专题九解析几何第二十九讲曲线与方程

专题九解析几何第二十九讲曲线与方程
专题九解析几何第二十九讲曲线与方程

3.

专题九解析几何

第二十九讲曲线与方程

解答题

(2018江苏)如图,在平面直角坐标系

xOy 中,椭圆C 过点G /3,-),焦点

匸(—J3,o), F 2

(J3,O ),圆 0 的直径为 F 1F 2.

(1)求椭圆C 及圆0的方程;

⑵设直线I 与圆0相切于第一象限内的点 P .

①若直线I 与椭圆C 有且只有一个公共点,求点 P 的坐标;

②直线I 与椭圆C 交于A,B 两点.若△ OAB 的面积为空6

,求直线I 的方程.

7

2

■y

(2017新课标n)设O 为坐标原点,动点 M 在椭圆C : — +y

2

=1上,过M 做x 轴的 2

垂线,垂足为N ,点P 满足 = 72N M .

(1)求点P 的轨迹方程;

(2)设点Q 在直线x = -3上,且OP ”PQ =1 .证明:过点P 且垂直于0Q 的直线I 过

C 的左焦点F .

X 2 V 2

73

xOy 中,椭圆C :右+勺=1(a>b >0)的离心率是 ——

a b

2

(I)求椭圆C 的方程;

且位于第一象限,E 在点P 处的切线I 与C 交与不同的两点

1

. 2. (2016年山东)平面直角坐标系 2

抛物线E : x =2y 的焦点 F 是C 的一个顶点.

(n)设P 是E 上的动点,

A, B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M . 4.

6. (i )求证:点M 在定直线上;

(ii )直线I 与y 轴交于点G ,记△PFG 的面积为S 1, △ PDM 的面积为S 2,

求色的最大值及取得最大值时点 P 的坐标.

S 2

(I)求椭圆的方程; I 与椭圆交于点 B ( B 不在x 轴上),垂直于I 的直线与I 交于

点M ,与y 轴交于点H ,若BF 丄HF ,且N MOAMAO ,求直线I 的斜 率的取值范围.

2 2

(2016年全国II)已知椭圆E :―+^=1的焦点在x 轴上,A 是E 的左顶点,斜率为

t 3

k(kAO)的直线交E 于A,M 两点,点N 在E 上,MA 丄NA .

(I)当 t =4,1 AM 1=1 AN | 时,求 MMN 的面积; (n)当2 AM = AN 时,求k 的取值范围. (2015湖北)一种作图工具如图

1所示.O 是滑槽AB 的中点,短杆 ON 可绕O 转动,

长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1 ,

MN =3 ?当栓子D 在滑槽AB 内作往复运动时,带动 N 绕O 转动一周(D 不动时,N

也不动),M 处的笔尖画出的曲线记为 C .以O 为原点,AB 所在的直线为x 轴建立如 图2所示的平面直角坐标系. (I)求曲线C 的方程

;

4. 2 x (2016年天津)设椭圆 P a 2

+ — = 1 (a > J 3)的右焦点为F ,右顶点为 A ,已知

3

1 丄 1 3e

--- T ----- = ----- |OF| |OA| |FA|

其中0为原点,e 为椭圆的离心率.

(n)设过点A 的直线

(n)设动直线I 与两定直线l i :x-2y=0和l 2:x+2y=0分别交于P, Q 两点.若直线I

总与曲线C 有且只有一个公共点,试探究:△ OPQ 的面积是否存在最小值?若

率为吃,且右焦点F 到左准线I 的距离为3.

2

(1)求椭圆的标准方程;

(2)过F 的直线与椭圆交于 A, B 两点,线段 AB 的垂直平分线分别交直线 I 和AB 于

点P,C ,若PC =2AB ,求直线AB 的方程.

2

2

x y V 2

& (2015四川)如图,椭圆 E :飞+勺=1(a Ab >0)的离心率是 ——,过点P (0,1)的动

a b 2

直线I 与椭圆相交于 A,B 两点,当直线I 平行与x 轴时,直线I 被椭圆E 截得的线段长

(1)求椭圆E 的方程;

7. (2015江苏)如图,在平面直角坐标系

xoy 中, 已知椭圆 2 2

x y

弋+ p = 1(a>b>0 )的离心

(2)在平面直角坐标系 xOy 中,是否存在与点 P 不同的定点Q ,使得

Q A

_ I P A

QB

PB

成立?若存在,求出点Q的坐标;若不存在,请说明理由.

9. ( 2015北京)已知椭圆C :冷+b 2=1(a 》b 》0 )的离心率为 普,

点P (0,1 )和点

A (m , n )(m 丰0 )都在椭圆C

上,直线PA 交x 轴于点M .

理由.

x

2

2

1

(2015浙江)已知椭圆 一 + y =1上两个不同的点 A,B 关于直线y=mx+—对称.

2

(I)求实数m 的取值范围;

(n)求 MOB 面积的最大值(O 为坐标原点).

的轨迹方程.

2 2

,双曲线0:^7-占=1过点P 且离心率为73.

a b

(1)求C 1的方程;

(I)求椭圆C 的方程,并求点 M 的坐标(用m , n 表示);

(n)设O 为原点,点B 与点A 关于x 轴对称,直线

PB 交x 轴于点N .问:y 轴上是

否存在点Q ,使得N OQM =N ONQ ?若存在, 求点Q 的坐标;若不存在,说明

10

. 11. (2014广东)

2 2

已知椭圆C :笃+每=1(a Ab >0)的一个焦点为(J 5,0),离心率为

a b

(I)求椭圆 C 的标准方程;

(n)若动点

P(x o ,y o )为椭圆外一点, 且点 P 到椭圆C 的两条切线相互垂直,求点

12. (2014辽宁)圆x

2

+y2=4的切线与

x 轴正半轴,y 轴正半轴围成一个三角形,当该

三角形面积最小时, 切点为P (如图)

14. (2012湖南)在直角坐标系xoy 中,曲线G 的点均在C 2 : (x-5)2

+ y 2

=9 外,且对G

上任意一点M , M 至?线x=-2的距离等于该点与圆 C 2上点的距离的最小值. (I)求曲线G 的方程;

(n)设P(x o ,y o ) ( y H±3)为圆C ?外一点,过P 作圆C ?的两条切线,分别与曲线

C i 相交于点A , B 和C , D.证明:当P 在直线X = —4上运动时,四点A , B , C ,

D 的纵坐标之积为定值.

15. (2011天津)在平面直角坐标系 xOy 中,点P(a,b) (a>0)为动点,分别为

2 2

椭圆字+計1

的左右焦点.已知△ F 1PF

2为等腰三角形.

(I)求椭圆的离心率 e ;

(n)设直线PF 2与椭圆相交于 A,B 两点,M 是直线PF 2上的点,满足AM 占M = -2 ,

求点M 的轨迹方程.

(2)椭圆C 2过点P 且与C i 有相同的焦点,直线I 过C 2的右焦点且与C 2交于A , B 两

点,若以线段 AB 为直径的圆心过点 P ,求I 的方程

.

2

x 13.( 2013四川)已知椭圆C :

V a

b 2

= 1(a Ab >0)的两个焦点分别为 Fd —1,0),F 2(1,0),

4 1 且椭圆C 经过点P(4

,)

3 3

(n)设过点A (0,2)的直线

I 与椭圆C 交于M , N 两点,点Q 是MN 上的点,且

2

2

AQ

AM AN

2

,求点Q 的轨迹方程.

2

高考数学一轮复习(北师大版理科):第8章平面解析几何第8节曲线与方程学案

第八节 曲线与方程 [考纲传真] (教师用书独具)1.了解方程的曲线与曲线的方程的对应关系.2.了解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能够根据所给条件选择适当的方法求曲线的轨迹方程. (对应学生用书第146页) [基础知识填充] 1.曲线与方程 一般地,在直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都是曲线上的点. 那么,这条曲线叫作方程的曲线;这个方程叫作曲线的方程. 2.求动点轨迹方程的一般步骤 (1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标. (2)写出适合条件p 的点M 的集合P ={M |p (M )}. (3)用坐标表示条件p (M ),列出方程f (x ,y )=0. (4)化方程f (x ,y )=0为最简形式. (5)说明以化简后的方程的解为坐标的点都在曲线上. 3.圆锥曲线的共同特征 圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比为定值e . (1)当0<e <1时,圆锥曲线是椭圆. (2)当e >1时,圆锥曲线是双曲线. (3)当e =1时,圆锥曲线是抛物线. 4.两曲线的交点 设曲线C 1的方程为f 1(x ,y )=0,曲线C 2的方程为g (x ,y )=0,则 (1)曲线C 1,C 2的任意一个交点坐标都满足方程组? ?? ?? f 1(x ,y )=0, g (x ,y )=0. (2)反之,上述方程组的任何一组实数解都对应着两条曲线某一个交点的坐标. [基本能力自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( ) (2)方程x 2 +xy =x 的曲线是一个点和一条直线.( )

2021版新高考数学一轮复习讲义:第八章第八讲 曲线与方程 (含解析)

第八讲曲线与方程 ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测 知识梳理 知识点一曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系: 那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线. 知识点二求动点的轨迹方程的基本步骤 重要结论 1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件. 2.求轨迹问题常用的数学思想 (1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y 的方程及函数关系. (2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合. (3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.

双基自测 题组一 走出误区 1.(多选题)下列结论错误的是( ABCD ) A .方程x 2+xy =x 的曲线是一个点和一条直线 B .到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2 C .y =kx 与x =1 k y 表示同一直线 D .动点的轨迹方程和动点的轨迹是一样的 题组二 走进教材 2.(必修2P 37T3)已知点F (14,0),直线l :x =-1 4,点B 是l 上的动点,若过点B 垂直于 y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( D ) A .双曲线 B .椭圆 C .圆 D .抛物线 [解析] 由已知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线. 题组三 考题再现 3.(2019·广东汕头模拟)一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则此动圆必过定点( B ) A .(4,0) B .(2,0) C .(0,2) D .(0,0) [解析] 圆心C 在抛物线上,设与直线x +2=0相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线x +2=0为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点(2,0),故选B . 4.(2019·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )

高级中学数学公式定理汇总

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是 。

(3) 在给定区间 的子区间上含参数的不等式(为参数)的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数)有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

高中数学考点-曲线与方程

9.5曲线与方程 1.曲线与方程 一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)______________________________________; (2)______________________________________. 那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求曲线方程的一般步骤 (1)建立适当的__________,用有序实数对(x,y)表示曲线上____________M的坐标; (2)写出__________________的点M的集合:P={M | p(M)}; (3)用__________表示条件p(M),列出方程f(x,y)=0; (4)化方程f(x,y)=0为____________形式; (5)说明以化简后的方程的________为坐标的________都在曲线上. 注:步骤(5)可以省略不写,如有特殊情况,可以作适当说明,另外,也可以根据情况省略步骤(2). 3.求曲线的轨迹方程的常用方法 (1)直接法:直接利用条件建立x,y之间的关系f(x,y)=0.也就是:建系设点、列式、代换、化简、证明,最后的证明可以省略,必要时加以说明. (2)定义法:先根据条件得出动点的轨迹是某种已知的曲线,再由曲线的定义直接写出动点的轨迹方程. (3)待定系数法:已知所求的曲线类型,先根据条件设出曲线方程,再由条件确定其待定系数. (4)相关点法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,首先用x,y表示x0,y0,再将x0,y0代入已知曲线得到要求的轨迹方程. (5)交轨法:动点P(x,y)是两动直线(或曲线)的交点,解决此类问题通常是通过解方程组得到交点(含参数)的坐标,再消去参数求出所求的轨迹方程. (6)参数法:当动点P(x,y)的坐标之间的关系不易找到,可考虑将x,y均用一中间变量(参数)表示,得参数方程,再消去参数得方程f(x,y)=0. (4)、(5)两种方法本质上也是参数法,只不过是多参数的参数方程或是隐性式的参数方程. 自查自纠 1.(1)曲线上点的坐标都是这个方程的解 (2)以这个方程的解为坐标的点都是曲线上的点 2.(1)坐标系任意一点(2)适合条件p (3)坐标(4)最简(5)解点 方程x2+xy+x=0表示的曲线是()

最新初高中数学公式大全

初中数学公式表

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

9.8曲线与方程

8 曲线与方程 一、选择题(每小题7分,共35分) 1.f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.方程(x -y )2+(xy -1)2=0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对 3.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一 动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设 CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 4.有一动圆P 恒过定点F (a,0)(a >0)且与y 轴相交于点A 、B ,若△ABP 为正三角形,则点 P 的轨迹为( ) A .直线 B .圆 C .椭圆 D .双曲线 5.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平 面内的轨迹是( ) A .直线 B .椭圆 C .抛物线 D .双曲线 二、填空题(每小题6分,共24分) 6.过点P (1,1)且互相垂直的两条直线l 1与l 2分别与x 、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为____________. 7.点P 到点(1,1)和到直线x +2y =3的距离相等,则点P 的轨迹方程为____________. 8.P 是椭圆b y a x 2222 =1上任意一点,F F 2 1,是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是______________. 9.已知两条直线l 1:2x -3y +2=0和l 2:3x -2y +3=0,有一动圆(圆心和半径都动)与l 1、 l 2都相交,且l 1、l 2被圆截得的弦长分别是定值26和24,则圆心的轨迹方程是____________.

第8讲 曲线与方程

第8讲 曲线与方程 基础知识整合 1.曲线与方程 在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系: (1)曲线上点的坐标都是01这个方程的解; (2)以这个方程的解为坐标的点都在02曲线上. 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点 设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组??? F 1(x ,y )=0, F 2(x ,y )=0的03实数解,若此方程组无解,则两曲 线无交点. 3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系; (2)设点——设轨迹上的任一点P (x ,y ); (3)列式——列出动点P 所满足的关系式; (4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简; (5)证明——证明所求方程即为符合条件的动点轨迹方程. 1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件. 2.求轨迹问题常用的数学思想 (1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x ,y 的方程及函数关系.

(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合. (3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化. 1.(2019·云南质量检测)已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2 B.x2+y2=4 C.x2+y2=2(x≠±2) D.x2+y2=4(x≠±2) 答案 D 解析MN的中点为原点O,易知|OP|=1 2|MN|=2,得P的轨迹是以原点O 为圆心,2为半径的圆,除去与x轴的两个交点,即顶点P的轨迹方程为x2+y2=4(x≠±2),故选D. 2.(2019·金华模拟)已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是() A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 答案 D 解析设Q(x,y),则P为(-2-x,4-y),代入2x-y+3=0,得Q点的轨迹方程为2x-y+5=0. 3.已知平面内有一条线段AB,其长度为4,动点P满足|P A|-|PB|=3,O为AB的中点,则|OP|的最小值为() A.1 B.3 2 C.2 D.3 答案 B 解析以AB的中点为原点,中垂线为y轴建立直角坐标系,P点的轨迹为双曲线,得c=2,a=1.5,所以|OP|min=a=1.5.

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

最新9-8曲线与方程(理)汇总

9-8曲线与方程(理)

一、选择题 1.到点F (0,4)的距离比它到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2 B .y =-16x 2 C .x 2=16y D .x 2=-16y [答案] C [解析] ∵动点M 到点F (0,4)的距离比它到直线y =-5的距离小1,∴动点M 到点F (0,4)的距离与它到直线y =-4的距离相等.根据抛物线的定义可得点M 的轨迹是以F (0,4)为焦点,以直线y =-4为准线的抛物线,其标准方程为x 2=16y ,故选C. 2.(2012·山东实验中学模拟)已知两点M (-2,0),N (2,0),点P 满足PM →·PN → =0,则点P 的轨迹方程为( ) A.x 216 +y 2=1 B .x 2+y 2=4 C .y 2-x 2=8 D .x 2+y 2=8 [答案] B [解析] 设点P 的坐标为(x ,y ),即PM →·PN → =(-2-x ,-y )·(2-x ,-y )=-4+x 2+y 2=0,即得点P 的轨迹为x 2+y 2=4.

3.(2012·珠海模拟)方程(x +y -1)x 2+y 2-4=0,表示的曲线是( ) A .一直线与一圆 B .一直线与一半圆 C .两射线与一圆 D .两射线与一半圆 [答案] C [解析] 由式可知??? x +y -1=0x 2+y 2-4≥0,或x 2+y 2-4=0,前者表示直线x +y -1=0在圆x 2+y 2=4上及圆外的部分,后者表示圆x 2+y 2=4,所以选C. 4.(2012·山东潍坊)已知圆x 2+y 2=4,过点A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .(x -1)2+y 2=4(-1≤x <12 ) B .(x -1)2+y 2=4(0≤x <1) C .(x -2)2+y 2=4(-1≤x <12 ) D .(x -2)2+y 2=4(0≤x <1) [答案] D [解析] 由圆的几何性质知,BC 的中点到A 与圆心连线的中点的距离为2,即方程为(x -2)2+y 2=4,又中点在圆内,∴0≤x <1. 5.F 1、F 2是椭圆x 2a 2+y 2 b 2=1(a >b >0)的两焦点,P 是椭圆上任一点,过一焦点引∠F 1PF 2的外角平分线的垂线,则垂足Q 的轨迹为( )

(鲁京津琼专用)高考数学大一轮复习第九章平面解析几何第8讲曲线与方程练习(含解析)

(鲁京津琼专用)高考数学大一轮复习第九章平面解析几何第8 讲曲线与方程练习(含解析) 第8讲 曲线与方程 一、选择题 1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A.两条直线 B.两条射线 C.两条线段 D.一条直线和一条射线 解析 原方程可化为? ????2x +3y -1=0, x -3≥0或 x -3-1=0,即2x +3y -1=0(x ≥3)或x =4, 故原方程表示的曲线是一条直线和一条射线. 答案 D 2.(2017·衡水模拟)若方程x 2 +y 2 a =1(a 是常数),则下列结论正确的是( ) A.任意实数a 方程表示椭圆 B.存在实数a 方程表示椭圆 C.任意实数a 方程表示双曲线 D.存在实数a 方程表示抛物线 解析 当a >0且a ≠1时,方程表示椭圆,故选B. 答案 B 3.(2017·长春模拟)设圆(x +1)2 +y 2 =25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( ) A.4x 2 21-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 2 25-4y 2 21 =1 D.4x 2 25+4y 2 21 =1 解析 ∵M 为AQ 的垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹是以定点C ,A 为焦点的椭圆. ∴a =52,∴c =1,则b 2=a 2-c 2 =214, ∴M 的轨迹方程为4x 2 25+4y 2 21=1. 答案 D 4.设点A 为圆(x -1)2 +y 2=1上的动点,PA 是圆的切线,且|PA |=1,则点P 的轨迹方程是( ) A.y 2 =2x B.(x -1)2+y 2 =4 C.y 2=-2x D.(x -1)2 +y 2 =2

初中高中数学定理公式大全(超全)

》 初中高中数学定理公式大全(超全) 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 ~ 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 ? 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 @ 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

初中数学学与高中数学的区别

一.初中你可以刷题,运气好你可以刷到和中考很像的题,过程方法老师都帮你总结好了一套模板你就用吧,错不到哪去 高中你还想刷到高考的题?基本上没什么可能,固定过程模板套路是没有的,每道题都有区别,方法你得自己总结,它也是因人而异的。必须跳出自己的思维定势你才能在高中活下去 二、知识的差异初中数学知识少、浅、难度容易。高中数学知识广,难度大,是对初中的数学知识推广和引伸,也是对初中数学知识的完善——例如函数,将会陆续学到指数函数、对数函数、幂函数、三角函数,甚至抽象函数等;例如几何,将由初中的平面几何推广到立体几何。 1.抽象与具体的差异——高中知识抽象程度完爆初中!高中学生普遍感到数学公式枯燥难记忆、数学符号抽象难想象、数学习题晦涩难理解,以函数的概念为例,初中的“变量说”是以生活中的事例为依托通过文字的叙述给出的,抽象程度较低,而高中教材采用了抽象程度更高的“函数映射说”通过引进函数符号f(x),使得函数的众多性质可以通过形式化加以定义和证明。初高中课本的函数定义的对比:初中的定义:高中的定义:你觉得这样的定义抽象么?而且数学研究对象的抽象性还有逐层递进的特点,如果不能理解抽象程度较低的知识,学习抽象程度较高的知识就会有困难。有一个问题没听懂,后面不懂的就越来越多,致使学生丧失学习的激情,失去学习的兴趣,从而形成数学学习的恶性循环。 2.动态与静态的差异——变才是唯一不变的!在初中阶段往往习惯于“静态”思维,而高中数学无论从思维的广度和深度上都有很大的提高.所以,为了更好地感知高初中数学的区别,我们先复习圆的以下五个定理.从运动的观点看P点,如果我们允许P点可以在一条弦上自由运动,当P点运动到使圆中两弦垂直,且其中一条为直径时,其线段间的关系为定理(1),若P点运动到圆外,则两弦变成割线,即为定理(3),若其中一条割线变成切线的位置,即为定理(4) ,若另一条割线也变成切线,则成定理(5)了.尽管它们表述的容不一,但都有△APC∽△DPB这一统一关系式.辩证唯物论告诉我们,一切事物都是运动的.在解高中的有关问题时,要学会运用运动思想,善于处理动与静之间的关系. 三、知识学习过程的差异新教材高中数学体现了“螺旋式上升过程”的理念,将同一模块的知识分成片,每一片知识安排在的不同的学时或学年,例如函数,在必修1、必修4、选修2-2,分别是在高一和高二学年学习。这样的学习,要求学生循序渐进的掌握知识,提升能力。但在学习的过程中,在讲授某一知识的进阶容时,学生经常忘记之前的学习的容,这就要求在学习知识的过程中,尤其是第一次的学习时,一定要及时解决问题,不遗留问题,要不断的进行巩固。知识网络较初中知识更加复杂,需要注重知识结构的在联系。 四、学习方式的差异 1.学习时间上的差异:初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取同学全面理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九门课学生同时学习),每天至少上六门课,这样分配到各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,而高中数学难度广度又上了一个台阶。时间就像海绵里的水,挤一挤总是会有的——能多挤出时间学习数学,你就可以比他人获得更高的成绩。 2.解题方式的区别:初中学生更多是模仿式的做题,他们模仿老师思维推理或者甚至是机械的记忆,而到了高中,随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察(尤其是全国卷),旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿和机械的训练使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。高中的试题,往往涉及到的知识点较初中更多,要求对高中数学知识网络之间有着整体的把握,要求对基础知识掌握的牢固,才能产生知识点与知识点之间的连节点。 3.学生自学能力的差异:①可以自学么?初中的容比较简单直观,看书一般就能够理解,基本上可以自学。但高中的数学知识,过于抽象,难度提升,需要老师的必要的讲解与指导。②是否需要自学?大部分初中考试中所用的解题方法和数学思想,老师会不断的进行整理归纳,学生也进行反复大量的训练,学生基本上不需自学,甚至一部分学生已经养成了饭来口的习惯,只要掌握好老师归纳总结的,基本成绩都不会太差。但高中的知识面广,要全部要训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,课后还需要通过自学归纳对课堂上的容进行整理。高中生学习数学时差异程度大,还要根据自身实际情况进行适度练习。学好数学,很大程度上要靠学生本身的自觉学习。 五、对思维习惯提出更高的要求初中学生由于学习数学知识的围小,知识层次低,知识面窄,对实际问题的思维受到了局限。举几何的例子来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

14高中数学解析几何问题的题型与方法

14高中数学解析几何 问题的题型与方法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第14讲 解析几何问题的题型与方法 一、知识整合 高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。 其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量..........的基本方法..... ,这一点值得强化。 1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了. 2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题. 3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法. 4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系 数法求出圆的方程,理解圆的参数方程cos sin x r y r θ θ=??=? (θ为参数),明确各字母的意 义,掌握直线与圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二、近几年高考试题知识点分析 2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占 18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重

相关文档
最新文档