容器 GB 11025-1989 并联电容器用内部熔丝和内部过压力隔离器 GB 15116.5-1994 交流高压熔断器并联电容器外保护用熔断器 GB 50227-1995 并联电容器装置设计规范 DL 402-1991 交流高压断路器订货技术条件 DL 442-1991 高压并联电容器单台保护用熔断器订货技术条件 DL 462-1992 高压并联电容器用串联电抗器订货技术条件 DL/T 604-1996 高压并联电容器装置订货技术条件 DL/T 628-1997 集合式高压并联电容器订货技术条件

电压互感器高压熔断器频繁熔断原因分析

电压互感器高压熔断器频繁熔断原因分析 作者简介:李贞(1984-),黑龙江密山人,西安供电局,配电运行;吕信岳(1984-),浙江温州人,西安供电局,配电运行。 电压互感器(PT)作为变电站中保护和计量的主要设备,在运行中起着至关重要的作用。其熔断器的频繁熔断不仅造成了经济损失,而且也影响正常的保护和计量工作,成为电网安全运行的隐患。先介绍电压互感器的作用、概述电压互感器熔断器熔断的常见原因,然后结合变电站现场发生的PT熔断器熔断现象,通过理论分析,对变电站PT熔断器熔断现象的根本原因做出解释,为今后可能出现的类似问题提供参考和借鉴。 标签:电压互感器; 铁磁谐振; 高压熔断器熔断; 解决措施 1 电压互感器的作用 (1)把一次回路的高电压按比例关系变换成100V或更低等级的标准二次电压,监视母线电压及电力设备运行状况,并提供测量仪表、继电保护及自动装置所需电压量,保证系统正常运行。 (2)可以将一次侧的高电压与二次侧工作的电气工作人员隔离,且二次侧可设接地点,确保二次设备和人身安全。 (3)使二次回路可采用低电压控制电缆,且使屏内布线简单,安装、调试、维护方便,可实现远方控制和测量。 2 电压互感器损坏及高压熔断器熔断的危害 (1)对变电设备的危害:一般情况下,系统中最常发生的异常运行现象是谐振过电压。虽然谐振过电压幅值不高,但可长期存在。尤其是低频谐波对电压互感器线圈设备影响的同时可能会危及变电其它设备的绝缘,严重的可使母线上的其它薄弱环节的绝缘击穿,造成严重的短路事故甚至大面积停电事故。 (2)对运行方式的危害:出现电压互感器烧坏及高压熔断器熔断现象后,如不能马上修复,将导致母线不能分段运行。 (3)对人员的危害:一旦发生电压互感器损坏或高压熔断器熔断现象,将会给运行人员巡视设备时造成人身伤害。 (4)降低供电可靠性和少计电量:若电压互感器损坏或高压熔断器熔断,则无法准确计量,直接造成电量损失或计量不准确。同时保护电压的消失将严重危及供电设备的安全运行。

高压并联电容使用说明

产品名称:高电压并联电容器出品单位:西安华超电力电容器有限公司 1 产品用途 本产品适用于频率50Hz电力系统,提高功率因数用的并联电容器。主要用于改善交流电力系统的功率因数,降低线路损耗,提高网路末端电压质量,增大变压器的有功输出。 2 特点 2.1该产品以粗化聚丙烯薄膜及苄基甲苯做介质,电子、电力电容器专用铝箔 为电极,采用无感卷制方式,为扁形元件,元件内部场强分布均匀,容量无衰减、比特性小、寿命长以及优良的电气性能等特点。 2.2采用高真空干燥浸渍技术除去电容器中全部残余水分和空气,填注苄基甲 苯浸渍剂(法国C101)。具有不易导磁、过流大、损耗小等特点,有良 好的耐低温特性。 2.3采用不锈钢外壳封装。两侧带有固定架,陶瓷绝缘子。以及科学合理的引出方式。 3 产品型号及含义

4 技术参数 4.1主要参数 4.1.1额定频率:50Hz 4.1.2端子间试验电压:交流试验电压2.15Un或直流试验电压4.3Un。 4.1.3损耗角正切值:小于0.0009。 4.1.4相数:单相。 4.1.5绝缘水平: 电容器的高压端子与地之间应能承受表1规定的耐受电压。工频耐受电压施加的时间为1min。 表1 绝缘水平(kV) 4.1.6放电电阻:电容器内部装有内放电电阻,从电网断开后,端子上的电压在10分钟内可降至75V以下。 4.1.7电容偏差:±5% 4.1.8电容器组三相最大电容量与最小电容量之比不大于1.01。 4.1.9执行标准:GB/11024-2001《标称电压1kV以上交流电力系统用并联电容器》 4.2过负载 4.2.1电容器可在表2的电压水平下运行。 表2

TBB系列高压并联电容器装置

TBB系列高压并联电容器装置 一.型号说明 例1:TBB10-6000/334-AK 即系统电压10kV、补偿总容量6000kvar、电容器单台容量334kvar、一次单星型接线方式、开口三角电压保护,室内安装并联电容器装置。例2:TBB35-60000/500-BLW 即系统电压35kV、补偿总容量60000kvar、电容器单台容量500kvar、一次双星型接线方式、中性点不平衡电流保护,户外安装并联电容器装置。 二.产品概述 TBB系列高压并联电容器装置适用于频率为50Hz,额定电压等级为6kV、10kV、35kV的输配电系统中,作为系统无功功率的补偿装置,使系统功率因数达到最佳,并可以调整网络电压,以减少配电系统和变压器的损耗,降低线路损耗,改善电网的供电质量。 三、产品性能特点 装置的绝缘水平:6kV 额定电压的成套装置,其主电路相间及相与地之间,工频耐受电压(方均根值)23kV,1min;10kV额定电压的成套装置其主电路相间以及相与地之间,工频耐受电压(方

均根值)30kV,1min;成套装置辅助电路工频耐受电压(方均根 值)2kV ,1min。装置的实际电容与其额定电容之差不超过额定 值的0~10%,装置的任何两线路端子之间电容的最大值与最小值之比不超过1.06。装置允许在工频1.1倍额定电压下长期运行。 ?装置允许在由于过电压和高次谐波造成的有效值1.3倍额定电流的稳态过电流下连续运行。 ?装置对电容器内部故障,除设有单台熔断器保护外,根据主接线型式不同,设有不同的继电保护。装置应能将电容器组投入运行 瞬间产生的涌流限制在电容器组额定电流的20倍以下。 四、产品结构特点 串联电抗器与电容器串联,可抑制谐波和合闸涌流,配置电抗率为 1%-12%(按电容器装置总容量计算)的串联铁芯电抗器或干式空芯电抗器。如不提出特殊要求,配置电抗率为4.5%-6%的电抗器,用来抑制五次以上谐波和合闸涌流。 1.高压并联电容器采用美国库柏公司优质全膜电容。 2.放电线圈直接与电容器并联使用,其在电容器从电网断开后,在5s 内将电容器端子间的电压降至50V以下。放电线圈还可为并联电容器提供二次保护信号。 3.氧化锌避雷器主要用来限制电容器投切开关的过电压。 4.接地开关主要作用是停电检修时将电容器的端子接地,保证检修人员的安全。

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(0.1~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

10kVPt高压熔断器频繁熔断原因及处理方法

10kVPt高压熔断器频繁熔断原因及处理方法 【摘要】本文先介绍电压互感器的作用、概述电压互感器熔断器熔断的常见原因,然后就某变电站更换l0KV母线PT后出现高压熔断器频繁熔断这一现象进行原因分析,提出处理方法并消除故障,为今后可能出现的类似问题提供参考和借鉴。 【关键词】电压互感器;PT高压熔断器;频繁熔断;解决措施 0.引言 l0kV配电系统的电压互感器经常出现高压熔断器一相或两相熔断等异常故障,这不仅影响了电能表的准确计量,而且还容易造成保护装置和安全自动装置的误动作,严重危及配电网的安全可靠运行。 2009年2月某变电站更换两组l0kV互感器,将型号为JSJW—l0Q油浸式PT更换为型号为JDZX9—10Q干式PT后,该电压互感器多次出现高压熔断器熔断现象,本人结合自己多年变电运行经验,就该站l0kV电压互感器高压熔断器熔断这故障现象产生的原因、危害、故障分析及处理方法进行了分析和探讨。 1.电压互感器的作用 ①将一次回路的高电压转为二次回路的标准低电压,监视母线电压及电力设备运行状况。并提供测量仪表、继电保护及自动装置所需电压量,保证系统正常运行。 ②使二次回路可采用低电压控制电缆。且使屏内布线简单,安装、调试、维护方便,可实现远方控制和测量。 ③使二次与一次高压部分隔离,且二次可设接地点,确保二次设备和人身安全。 2.电压互感器损坏及高压熔断器熔断的危害 ①对变电设备的危害:一般情况下,l0kV系统中最常发生的异常运行现象是谐振过电压。虽然谐振过电压幅值不高,但可长期存在。尤其是低频谐波对电压互感器线圈设备影响的同时可能会危及变电其它设备的绝缘,严重的可使母线上的其它薄弱环节的绝缘击穿,造成严重的短路事故甚至大面积停电事故。 ②对运行方式的危害:出现电压互感器烧坏及高压保险熔断现象后,如不能马上修复,将导致10kV母线不能分段运行。 ③对人员的危害:一旦发生电压互感器损坏或高压保险熔断现象,将会给运

低压电容器并联装置

中华人民共和国机械行业标淮 JB711393 低压并联电容器装置 机械工业部1993-10-08批准 1994-01-01实施 1 主题内容与适用范围 本标准规定了低压并联电容器装置的适用范围术语产品分类技术要求试验方法检验规则标志等 本标准适用于交流频率50Hz,额定电压1kV及以下的三相配电系统中用来改善功率因数的并联电容器装置(以下简称装置) 2 引用标准 GB2681 电工成套装置中的导线颜色 GB2682 电工成套装置中的指示灯和按钮的颜色 GB2900.16 电工名词术语电力电容器 GB3047.1 面板架和柜基本尺寸系列 GB4942.2 低压电器外壳防护等级 JB3085 装有电子器件的电力传动控制装置的产品包装与运输规程 3 术语 除在本标准内明确说明的以外,其余的术语均应符合GB2900.l6的规定 3.1 (单台)电容器 由一个或多个电容器元件组装于单个外壳中并有引出端子的组装体 3.2 电容器组 电气上连接在一起的一组电容器 3.3 并联电容器装置 主要由电容器组及开关等配套设备组成的,并联连接于工频交流电力系统中用来改善功率因数降低线路损耗的装置 3.4 装置的额定频率(N) 设计装置时所采用的频率 3.5 装置的额定电压(U N)

装置拟接入的系统的额定电压 3.6 装置的额定电流(I N) 设计装置时所采用的电流(方均根值),其值为装置内电容器组的额定电流 3.7 装置的额定电容(C N) 设计装置时所采用的电容值,其值为装置内电容器组的额定电容 3.8 装置的额定容量(Q N) 设计装置时所采用的容量值,其值为装置内电容器组的额定容量 3.9 电容器组的额定电压(U n) 设计电容器组时所采用的电压 注对于内部联结的多相电容器,U n系指线电压 3.10 主电路 用以完成主要功能的电路 3.11 辅助电路 用以完成辅助功能的电路 3.12 过电压保护 当母线电压超过规定值时能断开电源的一种保护 3.13 过电流保护 当流过装置的电流超过规定值时能断开电源的一种保护 3.14 带电部件 在正常使用中处于电压下的任何导体或导电部件包括中性导体,但不包括中性保护导体(PEN) 3.15 裸露导电部件 装置中一种可触及的裸露导电部件,这种导电部件,通常不带电,但在故障情况下可能带电 3.16 对直接触电的防护 防止人体与带电部件产生危险的接触 3.17 对间接触电的防护 防止人体与裸露导电部件产生危险的接触

TBB系列高压并联电容器装置

武汉华能阳光电气有限公司 TBB系列高压并联电容器装置 一.型号说明 例1:TBB10-6000/334-AK 即系统电压10kV、补偿总容量6000kvar、电容器单台容量 334kvar、一次单星型接线方式、开口三角电压保护,室内安装并联电容器装置。 例2:TBB35-60000/500-BLW 即系统电压35kV、补偿总容量60000kvar、电容器单台容量500kvar、一次双星型接线方式、中性点不平衡电流保护,户外安装并联电容器装置。 二.产品概述 TBB系列高压并联电容器装置适用于频率为50Hz,额定电压等级为6kV、10kV、35kV的输配电系统中,作为系统无功功率的补偿装置,使系统功率因数达到最佳,并可以调整网络电压,以减少配电系统和变压器的损耗,降低线路损耗,改善电网的供电质量。

武汉华能阳光电气有限公司 三、产品性能特点 ?装置的绝缘水平:6kV 额定电压的成套装置,其主电路相间及相与地之间,工频耐受电压(方均根值)23kV,1min; 10kV额定电压的成套装置其主电路相间以及相与地之间, 工频耐受电压(方均根值)30kV,1min;成套装置辅助电 路工频耐受电压(方均根值)2kV ,1min。装置的实际电 容与其额定电容之差不超过额定值的0~10%,装置的任何 两线路端子之间电容的最大值与最小值之比不超过1.06。 装置允许在工频1.1倍额定电压下长期运行。 ?装置允许在由于过电压和高次谐波造成的有效值1.3倍额定电流的稳态过电流下连续运行。 ?装置对电容器内部故障,除设有单台熔断器保护外,根据主接线型式不同,设有不同的继电保护。装置应能将电容 器组投入运行瞬间产生的涌流限制在电容器组额定电流的 20倍以下。 四、产品结构特点

电压互感器高压熔断器熔断原因分析与预防措施

电压互感器高压熔断器熔断原因分析与预防措施 【摘要】电压互感器(PT)是电力系统中重要的测量和保护用设备。在电压互感器与电气主接线之间,一般有高压熔断器作为保护。高压熔断器具有结构简单,便于检修维护等优点,被广泛的应用。在中性点不接地系统中,当系统中的电容电流较大时,容易引发PT一次高压熔断器熔断的事故,会使电量计费,保护工作等受到影响,而且更换PT一次高压熔断器本身也会对人力、物力造成浪费,影响设备的安全稳定运行。因此,研究PT一次熔断器熔断原因和解决办法就尤为重要了。 【关键词】电压互感器;高压熔断器;PT一次高压熔断器熔断;铁磁谐振 0 引言 2014年12月24日15:26分,某XX机组DCS监视画面发电机出口电压UAB和UBC两相较正常运行时20kV有所降低,其值下降为19.3kV。通知继保人员后对变送器屏的相关电压量进行测量,发现A相、C相二次电压为57.7V,B相电压下降为55.3V左右。检查PT就地端子箱相应PT后发现从PT根部电位就已经降低,判断为PT一次侧高压熔断器熔断,待将B相PT小车拉出来后检查高压熔断器,发现B相高压熔断器熔断。更换新高压熔断器后恢复PT小车,电压显示恢复正常。本文结合此次PT一次高压熔断器熔断的事故分析和处理过程,对PT一次高压熔断器熔断后的故障现象进行分析,并对PT一次高压熔断器熔断的原因和预防措施进行探究。 1事故发生机组电气系统概况 1.1呼热电气系统主接线概述 事故发生机组共有2台发电机,电压等级为20kV,容量为300MW,分别通过两台升压变将电压等级升至220kV后接入220kV变电站。 1.2发电机机端电压互感器配置概况 机组的发电机出口有3组电压互感器,第三组电压互感器变比为20kV/57.7V/57.7V/33.3V以下简称3PT。3PT为匝间保护专用PT,有3个二次绕组,分别为3TV01、3TV02、3TV03,其中第一个绕组3TV01,供给发变组保护A屏、B屏,用于发电机匝间保护。3TV02供给变送器屏和励磁调节器的B通道。3TV03为开口三角形绕组,为发电机匝间保护提供零序电压。 3TV02这组电压量引至变送器屏后,用于引接3个电压变送器,5个有功变送器,1个无功变送器,2个频率变送器,电压并联引接。电压变送器输出提供给DCS系统,为监视和机组同期并列所用。5个功率变送器,其中1个输出送至DCS,为监视所用;3个输出送往DEH系统,参与功率电调逻辑;1个送往

高压并联电容器装置运行规范

第三条 正常巡视项目及标准 武汉华能阳光电气有限公司 高压并联电容器装置规范书 一. 电容器巡视检查 第一条 正常巡视周期为每小时巡检一次;每周夜间熄灯巡视一次。 第二条 特殊巡视周期 (一)环境温度超过规定温度时应采取降温措施,并应每半小时巡视一 次; (二)设备投入运行后的 72h 内,每半小时巡视一次。 (三)电容器断路器故障跳闸应立即对电容器的断路器、保护装置、电 容器、电抗器、放电线圈、电缆等设备全面检查; (四)系统接地,谐振异常运行时,应增加巡视次数; (五)重要节假日或按上级指示增加巡视次数; (六)每月结合运行分析进行一次鉴定性的巡视。 序 号 巡视内容及标准 备 注 1 检查瓷绝缘有无破损裂纹、放电痕迹,表面是否清洁。 2 母线及引线是否过紧过松,设备连接处有无松动、过 热。 3 设备外表涂漆是否变色,变形,外壳无鼓肚、膨胀变 形,接缝无开裂、渗漏油现象,内部无异声。 外壳温度不 超过 50℃。 4 电容器编号正确,各接头无发热现象。 5 熔断器、放电回路完好,接地装置、放电回路是否完 好,接地引线有无严重锈蚀、断股。熔断器、放电回 路及指示灯是否完好。

武汉华能阳光电气有限公司 第四条特殊巡视项目及标准 序 号 巡视内容及标准备注 1雨、雾、雪、冰雹天气应检查瓷绝缘有无破损裂纹、放电现象,表面是否清洁;冰雪融化后有无悬挂冰柱,桩头有无发热;建筑物及设备构架有无下沉倾斜、积水、屋顶漏水等现象。大风后应检查设备和导线上有无悬挂物,有无断线;构架和建筑物有无下沉倾斜变形。 2大风后检查母线及引线是否过紧过松,设备连接处有无松动、过热。 3雷电后应检查瓷绝缘有无破损裂纹、放电痕迹 4环境温度超过或高于规定温度时,检查试温蜡片是否齐全或熔化,各接头有无发热现象。 5断路器故障跳闸后应检查电容器有无烧伤、变形、移位等,导线有无短路;电容器温度、音响、外壳有无异常。熔断器、放电回路、电抗器、电缆、避雷器等是否完好。 6系统异常(如振荡、接地、低周或铁磁谐振)运行消除后,应检查电容器有无放电,温度、音响、外壳有 6电容器室干净整洁,照明通风良好,室温不超过40℃或低于-25℃。门窗关闭严密。 7电抗器附近无磁性杂物存在;油漆无脱落、线圈无变形;无放电及焦味;油电抗器应无渗漏油。 8电缆挂牌是否齐全完整,内容正确,字迹清楚。电缆外皮有无损伤,支撑是否牢固电缆和电缆头有无渗油漏胶,发热放电,有无火花放电等现象。

低压自愈式并联电容器试验大纲

BZMJ0.45-40-3低电压自愈式并联电容器试验大纲 0ZTR.102.014 浙江正泰电器股份有限公司 2013-3-27

BZMJ0.45-40-3低电压自愈式并联电容器技术条件 0ZTR.102.014 1 电容测量和容量计算 按GB/T 12747.1-2004第7章执行。电容器的实测电容与其额定值之间的偏差应在-5%~+10%范围内。 2 损耗角正切tanδ 按GB/T 12747.1-2004第8章执行。电容器在额定频率、额定电压下,20℃时的损耗角正切tanδ应不大于0.002。 3端子间电压试验 按GB/T 12747.1-2004第9.2条执行。电容器两个端子间的电介质应能承受2.15U N的交流试验电压,历时10s。 4端子与外壳间电压试验(干试) 按GB/T 12747.1-2004第10.2条执行。电容器端子与外壳间应能承受3kV的交流试验电压,历时1min。 5 内部放电器件试验 按GB/T 12747.1-2004第11章执行。电容器内装有放电电阻,该放电电阻应能在3min内将电容器的剩余电压自2U N降到75V以下。 6密封性试验 按GB/T 12747.1-2004第12章执行。电容器通体加热到75℃,保持8小时,应无渗漏现象。 7 热稳定性试验 按GB/T 12747.1-2004第13章执行。单元之间间距100mm。试验温度45℃。8高温下电容器损耗角正切测量 按GB/T 12747.1-2004第14章执行,损耗角正切tanδ应不大于0.002。 9放电试验 按GB/T 12747.1-2004第16章执行。试验电压为2U N的直流电压,10min中内进行5次。在试验后的5min内进行一次端子间耐压试验,历时2s。 10自愈性试验 按GB/T 12747.1-2004第18章执行。 11老化试验 按GB/T 12747.1-2004第17章执行。 12破坏试验 按GB/T 12747.1-2004第19章执行。 编制: 校核: 批准:

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

PT高压熔断器频繁熔断原因分析及治理措施

PT高压熔断器频繁熔断原因分析及治理措施 发表时间:2016-07-04T15:25:49.803Z 来源:《电力设备》2016年第7期作者:王东方 [导读] 某地区10~35kV中性点不接地系统,为监视对地绝缘等信号,通常将PT一次绕组末端三相短路接地。 王东方 (国网宁夏电力公司吴忠供电公司宁夏吴忠 751100) 摘要:本文就电网10~35kV系统中性点不接地系统,频繁发生PT高压熔断器熔断原因进行分析,通过现有治理措施应用及系统内治理措施比较,提出治理措施。 关键词:高压熔断器;频繁熔断;治理措施 某地区10~35kV中性点不接地系统,为监视对地绝缘等信号,通常将PT一次绕组末端三相短路接地。但近年随着电网规模扩大以及负荷接入的增加,频繁发生电压互感器(简称PT)高压熔断器熔断事件,严重危及电网的安全可靠运行,下面就熔断器熔断的可能产生的原因以及应采取的解决措施阐述如下。 1高压熔断器熔断事件统计 2高压熔断器熔断的可能原因 PT高压熔断器频繁熔断的原因主要有: (1)电网中性点不接地系统中,母线上星型接线的PT一次绕组,成为该电网对地唯一金属性通道,电网相对地电容的充、放电途径必然通PT一次绕组。因合闸充电或发生单相接地故障等原因的激发,会使PT铁芯过饱和,励磁电流急剧增加,当XC/XT>0.01时,则可能产生低频、分次谐波、基波、高次谐波等铁磁谐振,出现相对地电压不稳定,PT高压熔断器熔断等异常现象,严重时会导致PT击穿或烧毁,继而引发其它事故。 (2)二次负载过重导致PT熔断器过流熔断。 (3)低频饱和电流引起PT高压熔断器熔断。 (4)PT绕组绝缘降低或消谐器绝缘下降可引起高压断器熔断。 (5)PT末端绝缘水平与消谐器不匹配导致高压断器熔断。 但随着电力系统的发展,对于现在电网系统设备入网质量的提升,以及设备制造生产工艺的进步,设备精益化的运维管理来说,治理高压熔断器频繁熔断的方向主要就是消除系统谐振。 3消除谐振采取的措施 消除谐振采取的措施归纳起来主要有三方面:改变电容、电感,使其不具备谐振条件(XC/XT≤0.01)[1];消耗谐振能量、增大系统阻尼,抑制或消除谐振的发生;采取不同的接地方式或临时倒闸措施。 (1)选用励磁特性较好的PT。 (2)在PT高压侧中性点串接电阻,但会影响接地保护的灵敏度,中性点电位要抬高,有可能超过半绝缘PT中性点的绝缘水平。 (3)PT开口三角形绕组中加装微机消谐,但存在难以正确区分基波谐振和单相接地问题,在持续时间较长的电弧过电压作用下,仍然可能烧坏PT,且对控制回路要求非常高,若判断失误,过早将阻尼绕组投入,此时就会在阻尼电阻上流过过电流[2]。 (4)PT高压侧中性点串接单相PT。但同一电网如有多组PT,则必须每组均按此接线方式有效,且中性点对地电压亦被抬高,零序电流也很大,存在一次绕组和剩余绕组过热、击穿等问题。 (5)母线上加装对地电容,使达到XC/XT≤0.01条件。变电站有多台PT的情况,因增设电容量较大,不宜采用。 (6)系统中性点经消弧线圈接地。对于对地电容较小的系统,虽然能抑制谐振的产生,但过大的电感会使得暂态震荡更加剧烈。另随着电网电缆绝缘化率的提高,局部电网单相接地容性电流越来越大,甚至达到数百安培,要求补偿电流要达到相应的数百安培且过补偿,使得消弧线圈更换频繁且投资大。 (7)采用电容式PT基本能防止谐振,但容易出现自振现象,且价格较贵。 综上所述,PT开口三角短时接入微机型消谐装置和一次侧中性点经非线性电阻接地两种措施并用效果最佳。现该地区采用上述1、2、3、6措施,但根据表1所列数据显示仍然存在PT熔断器熔断事件的发生。 4高压熔断器熔断原因分析 现该地区电网采用的一次消谐器为LXQ型,均采用压敏电阻SiC非线性电阻片,阻值具有负温度特性,温度越高阻值越小,其特性曲线如图1。其非线性特征在正常工作电流段具有一定的阻值,呈现为高阻状态;当电网发生如单相接地、断线谐振等异常情况时,电阻值下

110kV并联电容器成套装置通用技术规范

1000kV变电站用并联电容器成套装置 通用技术规范

本规范对应的专用技术规范目录 并联电容器装置标准技术规范使用说明 一、总体说明 1、本标准技术规范分为通用部分、专用部分。 2、项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3、项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“表8 项目单位技术差异表”并加盖项目单位物资部门公章,与辅助说明文件随招标计划一起提交至招标文件审查会: ①改动通用部分条款及专用部分固化的参数; ②项目单位要求值超出标准技术参数值; ③需要修正污秽、温度、海拔等条件。 经标书审查会同意后,对专用部分的修改形成“表8 项目单位技术差异表”,放入专用部分中,随招标文件同时发出并视为有效,否则将视为无差异。 4、对扩建工程,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。 5、技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 6、投标人逐项响应技术规范专用部分中“1 标准技术参数”、“2 项目需求部分”和“3 投标人响应部分”三部分相应内容。填写投标人响应部分,应严格按招标文件技术规范专用部分的“项目单位要求值”一栏填写相应的招标文件投标人响应部分的表格。投标人填写技术参数和性能要求响应表时,如有偏差除填写“表9 投标人技术偏差表”外,必要时应提供相应试验报告。 二、具体使用说明 1、本并联电容器装置采购规范的使用范围适用于1000kV变电站110kV并联电容器装置,其单套输出容量为210Mvar,物资采购通用及专用技术规范共3本(通用技术规范

10kV PT高压熔断器频繁熔断原因及处理方法

10kV PT高压熔断器频繁熔断原因及处理方法 【摘要】本文就某变电站更换10KV母线PT后出现高压熔断器频繁熔断这一现象进行原因分析,分析并研究了10kV线路接地时,频繁导致母线PT高压熔断器熔断的深层次原因,并提出了解决措施,提出处理方法并消除故障,为今后可能出现的类似问题提供参考和借鉴。 【关键词】电压互感器;PT高压熔断器;频繁熔断;解决措施 2009年2月某变电站更换两组10kV互感器,将型号为JSJW-10Q油浸式PT 更换为型号为JDZX9-10Q干式PT后,该电压互感器多次出现高压熔断器熔断现象,本人结合自己多年变电运行经验,就该站10kV电压互感器高压熔断器熔断这故障现象产生的原因、危害、故障分析及处理方法进行了分析和探讨。 一、电压互感器的作用 ①将一次回路的高电压转为二次回路的标准低电压,监视母线电压及电力设备运行状况,并提供测量仪表、继电保护及自动装置所需电压量,保证系统正常运行。 ②使二次回路可采用低电压控制电缆,且使屏内布线简单,安装、调试、维护方便,可实现远方控制和测量。 ③使二次与一次高压部分隔离,且二次可设接地点,确保二次设备和人身安全。 二、电压互感器损坏及高压熔断器熔断的危害 ①对变电设备的危害:一般情况下,10kV系统中最常发生的异常运行现象是谐振过电压。虽然谐振过电压幅值不高,但可长期存在。尤其是低频谐波对电压互感器线圈设备影响的同时可能会危及变电其它设备的绝缘,严重的可使母线上的其它薄弱环节的绝缘击穿,造成严重的短路事故甚至大面积停电事故。 ②对运行方式的危害:出现电压互感器烧坏及高压保险熔断现象后,如不能马上修复,将导致10kV母线不能分段运行。 ③对人员的危害:一旦发生电压互感器损坏或高压保险熔断现象,将会给运行人员巡视设备时造成人身伤害。 ④降低供电可靠性和少计电量:若电压互感器损坏或高压保险熔断,则无法准确计量,直接造成电量损失或计量不准确。同时保护电压的消失将严重危及供电设备的安全运行。

DL/T 604-2009高压并联电容器装置使用技术条件(内容)

高压并联电容器装置使用技术条件 1范围 本标准规定了电力行业使用的高压并联电容器装置的术语、产品分类、技术要求、安全要求、试验方法、检验规则等。 本标准适用于电力系统中35kV及以上电压等级变电站(所)内安装在6kV~66kV侧的高压并联电容器装置和10kV(含6kV)配电线路上的柱上高压并联电容器装置。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,在随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB311.1高压输变电设备的绝缘配合 GB763交流高压电器在长期工作时的发热 GB1984交流高压断路器 GB2706交流高压电器动、热稳定试验方法 GB 3804 3.6kV—40.5kV高压交流负荷开关 GB4208外壳防护等级(IP代码) GB 7328 变压器和电抗器的声级测定 GB50227并联电容器装置设计规范 GB/T11024标称电压1kV以上交流电力系统用并联电容器 DL /T 40310kV-40.5kV高压真空断路器订货技术条件 DL/T 442高压并联电容器单台保护用熔断器订货技术条件 DL/T 840 高压并联电容器使用技术条件 3定义 下列定义适用于本标准。 3.1 高压并联电容器装置installation of high-voltage shunt capacitors 制造厂根椐用户要求设计并组装的以电容器为主体的,用于6kV~66kV系统并联补偿用的并联电容器补偿装置。以下简称装置。 3.2 电容器组capacitor bank 由多台电容器或单台电容器按一定方式连接的总体。 3.3 装置的额定容量(Q N) rated output of a installation 一套装置中电容器组的额定容量即为该套装置的额定容量。 3.4 装置额定输出容量rated output of a installation 当装置中电容器组承受的电压等于电容器组的额定电压时,装置的额定输出容量等于该装置的额定

框架式并联电容器成套装置说明书

目 录 一、概述.........................................................-1 - 1 用途:.....................................................-1 -2 型号说明...................................................-1 -3 执行标准...................................................-2 - 二、使用环境条件.................................................-2 - 三、结构特点.....................................................-2 - 四、技术参数.....................................................-3 - 五、装置的保护(用户自定保护装置)..............................-3 - 六、包装、运输和储存.............................................-4 - 七、安装.........................................................-4 - 八、运行前的调整和试验...........................................-5 - 九、运行、巡视和检修.............................................-5 - 十、安全规程.....................................................-6 -十一、备品备件和资料.............................................-6 -十二、订货须知...................................................-7 -十三、典型电容器装置外观结构示意图..............................-7 -

高压熔断器熔丝为什么会熔断,高压熔断器熔丝熔断的处理方法

高压熔断器熔丝为什么会熔断,高压熔断器熔丝熔断的处理方法 高压熔断器熔丝为什么会熔断,高压熔断器熔丝熔断的处理方法 高压熔断器熔丝熔断判断及处理:目前,在电气设备的高低压侧常常采用熔丝进行保护。运行中熔丝的熔断是常常发生的,若不当真分析原因即换上新的熔丝,误将有故障的电气设备重新投运,其结果可能是设备烧损更加严峻,进一步扩大事故范围。因此,判明高压熔断器熔丝熔断的原因,准确地加以处理,是保证电气设备安全运行的重要措施。 高压熔断器熔丝熔断一般有以下几种情况: 1.误断。在这种情况下,高压熔断器熔丝熔断在压接处或其他部位上,一般没有严峻烧伤痕迹,这经常是由于熔丝选用过小、过细、质量不佳或机械强度差,安装时熔丝(片)带有伤痕,瓷托不固定或固定不牢固,熔丝压接不紧密,熔丝运行时间过长而产生铜铝气体膜增大接触电阻等造成的。凡属上述原因的,应在适当处理并换上合适的熔丝后,重新投入运行。 2.过负荷熔断。多发生在高压熔断器熔丝中间位置,很少有电弧烧伤痕迹。遇此情况,要查明过负荷原因,防止过负荷现象的再次发生。 3.短路熔断。高压熔断器熔丝上有严峻烧伤,熔断器瓷托上还会留有电弧烧伤痕迹。这可能是中性线与相线或相线与相线之间发生短路故障引起的。对于这类熔断,应对高压限流熔断器以后的所有设备和线路进行当真仔细的检查,查出故障点并排除后,方可将更新的高压熔断器熔丝重新投运。但在较长的低压线路末端短路时,因导线阻抗大,短路电流可能不大,熔丝烧伤也可能不严峻。 4.过电压熔断。和短路熔断基本相似,一般熔丝上有严峻烧伤,主要是雷击过电压以及高电压窜入低电压设备所致,查明原因后,更换新的高压熔断器熔丝即可投运

(整理)TBBF-106型高压并联电容器成套装置.

TBB(F)-10(6)型高压并联电容器成套装置 使用说明书 苏杭电气有限公司 一、概述 TBB(F)型高压并联电容器装置用于工频电力系统,作为提高 功率因数,改善和提高供电重量,减少网路损失。 警示:客户在投切电容器装置进行验收试验时,应带上负荷, 不应在无负荷的情况下投切电容器装置,避免发生谐振,产生 高电压损坏设备。 二、使用环境条件 海拔不超过1000米;周围空气温度-40℃~+45℃;相对湿度日 平均不大于95%月平均不但要90%;周围空气应不受腐蚀性或 可燃性气体、水蒸气等明显污染;无经常性剧烈振动。 三、结构特点 高压并联电容器装置的结构形式分为户内柜体式和户内外柜架 式两大类。 户内柜体式由规范化的电容器柜、限流器柜、放电线圈避雷器 柜,以及开关柜(包括测量、保护与控制系统)等组成。可根 据装置容量大小、电气接线方式,以及安装现场条件进行相应 的排列组合。柜体式装置装设了“机电一体多网门联锁装置”,保护了人身设备安全。 四、型号说明

T BB 口(F)-口-口/口-** T-装置 BB-并联电容器装置 口-设计序号 (F)-防误型 口-额定电压(KV) 口-电容器组总容量(Kvar) 口-单台电容器额定容量(Kvar) **-尾注号 注:设计序号用于区别某一系列产品的不同结构形式,设计序号第一个字母1表示单列布置,2表示双列布置。第二个字母1表示单层布置,2表示双层布置,3表示三层布置。 尾注号表示主接线方式和电容器组的继电保护方式,用两个大写汉语拼音字母表示,第一个字母表示主接线方式:A-单星型(Y接线);B-双星型(Y-Y接线);C-单三角形(△接线)。第二个字母表示电容器组的继电保护方式:C-电压差动保护,L-不平衡电流保护,K-开口三角电压保护,Y-不平衡电压保护。 五、技术参数 a.装置额定电压:6KV、10KV。 b.装置额定容量:1000Kvar~6000Kvar可根据用户要求而定; c.配套多网门联锁装置操作电源:DC-110V、DC-220V、AC-220V 等;

相关文档
最新文档