线性代数 向量

线性代数 向量
线性代数 向量

线性代数 第三章向量

n维向量部分 这部分逻辑性非常强,考生必须要相当熟悉教材中的重要定理。从历年考试情况来看,线性相(无)关、线性表出、极大无关组、向量组的秩及等价、向量空间(数一)等内容是考试经常会涉及到的内容。常出现在选择题中。 回顾: n维向量的运算 1.定义:设 ,,k为数域P中的数,定义 ,称为向量与的和; ,称为向量与数k的数量乘积. 2.向量运算的基本性质 1) 2) 3) 4) 5) 6) 7) 8),9),, 10)若,则即,若,则或 1 向量组的秩、极大无关组的相关题型 知识点 极大线性无关组定义:设为中的一个向量组,它的一个部分组若满足 i) 线性无关 ii) 对任意的,可经线性表出 则称为向量组的一个极大线性无关组(简称极大无关组). 向量组的秩 定义:向量组的极大无关组所含向量个数称为这个向量组的秩.性质: 1)一个向量组线性无关的充要条件是它的秩与它所含向量个数相同. 一个向量组线性相关的充要条件是它的秩<它所含向量个数.2)等价向量组必有相同的秩.(注意:反之不然.) 3)若向量组可经向量组线性表出,则 秩秩. 例1 设向量组 (1)求此向量组的秩; (2)求此向量组的一个极大无关组,并将其余向量用该极大无关组表示。

例2 选择题 若向量组的秩为 r,则() (A)必定r秩(向量组II) (C)秩(向量组I)<秩(向量组II) (D)不能确定秩(向量组I)与秩(向量组II)的大小关系 2 向量组的线性相关性的判定或根据向量相关性求参数 知识点:1对向量组,设 若如果存在不全为零的数,使上式成立,则向量组线性相关。 若当且仅当上式才成立,则线性无关。 2 设向量组I:可由向量组II:线性表现,若 r>s , 则向量组I线性相关。(注意它的逆否定理) 3 利用矩阵的秩或行列式 设有 s个n维列向量组,设A=(), 则当秩A=s时,线性无关;当秩A

线性代数第三章向量复习题()

向量复习题(3) 一、填空题: 1.当t _______时,向量123(1,2,2),(4,,3),(3,1,1)T T T t ααα=-==-线性无关. 2.. 向量(1,2,1),T α= 则 T αα= T αα?= , 3. 如果n ααα,,,21???线性无关,且1+n α不能由n ααα,,,21???线性表示,则 121,,,+???n ααα 的线性 4. 设T )5,2(1=α , T a )1(2,=α,当=a 时,21,αα线性相关. 5. 一个非零向量是线性 的,一个零向量是线性 的. 6. 设向量组A: 321,,ααα线性无关,31αα+,12αα-,32αα+线性 7. 设A 为n 阶方阵,且1)(-=n A r , 21,αα是AX=0的两个不同解,则21αα,一定 线性 8. 向量组1,,l ββL 能由向量组1,,m ααL 线性表示的充分必要条件是 12(,,)m R ααα 1212(,,,)m l R αααβββ ,,,。(填大于,小于或等于) 9.设向量组()11,1,1α= ,()21,2,3α= ,()31,3,t α=线性相关,则t 的值为 。 二、选择题: 1. . n 阶方阵A 的行列式0=A ,则A 的列向量( ) A.线性相关 B.线性无关 C.0)(=A R D.0)(≠A R 2. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( ) A 、必有r 个行向量线性无关 B 、任意r 个行向量构成极大线性无关组

C 、任意r 个行向量线性相关 D 、任一行都可由其余r 个行向量线性表示 3. 设有n 维向量组(Ⅰ):12,,,r ααα 和(Ⅱ):12,,,()m m r ααα> ,则( ). A 、向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关 B 、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关 C 、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关 D 、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关 4. 下列命题中正确的是( ) (A)任意n 个1+n 维向量线性相关 (B)任意n 个1+n 维向量线性无关 (C)任意1+n 个n 维向量线性相关 (D)任意1+n 个n 维向量线性无关 5. 向量组r ααα,,,21 线性相关且秩为s ,则( ) (A )s r = (B) s r ≤ (C) r s ≤ (D) r s < 6. n 维向量组 s ααα,,, 21(3≤ s ≤ n )线性无关的充要条件是( ). (A )s ααα,,, 21中任意两个向量都线性无关 (B) s ααα,,, 21中任一个向量都不能用其余向量线性表示 (C) s ααα,,, 21中存在一个向量不能用其余向量线性表示 (D) s ααα,,, 21中不含零向量 7. 向量组n ααα,,,21???线性无关的充要条件是( ) A 、任意i α不为零向量 B 、n ααα,,,21???中任两个向量的对应分量不成比例 C 、n ααα,,,21???中有部分向量线性无关 D 、n ααα,,,21???中任一向量均不能由其余n-1个向量线性表示 8. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( ) A 、必有r 个行向量线性无关 B 、任意r 个行向量构成极大线性无关组 C 、任意r 个行向量线性相关

线性代数教案-向量与向量空间

线性代数教学教案 第3章 向量与向量空间 授课序号01 教 学 基 本 指 标 教学课题 第3章 第1节 维向量及其线性运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质 教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》 作业布置 课后习题 大纲要求 理解维向量的概念 教 学 基 本 内 容 一. 维向量的概念 1.维向量:由个数组成的有序数组称为维向量. 2.称为维行向量,称为维列向量. 二.维向量的线性运算 1.定义: (1)分量全为0的向量称为零向量; (2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等; (4)对于,,称为与的和; (5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为. 2.向量的线性运算的性质:对任意的维向量和数,有: n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12?????????????? n a a a n n ()12T n αa ,a ,,a = ()12---T n a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---T n n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,

线性代数 第三章 向量与线性方程组 例题

1.设α1=(1 2 ?1 0),α2=( 1 3 1 2 ),α3=( 2 4 ?2 ),α4=( 1 1 3 5 ),α5=( 2 2 3 ),求向量组α1,α2,α3,α4,α5的 一个极大(最大)无关组,并将其余向量用该极大无关组线性表出。 2.设A为mxn阶矩阵,B为nxp阶矩阵,C为pxs阶矩阵,R(C)=p,且ABC=0,证明B=0. 3.设A为mxn阶矩阵,X与b为m维列向量,Y为n维列向量,证明AY=b有解的充要条 件是满足A T X=0的所有X均满足b T=0.

4. 设α1=(1003),α2=(11?12),α3=(1 2?2a ),β=(01b ?1 )问a,b 为何值时, (1) β不能由α1,α2,α3线性表出 (2) β可以由α1,α2,α3线性表出,并且写出表达式 5. 设A=(λ+312 λλ?113λ+3λλ+3 ),讨论AX=0的解的情况。 6. 设A=(1 11a b c a 2 b 2 c 2 ),讨论AX=0的解的情况。

7. 设A=(1 10 1 1 1 2 20?132a ?3?21a ),β=(01b ?1 ),讨论方程组AX=β的解的情况。 8. 设A=(λ111λ111λ),b=(1 λλ2 ),讨论方程组AX=b 的解的情况。 9. 已知三阶矩阵A 的第一行为a,b,c ,且a,b,c 不全为0,矩阵B=(1 232463 6k )(k 为常数)满足AB =0,求AX =0的通解。

10. 设4元齐次线性方程组(I ){2x 1+3x 2?x 3=0x 1+2x 2+x 3?x 4=0 ,且已知另一个四元齐次线性方程组(II )的一个基础解系为α1=(2 ?1a +21 ),α2=(?124a +8),(1)求(I )的一个基础解系。 (2)a 为何值时(I )与(II )有非零公共解,并求所有非零公共解。 11. 在上例中将α1,α2改为α1=(a ?5 1?1?1),α2=(?6a +3?12 )求(I )与(II )的所有非零公共解。 12.已知非齐次线性方程组(I ){?2x 1+x 2+ax 3?5x 4=1x 1+2x 2?x 3+6x 4=43x 1+2x 2+x 3+2x 4=c 与(II) {x 1+x 4=1 x 2?2x 4=2x 3+x 4=1为通解方程组 求a,b,c 的值。

线性代数第三章向量与向量空间

线性代数练习题 第三章 向量与向量空间 系 专业 班 姓名 学号 第一节 n 维向量 第二节 向量间的线性关系 一.选择题 1.n 维向量s ααα,,, 21)(01≠α线性相关的充分必要条件是 [ D ] (A )对于任何一组不全为零的数组都有02211=+++s s k k k ααα (B )s ααα,,, 21中任何)(s j j ≤个向量线性相关 (C )设),,,(s A ααα 21=,非齐次线性方程组B AX =有无穷多解 (D )设),,,(s A ααα 21=,A 的行秩 < s . 2.若向量组γβα,,线性无关,向量组δβα,,线性相关,则 [ C ] (A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示 (C )δ必可由γβα,,线性表示 (D )δ比不可由γβα,,线性表示 二.填空题: 1. 设T T T )0,4,3(,)1,1,0(,)0,1,1(321===ααα 则T )1,0,1(21-=-αα T )2,1,0(23321=-+ααα 2. 设)()()(αααααα+=++-321523,其中T ),,,(31521=α,T )10,5,1,10(2=α T ),,,(11143-=α,则(1,2,3,4)T α= 3. 已知T T T k ),,,(,),,,(,),,,(84120011211321---===ααα线性相关,则=k 2

三.计算题: 1. 设向量()T k 1,1,11+=α,T k ),,(1112+=α,T k ),,(1113+=α,T k k ),,(21=β,试问当k 为 何值时 (1)β可由321ααα,,线性表示,且表示式是唯一 (2)β可由321ααα,,线性表示,且表示式不唯一 (3)β不能由321ααα,,线性表示 (向量组的秩ppt) 21123 31 211131********* 100(3)1 1 1 3 1 1 0r r c c c r r k k k k k k k k k k k k k -++-++++=++= =++++ 2. 设向量T ),,,(32011=α,T ),5,3,1,1(2=α,T a ),,,(12113+-=α,T a ),,,(84214+=α T b ),,,(5311+=β,试问当b a ,为何值时,(1)β不能由4321αααα,,,线性表示 (2)β有4321αααα,,,的唯一线性表达式并写出表达式。 31413212421 111 11111 1201121011212324301 2133 518502 252111111 02100112101121001 000102000100 0010r r a b a b r r a a r r r r a b a b r r a a ???? ? ? --- ? ? ? ? +++- ? ? +-+???? -???? ? ? --- ? ?- ? ++- ? ++???? ? ? (1) a= -1,b ≠0.

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数 向量组的线性相关性

第三节 向量组的线性相关性 分布图示 ★ 线性相关与线性无关 ★ 例1 ★ 例2 ★ 证明线性无关的一种方法 线性相关性的判定 ★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 定理3 ★ 定理4 ★ 定理5 ★ 例7 ★ 内容小结 ★ 课堂练习 ★ 习题3-3 内容要点 一、线性相关性概念 定义1 给定向量组,,,,:21s A ααα 如果存在不全为零的数,,,,21s k k k 使 ,02211=+++s s k k k ααα (1) 则称向量组A 线性相关, 否则称为线性无关. 注: ① 当且仅当021====s k k k 时,(1)式成立, 向量组s ααα,,,21 线性无关; ② 包含零向量的任何向量组是线性相关的; ③ 向量组只含有一个向量α时,则 (1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的; ④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面. 二、线性相关性的判定 定理1 向量组)2(,,,21≥s s ααα 线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示. 定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j =???? ?? ? ??=α 则向量组s ααα,,,21 线性相关的充要条件是: 是矩阵),,,(21s A ααα =的秩小于向量的个数s .

线性代数向量空间自测题(附答案)

《第四章 向量空间》 自测题 (75分钟) 一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。 (A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量; (C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量; (D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。 2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=, 则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。 3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。 4. 设W 是所有二阶实对称矩阵构成的线性空间,即?? ? ???????∈???? ??=R a a a a a W ij 2212 1211,则它的维数为 ,一组基为 。 5.若A=????? ? ? ?????? ?? ? - 10 0021021b a 为正交矩阵,且|A|=-1,则a = ,= 。 二、计算题(60分) 1.(15分)设R 3的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T (1)求由基321,,ααα到基321,,βββ的过渡矩阵。 (2)求α关于这两组基的坐标。 (3)将321,,βββ化为一组标准正交基。 2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,

线性代数 向量空间

第五节 向量空间 分布图示 ★ 向量空间 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 子空间 ★ 例6 ★ 例7 ★ 向量空间的基与维数 ★ 例8 ★ 例9 ★ 向量在基下的坐标 ★ 例10 ★ 关于集合的坐标系的注记 ★ 例11 ★ 内容小结 ★ 课堂练习 ★ 习题3-5 内容要点 一、向量空间与子空间 定义1 设V 为n 维向量的集合,若集合V 非空,且集合V 对于n 维向量的加法及数乘两种运算封闭, 即 (1) 若,,V V ∈∈βα则V ∈+βα; (2) 若,,R V ∈∈λα则V ∈λα. 则称集合V 为R 上的向量空间. 记所有n 维向量的集合为n R , 由n 维向量的线性运算规律,容易验证集合n R 对于加法及数乘两种运算封闭. 因而集合n R 构成一向量空间, 称n R 为n 维向量空间. 注:3=n 时, 三维向量空间3R 表示实体空间; 2=n 时, 维向量空间2R 二表示平面; 1=n 时, 一维向量空间1R 表示数轴. 3>n 时, n R 没有直观的几何形象. 定义2 设有向量空间1V 和2V , 若向量空间21V V ?, 则称1V 是2V 的子空间. 二、向量空间的基与维数 定义3 设V 是向量空间, 若有r 个向量V r ∈ααα,,,21 , 且满足 (1) r αα,,1 线性无关; (2) V 中任一向量都可由r αα,,1 线性表示. 则称向量组r αα,,1 为向量空间V 的一个基, 数r 称为向量空间V 的维数,记为r V =dim 并称V 为r 维向量空间. 注: (1) 只含零向量的向量空间称为0维向量空间, 它没有基; (2) 若把向量空间V 看作向量组,则V 的基就是向量组的极大无关组, V 的维数就是向量组的秩; (3) 若向量组r αα,,1 是向量空间V 的一个基,则V 可表示为 }.,,,,|{2111R x x V r r r ∈++==λλλαλαλ 此时, V 又称为由基r αα,,1 所生成的向量空间. 故数组r λλ,,1 称为向量x 在基r αα,,1 中的坐标. 注: 如果在向量空间V 中取定一个基r a a a ,,,21 , 那么V 中任一向量x 可惟一地表示为 ,2211r r a a a x λλλ+++= 数组r λλλ,,,21 称为向量x 在基r a a a ,,,21 中的坐标.

线性代数空间向量和特征值特征向量

线性代数空间向量和特征值特征向量1、空间向量

2、特征值特征向量 凯程教育: 凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观口号:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业;

服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。 建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。 有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。此外,最好还要看一下他们的营业执照。

线性代数常用公式

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○注 ()()a b r aE bA n aE bA aE bA x οολ+

线性代数第三章向量复习题

第三章 向量复习题 一、填空题: 1.当t ____时,向量123(1,2,2),(4,,3),(3,1,1)T T T t ααα=-==-线性无关. 3. 如果n ααα,,,21???线性无关,且1+n α不能由n ααα,,,21???线性表示,则 121,,,+???n ααα 的线性 4. 设T )5,2(1=α , T a )1(2,=α,当=a 时,21,αα线性相关. 5. 一个非零向量是线性 ;的,一个零向量是线性 . 6. 设向量组A: 321,,ααα线性无关,31αα+,12αα-,32αα+线性 7. 设A 为n 阶方阵,且1)(-=n A r , 21,αα是AX=0的两个不同解,则21αα,一定线性 8. 向量组1,,l ββL 能由向量组1,,m ααL 线性表示的充分必要条件是12(,,)m R ααα 1212(,,,)m l R αααβββ,,,。(填大于,小于或等于) 9.设向量组()11,1,1 α= ,()21,2,3α= ,()31,3,t α=线性相关,则t 的值为 。 二、选择题: 1. . n 阶方阵A 的行列式0=A ,则A 的列向量( ) A.线性相关 B.线性无关 C.0)(=A R D.0)(≠A R 2. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中() A 、必有r 个行向量线性无关 B 、任意r 个行向量构成极大线性无关组 C 、任意r 个行向量线性相关 D 、任一行都可由其余r 个行向量线性表示 3. 设有n 维向量组(Ⅰ):12,,,r ααα和(Ⅱ):12,,,()m m r ααα>,则( ). A 、向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关

线性代数 第三章 测验

(1)设n 阶方阵A 的秩rn (5)设A 是m ×n 矩阵,AX=0是非齐次线性方程组AX=B 所对应的齐次线性方程组,则下列结论正确的是:( ) (A )若AX=0仅有零解,则AX=B 有唯一解; (B )若AX=0有非零解,则AX=B 有无穷多解; (C )若AX=B 有无穷多个解,则AX=0仅有零解; (D )若AX=B 有无穷多个解,则AX=0有非零解。 (6)设向量组(Ⅰ):α1,α2,…,αr 可由向量组(Ⅱ):β1,β2,…,βS 线性表示,则( ) (A )当rS 时,向量组(Ⅱ)必线性相关; (C )当rS 时,向量组(Ⅰ)必线性相关; 7. 已知一个向量组为???? ? ???????--=????????????-=????????????=????????????=????????????=1311,4152,2312,1021,120154321ααααα,求该向量组的秩及该向量组的一个最大线性无关组, 并把其余列向量用该最大无关组线性表示.. 8. 当λ取何值时,非齐次线性方程组12312321231x x x x x x x x x λλλλλ?++=?++=??++=? (1) 有唯一解;(2)无解;(3)有无 穷多解,并求通解.

线性代数第三章向量复习题.doc

向量复习题( 3) 一、填空题: 1. 当 t _______时,向量 1 (1,2, 2)T , 2 (4, t,3) T , 3 (3, 1,1)T 线性无关 . 2.. 向量 (1,2,1)T , 则 T T , 3. 如 果 1 , 2 , , n 线 性 无 关 , 且 n 1 不 能 由 1, 2 , , n 线 性 表 示 , 则 1 , 2 , , n 1 的线性 4. T , , T a 2 线性相关 . 设 1 ( 2,5) 2 a) ,当 时, 1, (1 5. 一个非零向量是线性 的,一个零向量是线性 的. 6. 设向量组 A: 1 , 2 , 3 线性无关, 1 3 , 2 1 , 2 3 线性 7. 设 A 为 n 阶方阵,且 r ( A) n 1, 1 , 2 是 AX=0的两个不同解,则 1, 2 一 定 线性 8. 向 量 组 1,L , l 能 由 向 量 组 1,L , m 线 性 表 示 的 充 分 必 要 条 件 是 R( 1, 2,L m ) R( 1, 2 ,L m , 1 , 2,L , l ) 。( 填大于,小于或等于 ) 9. 设向量组 1 1,1,1 , 2 1,2,3 , 3 1,3,t 线 性 相 关 , 则 t 的 值 为 。 二、选择题: 1. . n 阶方阵 A 的行列式 A 0 ,则 A 的列向量( ) A.线性相关 B.线性无关 C. R(A) 0 D. R( A) 0 2. 设 A 为 n 阶方阵, R( A) r n ,则 A 的行向量中( ) A 、必有 r 个行向量线性无关 B 、任意 r 个行向量构成极大线性无关组

居余马线性代数第三章课后习题

第三章 课后习题及解答 将1,2题中的向量α表示成4321,,,αααα的线性组合: 1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T 4T 3T 21T --=--=--===αααααT 2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα 解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得 解得.4 1,41,41,454321-=-===k k k k 所以432141414145ααααα--+= . 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得 02321=++k k k ,04321=+++k k k k , 0342=-k k ,1421=-+k k k . 解得 .0,1,0,14321=-===k k k k 所以31ααα-=. 判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T 3T 2T 1===ααα 4. ()().3,0,7,142,1,3,0,)4,2,1,1(T 3T 2T 1==-=βββ, 解:

3.设存在 321,,k k k 使得0332211=++αααk k k ,即 ?????=++=++=+0650320321 32131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关. 4.设存在 321,,k k k 使得0332211=++βββk k k ,即 ???????=++=++=+-=+0 14240720303321321 2131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件. 解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性 无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是 0=α. 6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法, 假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关, 则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立. 7.证明:若21,αα线性无关,则2121,αααα-+也线性无关. 证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,

(完整word版)线性代数超强的总结(不看你会后悔的)(2),推荐文档

线性代数超强总结 ()0A r A n A Ax A A οο??

√ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =-K N N √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -????→M M 初等行变换 ③11a b d b c d c a ad bc --????=????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? O O 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ?????????? N N

线性代数第三章向量复习题答案.doc

,向量组(Ⅱ)线性相关

该向量组的任何部分组必线性无关

--------------------------- 线 ------------------------------------------------ 密封线) 且:521302αααα+-=,521402αααα++= 2. 求向量组A : T )-2,6,2,0(1=α ,T )1,-2,-1,0(2=α,T )-2,-4,0,2(3=α,T )22,10,0(4-=, α,的一个极大无关组,并将其余向量由它线性表示. 解:由题意, 故向量组A 的一个极大无关组为321,,ααα,其中314ααα-= 3. 设()()()1231,4,32,,12,3,1T T T a ααα==-=-,, 1) a 为何值时, 123,ααα, 线性无关. 2) a 为何值时, 123,ααα,线性相关. 4. 求向量组()()() 123:1,2,1,12,3,1,24,1,1,0T T T A ααα=-=--=-、、的极大无关组,并把其余向量用极大无关组线性表示. 解 第一步先用初等行变换把矩阵化成行 (最简形) 阶梯形矩阵. 22112313241421227341241241 241 022********* 111110330000001200440 000 00r r r r r r r r r r r r r A F ---+--+???????? ? ? ? ?--- ? ? ? ? =???→???→???→ = ? ? ? ? -- ? ? ? ?---???????? ()2r A =知,即()123,,2r ααα=,12,αα或13,αα均为A 的极大无关组,记()123,,F f f f =,由矩阵F 可见3122f f f =+,则有3122ααα=+. 5. 已知()()()()1231,4,22,7,30,1,3,10,4T T T T a αααβ====,,,,问a 为何值时,β可由123ααα, ,唯一线性表示?并写出表示式 解 ()()23 1102 12 443337331 3301 c c A a a a a +---=+=+=+-223=11 (1) 当3a =-时,123,ααα,线性相关. 当3a ≠-时,123,ααα, 线性无关. 7. 求向量组A : T )2,1,1(1-=α,T )1,3,0(2=α,3(1,5,4)T α=,T )2,2,1(4-=α,5(2,3,4)T α=-的一个极大无关组,并将其余向量由它线性表示. 解:由题意, 21311011210112135230361122142401200r r A r r ????+ ? ?=----- ? ?- ? ????? 23231321011210101300011012000120000011r r r r r r r ?????- ? ? ? ?-- ? ????? 故向量组A 的一个极大无关组为421,,ααα,其中3122ααα=+,512ααα=+ 8. 试求向量组1α=(1,1,2,2)T ,2α=(0,2,1,5)T ,3α=(2,0,3,-1)T ,4α=(1,1,0,4)T 的秩和该向量组的一个最大无关组,并将其他向量用此最大无关组表示。 解: ??????? ??------=22100200012 426 2 1 2 A ?? ? ?? ? ? ? ?-----++22100200200 10102 1 2 31312r r r r ????? ?? ? ??-----+011000001001010121121211334r r r r ?? ? ?? ? ? ??--+-0101000100010 0012110213231r r r r r r

线性代数思维导图

代数: 代数是研究数、数量、关系、结构与代数方程的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。 线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 定义与历史: 概念 线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也

就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系的线性算子f都有哪几类,以及他们分别都有什么性质。 历史 线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。 由于费马和笛卡儿的工作,现代意义的线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维线性空间的过渡。 随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维线性

相关文档
最新文档