化工原理实验讲义

化工原理实验讲义
化工原理实验讲义

实验一 干燥特性曲线测定实验

一、实验目的

1. 了解洞道式干燥装置的基本结构、工艺流程和操作方法。

2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。

3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。

4. 实验研究干燥条件对于干燥过程特性的影响。

二、基本原理

在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中的被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定。

按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度、与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。

1. 干燥速率的定义

干燥速率的定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量。即

C

G dX dW

U Ad Ad ττ

=

=- (1)

式中,U -干燥速率,又称干燥通量,kg/(m 2s );

A -干燥表面积,m 2; W -汽化的湿分量,kg ;

τ -干燥时间,s ;

Gc -绝干物料的质量,kg ;

X -物料湿含量,kg 湿分/kg 干物料,负号表示X 随干燥时间的增加而减少。

2. 干燥速率的测定方法

将湿物料试样置于恒定空气流中进行干燥实验,随着干燥时间的延长,水分不断汽化,湿物料质量减少。若记录物料不同时间下质量G ,直到物料质量不变为止,也就是物料在该条件下达到干

燥极限为止,此时留在物料中的水分就是平衡水分X *。再将物料烘干后称重得到绝干物料重Gc ,则物料中瞬间含水率X 为

G Gc

X Gc

-=

(2) 计算出每一时刻的瞬间含水率X ,然后将X 对干燥时间τ作图,如图4-1,即为干燥曲线。

图4-1 恒定干燥条件下的干燥曲线

上述干燥曲线还可以变换得到干燥速率曲线。由已测得的干燥曲线求出不同X 下的斜率

dX

d τ

,再由式(10-1)计算得到干燥速率U ,将U 对X 作图,就是干燥速率曲线,如图4-2所示。

图4-2 恒定干燥条件下的干燥速率曲线

3. 干燥过程分析

预热段 见图10-1、10-2中的AB 段或AB’段。物料在预热段中,含水率略有下降,温度则升至湿球温度t W ,干燥速率可能呈上升趋势变化,也可能呈下降趋势变化。预热段经历的时间很短,通常在干燥计算中忽略不计,有些干燥过程甚至没有预热段。本实验中也没有预热段。

恒速干燥阶段见图4-1、4-2的BC段。该段物料水分不断汽化,含水率不断下降。但由于这一阶段去除的是物料表面附着的非结合水分,水分去除的机理与纯水的相同,故在恒定干燥条件下,物料表面始终保持为湿球温度tW,传质推动力保持不变,因而干燥速率也不变。于是,在图4-2中,BC段为水平线。

只要物料表面保持足够湿润,物料的干燥过程中总有恒速阶段。而该段的干燥速率大小取决于物料表面水分的汽化速率,亦即决定于物料外部的空气干燥条件,故该阶段又称为表面汽化控制阶段。

降速干燥阶段随着干燥过程的进行,物料内部水分移动到表面的速度赶不上表面水分的气化速率,物料表面局部出现“干区”,尽管这时物料其余表面的平衡蒸汽压仍与纯水的饱和蒸汽压相同、传质推动力也仍为湿度差,但以物料全部外表面计算的干燥速率因“干区”的出现而降低,此时物料中的的含水率称为临界含水率,用Xc表示,对应图4-2中的C点,称为临界点。过C点以后,干燥速率逐渐降低至D点,C至D阶段称为降速第一阶段。

干燥到点D时,物料全部表面都成为干区,汽化面逐渐向物料内部移动,汽化所需的热量必须通过已被干燥的固体层才能传递到汽化面;从物料中汽化的水分也必须通过这层干燥层才能传递到空气主流中。干燥速率因热、质传递的途径加长而下降。此外,在点D以后,物料中的非结合水分已被除尽。接下去所汽化的是各种形式的结合水,因而,平衡蒸汽压将逐渐下降,传质推动力减小,干燥速率也随之较快降低,直至到达点E时,速率降为零。这一阶段称为降速第二阶段。

降速阶段干燥速率曲线的形状随物料内部的结构而异,不一定都呈现前面所述的曲线CDE形状。对于某些多孔性物料,可能降速两个阶段的界限不是很明显,曲线好像只有CD段;对于某些无孔性吸水物料,汽化只在表面进行,干燥速率取决于固体内部水分的扩散速率,故降速阶段只有类似DE段的曲线。

与恒速阶段相比,降速阶段从物料中除去的水分量相对少许多,但所需的干燥时间却长得多。总之,降速阶段的干燥速率取决与物料本身结构、形状和尺寸,而与干燥介质状况关系不大,故降速阶段又称物料内部迁移控制阶段。

三、实验装置

1.装置流程

本装置流程如图4-3所示。空气由鼓风机送入电加热器,经加热后流入干燥室,加热干燥室料盘中的湿物料后,经排出管道通入大气中。随着干燥过程的进行,物料失去的水分量由称重传感器

转化为电信号,并由智能数显仪表记录下来(或通过固定间隔时间,读取该时刻的湿物料重量)。

图4-3干燥装置流程图

1-风机;2-管道;3-进风口;4-加热器;5-厢式干燥器;6-气流均布器;

7-称重传感器;8-湿毛毡;9-玻璃视镜门;10,11,12-蝶阀2.主要设备及仪器

(1)鼓风机:BYF7122,370W;

(2)电加热器:额定功率4.5KW;

(3)干燥室:180mm×180mm×1250mm;

(4)干燥物料:湿毛毡或湿砂;

(5)称重传感器:CZ1000型,0~1000g。

四、实验步骤与注意事项

1.实验步骤

(1)放置托盘,开启总电源,开启风机电源。

(2)打开仪表电源开关,加热器通电加热,旋转加热按钮至适当加热电压(根据实验室温和实验讲解时间长短)。在U型湿漏斗中加入一定水量,并关注干球温度,干燥室温度(干球

温度)要求达到恒定温度(例如70℃)。

(3)将毛毡加入一定量的水并使其润湿均匀,注意水量不能过多或过少。

(4)当干燥室温度恒定在70℃时,将湿毛毡十分小心地放置于称重传感器上。放置毛毡时应

特别注意不能用力下压,因称重传感器的测量上限仅为1000克,用力过大容易损坏称重

传感器。

(5)记录时间和脱水量,每分钟记录一次重量数据;每两分钟记录一次干球温度和湿球温度。

(6)待毛毡恒重时,即为实验终了时,关闭仪表电源,注意保护称重传感器,非常小心地取下毛毡。

(7)关闭风机,切断总电源,清理实验设备。

2.注意事项

(1)必须先开风机,后开加热器,否则加热管可能会被烧坏。

(2)特别注意传感器的负荷量仅为1000克,放取毛毡时必须十分小心,绝对不能下压,以免损坏称重传感器。

(3)实验过程中,不要拍打、碰扣装置面板,以免引起料盘晃动,影响结果。

五、实验报告

1. 绘制干燥曲线(失水量~时间关系曲线);

2. 根据干燥曲线作干燥速率曲线;

3. 读取物料的临界湿含量;

4. 对实验结果进行分析讨论。

六、思考题

1. 什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?

2. 控制恒速干燥阶段速率的因素是什么?控制降速干燥阶段干燥速率的因素又是什么?

3. 为什么要先启动风机,再启动加热器?实验过程中干、湿球温度计是否变化?为什么?如何判断实验已经结束?

4. 若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率、临界湿含量又如何变化?为什么?

实验二 液液转盘萃取

一、实验目的

1. 了解转盘萃取塔的基本结构、操作方法及萃取的工艺流程。

2. 观察转盘转速变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究 萃取操作条件对萃取过程的影响。

3. 掌握每米萃取高度的传质单元数OR N 、传质单元高度OR H 和萃取率η的实验测法。

二、基本原理

萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。使用转盘塔进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一相液体作为分散相,以液滴形式通过另一种连续相液体,两种液相的浓度则在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相间的分离。当轻相作为分散相时,相界面出现在塔的上端;反之,当重相作为分散相时,则相界面出现在塔的下端。

1.传质单元法的计算

计算微分逆流萃取塔的塔高时,主要是采取传质单元法。即以传质单元数和传质单元高度来表征,传质单元数表示过程分离程度的难易,传质单元高度表示设备传质性能的好坏。

OR OR N H H ?= (1) 式中,H -萃取塔的有效接触高度,m ;

OR H -以萃余相为基准的总传质单元高度,m ; OR N -以萃余相为基准的总传质单元数,无因次。

按定义,OR N 计算式为

*

F

R

x OR x dx

N x x =-?

(2) 式中,F x -原料液的组成,kgA/kgS ;

R x -萃余相的组成,kgA/kgS ;

x -塔内某截面处萃余相的组成,kgA/kgS ;

*x -塔内某截面处与萃取相平衡时的萃余相组成,kgA/kgS 。

当萃余相浓度较低时,平衡曲线可近似为过原点的直线,操作线也简化为直线处理,如图5-1所示。

图5-1萃取平均推动力计算示意图

则积分式(2)得

F R

OR m

x x N x -=

? (3) 其中,m x ?为传质过程的平均推动力,在操作线、平衡线作直线近似的条件下为

(/)(*)(0)(*)(/)ln ln (0)F R F R E m F F E R R

y k y k x x x x x x x x x x x -----?==--- (4)

式中,k -分配系数,例如对于本实验的煤油苯甲酸相-水相,k =2.26;

E y -萃取相的组成,kgA/kgS 。

对于F x 、R x 和E y ,分别在实验中通过取样滴定分析而得,E y 也可通过如下的物料衡算而得 R

E F x R y E S x F R

E S

F ?+?=?+?+=+0 (5)

式中,F -原料液流量,kg/h ; S -萃取剂流量,kg/h ; E -萃取相流量,kg/h ;

R -萃余相流量,kg/h 。

对稀溶液的萃取过程,因为,F R S E ==,所以有

()E F R F

y x x S

=

- (6)

本实验中,取F /S =1/1(质量流量比),则式(6)简化为

E F R y x x =- (7)

2.萃取率的计算

萃取率η为被萃取剂萃取的组分A 的量与原料液中组分A 的量之比 F

R

F x F x R x F ??-?=

η (8)

对稀溶液的萃取过程,因为F R =,所以有

F R

F x x x η-=

(9)

3.组成浓度的测定

对于煤油苯甲酸相-水相体系,采用酸碱中和滴定的方法测定进料液组成F x 、萃余液组成R x 和

萃取液组成

E y ,即苯甲酸的质量分率,具体步骤如下:

(1)用移液管量取待测样品25ml ,加1-2滴溴百里酚兰指示剂; (2)用KOH-CH 3OH 溶液滴定至终点,则所测浓度为

8

.025122

????=

V N x (10)

式中,N -KOH-CH 3OH 溶液的当量浓度,N/ml ;

V ?-滴定用去的KOH-CH 3OH 溶液体积量,ml 。

此外,苯甲酸的分子量为122 g/mol ,煤油密度为0.8 g/ml ,样品量为25ml 。 (3) 萃取相组成

E

y 也可按式(7)计算得到。

三、实验装置与流程

图5-2 转盘萃取实验装置图

1-轻相槽;2-萃余相(回收槽);3-电机搅拌系统;4-电机控制箱;5-萃取塔; 6-水流量计;7-重相槽;8-水泵;9-煤油流量计;10-煤油泵;11-萃取相出口

本装置操作时应先在塔内灌满连续相——水,然后开启分散相——煤油(含有饱和苯甲酸),待分散相在塔顶凝聚一定厚度的液层后,通过连续相的∏管闸阀调节两相的界面于一定高度,对于本装置采用的实验物料体系,凝聚是在塔的上端中进行(塔的下端也设有凝聚段)。本装置外加能量的输入,可通过直流调速器来调节中心轴的转速。

四、实验步骤

1. 将煤油配制成含苯甲酸的混合物(配制成饱和或近饱和),然后把它灌入轻相槽内。注意:

勿直接在槽内配置饱和溶液,防止固体颗粒堵塞煤油输送泵的入口。

2. 接通水管,将水灌入重相槽内,用磁力泵将它送入萃取塔内。注意:磁力泵切不可空载运

行。

3. 通过调节转速来控制外加能量的大小,在操作时转速逐步加大,中间会跨越一个临界转速

(共振点),一般实验转速可取500转。

4. 水在萃取塔内搅拌流动,并连续运行5min 后,开启分散相——煤油管路,调节两相的体积

流量一般在20~40L/h 范围内,根据实验要求将两相的质量流量比调为1:1。注:在进行数据计算时,对煤油转子流量计测得的数据要校正,即煤油的实际流量应为测校V V 800

1000

,其中测V 为煤油流量计上的显示值。

5. 待分散相在塔顶凝聚一定厚度的液层后,再通过连续相出口管路中Π形管上的阀门开度来

调节两相界面高度,操作中应维持上集液板中两相界面的恒定。

6. 通过改变转速来分别测取效率η或H OR 从而判断外加能量对萃取过程的影响。

7. 取样分析。采用酸碱中和滴定的方法测定进料液组成F x 、萃余液组成R x 和萃取液组成E y ,即苯甲酸的质量分率,具体步骤如下:

(1)用移液管量取待测样品25ml ,加1-2滴溴百里酚兰指示剂; (2)用KOH-CH 3OH 溶液滴定至终点,则所测浓度为

8

.025122

????=

V N x

式中,N -KOH-CH 3OH 溶液的当量浓度,N/ml ;

V ?-滴定用去的KOH-CH 3OH 溶液体积量,ml 。

此外,苯甲酸的分子量为122 g/mol ,煤油密度为0.8 g/ml ,样品量为25ml 。 (3) 萃取相组成

E y 也可按式(7)计算得到。

五、实验报告

1. 测定不同转速下的萃取效率,传质单元高度。

2. 以煤油为分散相,水为连续相,进行萃取过程的操作。 实验数据记录:氢氧化钾的当量浓度N KOH = N/ml

编号 原 料 F L/h 溶 剂 S L/h 转 速 n F ΔV F mL(KOH)

R ΔVR mL(KOH)

S ΔVs mL(KOH)

1 2 3 4

数据处理:

转速 萃余相浓 度 萃取相 浓 度 平 均 推动力 传 质 单元数 传质单元高

度 效 率 n

x R y E Δx m N OR H OR η 1 2 3 4

六、转盘萃取实验装置分析配套的仪器及药品

1. 萃取分析方法:

(1)所需仪器:

碱式滴定管,50ml,一支;

滴定管夹子和支架,一付;

移液管,25ml,一支;

三角烧杯,100ml,若干个;

烧杯,200ml,若干个;

分析天平,0.1mg,一台;

烘箱,一台;

电炉,一个;

指示剂瓶及滴管,二套;

量筒,50mL,一个;

洗尔球一个;

胶头滴管若干;

(2)所需试剂:

无水乙醇:分析纯;

甲醇:分析醇;

氢氧化钾:分析纯;

酚酞:分析纯;

溴百里酚蓝:分析纯;

邻苯二甲酸氢钾:基准物;

酚酞指示剂配制:浓度为0.1%的90%乙醇溶液;

溴百里酚蓝指示剂配制:浓度为0.1%的20%乙醇溶液;

A. 首先配置0.01mol/L的KOH甲醇标准溶液

称取0.28g的KOH溶于500 ml的甲醇中。

B. KOH标准溶液标定

用分析天平准确称取约0.05g上述邻苯二甲酸氢钾基准物,加20ml新煮沸过的去离子水,使之完全溶解,加2滴酚酞指示液,用待定的0.01 mol/L的KOH甲醇标准溶液滴定至终点(由

无色变红色,即达终点),记录KOH 甲醇标准溶液消耗的体积,计算其实际浓度:

)/()

(897.4)(22.2041000L mol ml V W

ml V W N KOH KOH KOH ?=??=

式中:KOH N -KOH 标准溶液的当量浓度,mol/L ;

KOH V ——KOH 标准溶液消耗的体积,ml ;

W

——邻苯二甲酸氢钾质量,g ;

204.22——邻苯二甲酸氢钾相对分子量。

(3)原料液、萃余液中苯甲酸浓度分析

用移液管精确吸取原料液或萃余液25ml ,置于100ml 三角烧杯中,加2滴溴百里酚蓝指示液,溶液应呈黄色,用KOH 甲醇标准溶液滴定至终点(溶液颜色由黄色变蓝色,即达终点),记录KOH 甲醇标准溶液消耗的体积数,计算原料液或萃余液的浓度:

)%(1001000

0.125)

(12.122质量百分率?????=

ml V N x KOH KOH

式中:x ——被测液中苯甲酸的质量百分率;

122.12——苯甲酸的相对分子量;

KOH N -—KOH 标准溶液的当量浓度,mol/L ; KOH V ——KOH 标准溶液滴定消耗的体积,ml ;

25——被测液的体积,ml ; 1.0——水的密度,g/ml 。

七、思考题

1.请分析比较萃取实验装置与吸收、精馏实验装置的异同点?

2.说说本萃取实验装置的转盘转速是如何调节和测量的?从实验结果分析转盘转速变化对萃取传质系数与萃取率的影响。

3.测定原料液、萃取相、萃余相的组成可用哪些方法?采用中和滴定法时,标准碱为什么选用KOH -CH3OH 溶液,而不选用KOH -H2O 溶液?

实验三 填料塔吸收传质系数的测定

一、实验目的

1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法; 5.了解气相色谱仪和六通阀的使用方法。

二、基本原理

气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。本实验采用水吸收空气中的CO 2组分。一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。因此,本实验主要测定K xa 和H OL 。

1. 计算公式 填料层高度Z 为

OL OL x x

xa

Z

N H x

x dx K L

dZ z ?=-=

=??*

1

2

式中: L -液体通过塔截面的摩尔流量,kmol / (m 2·s); K xa - 以△X 为推动力的液相总体积传质系数,kmol / (m 3·s); H OL - 液相总传质单元高度,m ;

N OL - 液相总传质单元数,无因次。

令:吸收因数A=L/mG

])1ln[(11

1

121A mx y mx y A A N OL +----=

2. 测定方法

(1)空气流量和水流量的测定

本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。

(2)测定填料层高度Z 和塔径D ;

(3)测定塔顶和塔底气相组成y 1和y 2; (4)平衡关系。

本实验的平衡关系可写成

y = mx

式中: m - 相平衡常数,m=E/P ; E -亨利系数,E =f(t),Pa ,根据液相温度由附录查得;

P -总压,Pa ,取1atm 。

对清水而言,x 2=0,由全塔物料衡算

)()(2121x x L y y G -=-

可得x 1。

三、实验装置

1.装置流程

图7-1 吸收装置流程图

1、2、13-球阀; 3-气体流量调节阀; 4-液体流量调节阀;5-气体转子流量计; 6-液体转子流量计;7-喷淋头;8、11-填料层;9-液体再分布器;10-塔底; 11-支撑板;12-压差计;14-气压表;15-二氧化碳转子流量计;16-气体混合罐

本实验装置流程:由自来水源来的水送入填料塔塔顶经喷头喷淋在填料顶层。由压缩机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体中间贮罐,然后再直接进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。

2.主要设备

(1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网波纹规整填料或θ环散装填料,填料层总高度2000mm.。塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。填料塔底部有液封装置,以避免气体泄漏。

(2)填料规格和特性:金属丝网波纹规整填料:型号JWB—700Y,规格φ100×100mm,比表面积700m2/m3。

(3)转子流量计:

条件

介质

常用流量最小刻度标定介质标定条件

空气4m3/h 0.1 m3/h 空气20℃ 1.0133×105Pa

CO260 L/h 10 L/h 空气20℃ 1.0133×105Pa

水600L/h 20 L/h 水20℃ 1.0133×105Pa (4)空气风机:型号:旋涡式气泵

(5)二氧化碳钢瓶;

(6)气相色谱仪分析。

四、实验步骤与注意事项

1.实验步骤

(1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;

(2)打开混合罐底部排空阀,排放掉空气混合贮罐中的冷凝水;

(3)打开仪表电源开关及空气压缩机电源开关,进行仪表自检;

(4)开启进水阀门,让水进入填料塔润湿填料,仔细调节液体转子流量计,使其流量稳定在某一实验值。(塔底液封控制:仔细调节阀门2的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气);

(5)启动风机,打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀;

(6)仔细调节风机出口阀门的开度(并调节CO2调节转子流量计的流量,使其稳定在某一值;)(7)待塔中的压力靠近某一实验值时,仔细调节尾气放空阀14的开度,直至塔中压力稳定在实验值;

(8)待塔操作稳定后,读取各流量计的读数及通过温度、压差计、压力表上读取各温度、压力、

塔顶塔底压差读数,通过六通阀在线进样,利用气相色谱仪分析出塔顶、塔底气相组成;

(9)实验完毕,关闭CO2钢瓶和转子流量计、水转子流量计、风机出口阀门,再关闭进水阀门,及风机电源开关,(实验完成后我们一般先停止水的流量再停止气体的流量,这样做的目的是为了防止液体从进气口倒压破坏管路及仪器)清理实验仪器和实验场地。

2.注意事项

(1)固定好操作点后,应随时注意调整以保持各量不变。

(2)在填料塔操作条件改变后,需要有较长的稳定时间,一定要等到稳定以后方能读取有关数据。

五、实验报告

1.将原始数据列表。

2.在双对数坐标纸上绘图表示二氧化碳解吸时体积传质系数、传质单元高度与气体流量的关系。3.列出实验结果与计算示例。

六、思考题

1.本实验中,为什么塔底要有液封?液封高度如何计算?

2.测定K xa有什么工程意义?

3.为什么二氧化碳吸收过程属于液膜控制?

4.当气体温度和液体温度不同时,应用什么温度计算亨利系数?

实验四 筛板塔精馏过程实验

一、实验目的

1. 了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2. 学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。

3. 学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。

二.基本原理

1.全塔效率T E

全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即

1

T T P

N E N -=

(1) 式中,T N -完成一定分离任务所需的理论塔板数,包括蒸馏釜;

P N -完成一定分离任务所需的实际塔板数,本装置P N =10。

全塔效率简单地反映了整个塔内塔板的平均效率,说明了塔板结构、物性系数、操作状况对塔分离能力的影响。对于塔内所需理论塔板数T N ,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R 和热状况q 等,用图解法求得。

2.单板效率M E

单板效率又称莫弗里板效率,如图8-1所示,是指气相 或液相经过一层实际塔板前后的组成变化值与经过一层理论塔 板前后的组成变化值之比。 1n x + 图8-1 塔板气液流向示意

按气相组成变化表示的单板效率为

1

*

1

n n MV n n y y E y y ++-=

- (2) 按液相组成变化表示的单板效率为

1*

1n n

ML n n

x x E x x ---=

- (3) 式中,n y 、1n y +-离开第n 、n+1块塔板的气相组成,摩尔分数;

1n x -、n x -离开第n-1、n 块塔板的液相组成,摩尔分数;

*

n y -与n x 成平衡的气相组成,摩尔分数; *n x -与n y 成平衡的液相组成,摩尔分数。 3. 图解法求理论塔板数T N

图解法又称麦卡勃-蒂列(McCabe -Thiele )法,简称M -T 法,其原理与逐板计算法 完全相同,只是将逐板计算过程在y -x 图上直观地表示出来。

精馏段的操作线方程为:

111

D n n x R

y x R R +=

+++ (4)

式中,1n y +-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; n x -精馏段第n 块塔板下流的液体组成,摩尔分数;

D x -塔顶溜出液的液体组成,摩尔分数; R -泡点回流下的回流比。 提馏段的操作线方程为:

'

1''W m m Wx L y x L W L W

+=--- (5)

式中,1m y +-提馏段第m+1块塔板上升的蒸汽组成,摩尔分数;

m x -提馏段第m 块塔板下流的液体组成,摩尔分数; W x -塔底釜液的液体组成,摩尔分数;

'L -提馏段内下流的液体量,kmol/s ;

W -釜液流量,kmol/s 。

加料线(q 线)方程可表示为:

11

F x q

y x q q =

--- (6)

其中, ()

1pF S F F

c t t q r -=+ (7)

式中,q -进料热状况参数;

F r -进料液组成下的汽化潜热,kJ/kmol ; S t -进料液的泡点温度,℃; F t -进料液温度,℃;

pF c -进料液在平均温度()S F t t -/2下的比热容,kJ/(kmol ℃);

F x -进料液组成,摩尔分数。

回流比R 的确定: L

R D

=

(8) 式中,L -回流液量,kmol/s ;

D -馏出液量,kmol/s 。

式(8)只适用于泡点下回流时的情况,而实际操作时为了保证上升气流能完全冷凝,冷却水量一般都比较大,回流液温度往往低于泡点温度,即冷液回流。

如图8-2所示,从全凝器出来的温度为R t 、流量为L 的液体回流进入塔顶第一块板,由于回流温度低于第一块塔板上的液相温度,离开第一块塔板的一部分上升蒸汽将被冷凝成液体,这样,塔内的实际流量将大于塔外回流量。

图8-2塔顶回流示意图

对第一块板作物料、热量衡算:

112V L V L +=+ (9) 111122V L V L V I L I V I LI +=+ (10)

对式(8-9)、式(8-10)整理、化简后,近似可得: 11()

[1]p L R c t t L L r

-≈+

(11)

即实际回流比: 1

1L R D

=

(12) R 1 1()[1]

p L R c t t L r D

-+= (13) 式中,1V 、2V -离开第1、2块板的气相摩尔流量,kmol/s ; 1L -塔内实际液流量,kmol/s ;

1V I 、2V I 、1L I 、L I -指对应1V 、2V 、1L 、L 下的焓值,kJ/kmol ;

r -回流液组成下的汽化潜热,kJ/kmol ;

p c -回流液在1L t 与R t 平均温度下的平均比热容,kJ/(kmol ℃)。

(1) 全回流操作

在精馏全回流操作时,操作线在y -x 图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

化工原理实验思考题答案

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门? 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么? 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗?为什么? 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: Z l P l ? :?g =Z2 P2;g,当P l = P2 时,Z I = Z2 (4 )怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘? 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。 (6)你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点? 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换 成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测 大流量下的压强差。 (7 )读转子流量计时应注意什么?为什么? 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误^^。 (8)两个转子能同时开启吗?为什么? 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9 )开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯?答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么? 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。 (11)假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻力F=0,没有能量消耗,当然不存在压强差。 Z j +P/? +uj/2g =Z2 +u;/2g , T d1=d2 二U1=U2 又T Z1=Z2 (水平管)P1 = P2 (12)离心泵送液能力,为什么可以通过出口阀调节改变?往复泵的送液能力是否也可采用同样的调节方法?为什么? 答:离心泵送液能力可以通过调节出口阀开度来改变管路特性曲线,从而使工作点改变。往复泵是正往移泵 流量与扬程无关。若把出口堵死,泵内压强会急剧升高,造成泵体,管路和电机的损 坏。 (13)本实验用水为工作介质做出的入一Re曲线,对其它流体能否使用?为什么?

化工原理实验资料

实验一干燥实验 一、实验目的 1.了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2.掌握恒定条件下物料干燥速率曲线的测定方法。 3.测定湿物料的临界含水量X C,加深对其概念及影响因素的理解。 4.熟悉恒速阶段传质系数K H、物料与空气之间的对流传热系数的测定方法。 二、实验内容 1.在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其影响因 素。 2.测定恒速阶段物料与空气之间的对流传热系数「和传质系数K H。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的 机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不 变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量, 即以湿物料为基准的水分含量,用?来表示。但因干燥时物料总量在变化,所以采用以干 基料为基准的含水量X表示更为方便。??与X的关系为: CO X (8—1)1 - ■ 式中:X —干基含水量kg水/kg绝干料; ■—湿基含水量kg水/kg湿物料。 物料的绝干质量G C是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X与干燥时间?的关系曲线,它说明物料在干燥过程中,干 基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB段;随后为持续时间长、斜率较大的直线BC;段以后的一段为曲线

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验指导书

化工原理实验指导书 目录

实验一流体流淌阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸取实验 (12) 演示实验柏努利方程实验 (14) 雷诺实验 (16) 实验一流体流淌阻力的测定 一、实验目的

1、了解流体在管道内摩擦阻力的测定方法; 2、确定摩擦系数λ与雷诺数Re 的关系。 二、差不多原理 由于流体具有粘性,在管内流淌时必须克服内摩擦力。当流体呈湍流流淌时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和流体的涡流产生了流体流淌的阻力。在被侧直管段的两取压口之间列出柏努力方程式,可得: ΔP f =ΔP L —两侧压点间直管长度(m) d —直管内径(m) λ—摩擦阻力系数 u —流体流速(m/s ) ΔP f —直管阻力引起的压降(N/m 2 ) μ—流体粘度(Pa.s ) ρ—流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分不求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。 三、实验装置简要讲明 水泵将储水糟中的水抽出,送入实验系统,第一经玻璃转子流量计测量流量,然后送入被测直管段测量流体流淌的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流淌阻力△P 可依照其数值大小分不采纳变压器或空气—水倒置U 型管来测量。 四、实验步骤: 1、向储水槽内注蒸馏水,直到水满为止。 2、大流量状态下的压差测量系统,应先接电预热10-15分钟,观擦数字外表的初始值并记录后方可启动泵做实验。 3、检查导压系统内有无气泡存在.当流量为0时打开B1、B2两阀门,若空气-水倒置U 型管内两液柱的高度差不为0,则讲明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、测取数据的顺序可从大流量至小流量,反之也可,一样测15~20组数,建议当流量读数小于300L/h 时,用空气—水倒置U 型管测压差ΔP 。 5、待数据测量完毕,关闭流量调剂阀,切断电源。 五、使用实验设备应注意的事项: 2 2u d L P h f f ?=?= λ ρ 2 2u P L d f ??= ρλμ ρ du = Re

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

2014化工原理实验复习提纲(下册):

第一部分 实验基础知识 1、 如何读取实验数据 2、 如何写实验报告 3、 数据处理 一、实验数据的误差分析 1. 真值 2、平均值及其种类 3、误差的分类 4、精密度和精确度 5、实验数据的记数法和有效数字 错误认识:小数点后面的数字越多就越正确,或者运算结果保留位数越多越准确。 二、实验数据处理 实验数据中各变量的关系可表示为列表式,图示式和函数式。 第二部分 实验内容 a log log log log ln ln ln ln ln 1212=--+=?=+=?=截矩直线的斜率=真值,双对数坐标半对数坐标x x y y x b a y ax y bx a y ae y b bx Θ

每个实验的原理、操作方法、仪表的使用、实验记录、数据处理、思考题 一、精馏实验: 物系、实验原理、流程图、数据处理(用公式表示)、思考题 1)测定指定条件下的全塔效率或等板高度 2)操作中可调节可控制的量 3)物料浓度的测定方法 4)操作步骤,先全回流,再确定一定回流比操作,为什么 5)实验中出现异常现象(液泛,无回流),如何判断?如何处理? 6)进料状态对精馏塔的操作有何影响?确定q线需要测定哪几个 量?查取进料液的汽化潜热时定性温度应取何值? 7)什么是全回流?全回流操作的标志有哪些?在生产中有什么实际 意义? 8)其他条件都不变,只改变回流比,对塔性能会产生什么影响? 9)进料板位置是否可以任意选择,它对塔的性能有何影响? 10)为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 11)将本塔适当加高,是否可以得到无水酒精?为什么? 12)影响精馏塔操作稳定的因素有哪些?如何确定精馏塔操作已达 稳定?本实验装置能否精馏出98%(质量)以上的酒精?为什么? 13)各转子流量计测定的介质及测量条件与标定时的状态不同,应如 何校正?

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

化工原理实验指导书

化工原理实验指导书

目录 实验一流体流动阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸收实验 (12) 演示实验柏努利方程实验 (14)

雷诺实验 (16)

实验一流体流动阻力的测定 、实验目的 1、 了解流体在管道内摩擦阻力的测定方法; 2、 确定摩擦系数入与雷诺数 Re 的关系。 二、基本原理 由于流体具有粘性, 在管内流动时必须克服内摩擦力。 当流体呈湍流流动时, 质点间不 断相互碰撞,弓I 起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和 流体 的涡流产生了流体流动的阻力。 在被侧直管段的两取压口之间列出柏努力方程式, 可得: △ P f = △ P ’ P f L u 2 h f d 2 L —两侧压点间直管长度(m ) 2d P f d —直管内径(m ) 入一摩擦阻力系数 u —流体流速(m/s ) △ P f —直管阻力引起的压降(N/m 2 ) 厂流体粘度(Pa.s ) p — 流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系 列流量下的△ P f 值,将已知尺寸和所测数据代入各式,分别求出入和 Re ,在双对数坐标纸 上绘出入?Re 曲线。 三、实验装置简要说明 水泵将储水糟中的水抽出, 送入实验系统,首先经玻璃转子流量计测量流量, 然后送入 被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流 动阻力△ P 可根据其数值大小分别采用变压器或空气一水倒置 U 型管来测量。 四、实验步骤: 1、 向储水槽内注蒸馏水,直到水满为止。 2、 大流量状态下的压差测量系统 ,应先接电预热10-15分钟,观擦数字仪表的初始值并 记 录后方可启动泵做实验。 3、 检查导压系统内有无气泡存在 .当流量为0时打开B1、B2两阀门,若空气一水倒置 U 型管内两液柱的高度差不为 0,则说明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、 测取数据的顺序可从大流量至小流量,反之也可,一般测 15?20组数,建议当流量 读数 小于300L/h 时,用空气一水倒置 U 型管测压差△ P 。 5、待数据测量完毕,关闭流量调节阀,切断电源。 Re du

化工原理实验答案汇编

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么?4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。

化工原理实验讲

1流体阻力测定实验 实验目的 1)掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。 2 )测定直管摩擦系数入与雷诺准数Re的关系,将所得的入~Re方程与经验公式比较。 3 )测定流体流经阀门时的局部阻力系数E。 4 )学会倒U形差压计、差压传感器、涡轮流量计的使用方法。 5 )观察组成管路的各种管件、阀门,并了解其作用。 基本原理 流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。 1)沿程阻力 流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低,即 h f 仏上厘(1 —1) 影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通 过实验研究其规律。为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。根据因次分析,影响阻力损失的因素有, (1)流体性质:密度P、粘度卩; (2)管路的几何尺寸:管径d、管长I、管壁粗糙度£; (3)流动条件:流速卩。 可表示为: p f (d,l,,,u,)(1—2)组合成如下的无因次式: p 2 (du I J d ,—)(1—3) u d p du I u2 (,—)? d d 2 du 令( , d )/ (1 — 4) 则式(1 —1)变为: 2 h f P 1u(1 - 5) d2 式中,入称为摩擦系数。层流(滞流)时,入=64/R e;湍流时入是雷诺准数R e和相对粗糙度的函数,须由实验确定。

2) 局部阻力 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。 (1)当量长度法 流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径 长度的直管阻力损失,这个直管长度称为当量长度,用符号le表示。这样,就可以用直管 阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,如管路中直管长度为I,各种局部阻力的当量长度之和为le,则流体在管路中流动时的总阻力损失h f为 I leu2 h f(1 —6) d 2 (2)阻力系数法\ 流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局 部阻力的方法,称为阻力系数法。 即 2 . u h f (1 —7) 2 式中,E――局部阻力系数,无因次;u 在小截面管中流体的平均流速,m/ s。 由于管件两侧距测压孔间的直管长度很短?引起的摩擦阻力与局部阻力相比,可以忽略不计。因此h f'直可应用柏努利方程由压差计读数求取。 实验装置与流程 1)实验装置 实验装置如图1 —1所示。主要由水箱、管道泵,不同管径、材质的管子,各种阀门和管件,转子流量计等组成。第一根为粗糙管,第二根为光滑管。第三根不锈钢管,装有待测闸阀,用于局部阻力的测定。 1、水箱 2、管道泵 3、5、6、球阀 4、均压环7、系统排水阀8闸阀9、流量调节阀 10、排污水阀11倒U形差压计12、不锈钢管13、粗糙管14、光滑管15、转子流量计16、导压管17、温度计18、进水阀

相关文档
最新文档