基于MATLAB的粒子群优化算法的应用示例

基于MATLAB的粒子群优化算法的应用示例
基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。

?初始化种群

已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。

位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。

此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。

粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。

每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。

?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下:

每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。

代码如下:

clc;clear;close all;

%% 初始化种群

f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]);

N = 50; % 初始种群个数

d = 1; % 空间维数

ger = 100; % 最大迭代次数

limit = [0, 20]; % 设置位置参数限制

vlimit = [-1, 1]; % 设置速度限制

w = 0.8; % 惯性权重

c1 = 0.5; % 自我学习因子

c2 = 0.5; % 群体学习因子

for i = 1:d

x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置

end

v = rand(N, d); % 初始种群的速度

xm = x; % 每个个体的历史最佳位置ym = zeros(1, d); % 种群的历史最佳位置

fxm = zeros(N, 1); % 每个个体的历史最佳适应度fym = -inf; % 种群历史最佳适应度

hold on

plot(xm, f(xm), 'ro');title('初始状态图');

figure(2)

%% 群体更新

iter = 1;

record = zeros(ger, 1); % 记录器

while iter <= ger

fx = f(x) ; %个体当前适应度

for i = 1:N

if fxm(i) < fx(i)

fxm(i) = fx(i); %更新个体历史最佳适应度

xm(i,:) = x(i,:); %更新个体历史最佳位置

end

end

if fym < max(fxm)

[fym, nmax] = max(fxm); % 更新群体历史最佳适应度

ym = xm(nmax, :); % 更新群体历史最佳位置

end

v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新

% 边界速度处理

v(v > vlimit(2)) = vlimit(2);

v(v < vlimit(1)) = vlimit(1);

x = x + v;% 位置更新

% 边界位置处理

x(x > limit(2)) = limit(2);

x(x < limit(1)) = limit(1);

record(iter) = fym;%最大值记录

% x0 = 0 : 0.01 : 20;

% plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')

% pause(0.1)

iter = iter+1;

end

figure(3);plot(record);title('收敛过程')

x0 = 0 : 0.01 : 20;

figure(4);plot(x0, f(x0), 'b-', x, f(x), 'ro');title('最终状态位置')

disp(['最大值:',num2str(fym)]); disp(['变量取值:',num2str(ym)]);

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

matlab粒子群优化算法进行传感器优化配置程序

1.Pso算法 function [xm,fv] = SAPSO( fitness,N,c1,c2,wmax,wmin,M ) % fitness 适应度函数 % N 种群个数 % c1 % c2 % wmax 最大权重 % wmin 最小权重 % M 迭代次数 cg=32;%传感器个数 format long; %-----------------------初始化种群个体 ------------------------------------- for i=1:N %粒子个数为n a1=-17.5:10:12.5; a11=a1*(i+5)/10; [a2,a3]=meshgrid(a1,a11); a4=reshape(a2,1,16); a5=reshape(a3,1,16); b1=-12.5:10:17.5; b11=b1*(i+5)/10; [b2,b3]=meshgrid(b1,b11); b4=reshape(b2,1,16); b5=reshape(b3,1,16); x11=[a4,b4;a5,b5]+20;%ó|ó?μè±èàyà?é¢y1ì?¨ x(:,:,i)=x11';%初始化传感器个数为20 v(:,:,i)=10*rand(cg,2); end %----------------------计算各个粒子适应度------------------------------for i=1:N; p(i)=fitness(x(:,:,i)); y(:,:,i)=x(:,:,i); end pg=x(:,:,N); %pg为全局最优 for i=1:(N-1) if fitness(x(:,:,i))

(完整word版)基本粒子群算法的原理和matlab程序

基本粒子群算法的原理和matlab程序 作者——niewei120(nuaa) 一、粒子群算法的基本原理 粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy和Eberhart提出,是一种通用的启发式搜索技术。一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远,那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。PSO 算法利用这种模型得到启示并应用于解决优化问题。PSO 算法中,每个优化问题的解都是粒子在搜索 空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。 PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度。然后通过迭代寻优。在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。上述的方法叫全局粒子群算法。如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。 速度、位置的更新方程表示为: 每个粒子自身搜索到的历史最优值p i ,p i=(p i1,p i2,....,p iQ),i=1,2,3,....,n。所有粒子搜索到的最优值p g,p g=(p g1,p g2,....,p gQ),注意这里的p g只有一个。 是保持原来速度的系数,所以叫做惯性权重。 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。 是[0,1]区间内均匀分布的随机数。 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设 置为1 。

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

基本粒子群算法的matlab源程序

主函数源程序(main.m) %------基本粒子群优化算法(Particle Swarm Optimization)-----------%------名称:基本粒子群优化算法(PSO) %------作用:求解优化问题 %------说明:全局性,并行性,高效的群体智能算法 %------初始格式化--------------------------------------------------clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962;%学习因子1 c2=1.4962;%学习因子2 w=0.7298;%惯性权重 MaxDT=1000;%最大迭代次数 D=10;%搜索空间维数(未知数个数) N=40;%初始化群体个体数目 eps=10^(-6);%设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------for i=1:N for j=1:D x(i,j)=randn;%随机初始化位置 v(i,j)=randn;%随机初始化速度 end end %------先计算各个粒子的适应度,并初始化Pi和Pg----------------------for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:);%Pg为全局最优 for i=2:N if fitness(x(i,:),D) pg=x(i,:); end end %------进入主要循环,按照公式依次迭代,直到满足精度要求------------for t=1:MaxDT for i=1:N v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:)); x(i,:)=x(i,:)+v(i,:); if fitness(x(i,:),D) p(i)=fitness(x(i,:),D); y(i,:)=x(i,:);

(完整word版)基本粒子群算法的原理和matlab程序.doc

基本粒子群算法的原理和matlab 程序 作者—— niewei120 (nuaa) 一、粒子群算法的基本原理 粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy 和 Eberhart 提出,是一种通 用的启发式搜索技术。一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远, 那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。PSO 算法利用这种模型得到启示并应用于解决优化问题。PSO 算法中,每个优化问题的解都是粒子在搜索 空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。 PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度。然后通过迭代寻优。在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。上述的方法叫全局粒子群算法。如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。 速度、位置的更新方程表示为: 每个粒子自身搜索到的历史最优值p i,p i=(p i1 ,p i2 ,....,p iQ ), i=1,2,3,....,n 。所有粒子搜索到的最优值p g, p g=(p g1 ,p g2,....,p gQ ),注意这里的p g只有一个。 是保持原来速度的系数,所以叫做惯性权重。 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为 2 。 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。 是[0,1] 区间内均匀分布的随机数。 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设 置为 1 。

粒子群优化算法介绍及matlab程序

粒子群优化算法(1)—粒子群优化算法简介 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化 第一次更新位置

第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法 在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。这个时候我们的每个粒子均为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。 由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素: 1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ; 2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。 下面给出粒子群算法的位置速度更新公式: 112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+??-+??-, 11k k k i i i x x av ++=+. 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是: ω是保持原来速度的系数,所以叫做惯性权重。1c 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。()rand 是[0,1]区间内均匀分布的随机数。a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。这样一个标准的粒子群算法就介绍结束了。下图是对整个基本的粒子群的过程给一个简单的图形表示。 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

基于粒子群优化算法的神经网络在

基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用 张丽平 俞欢军3 陈德钊 胡上序 (浙江大学化工系,杭州310027) 摘 要 神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP 或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。关键词 粒子群优化算法,神经网络,定量构效关系  2004201204收稿;2004207225接受 本文系国家自然科学基金资助项目(N o.20276063) 1 引 言 药物定量构效关系(QS AR )是研究药物生理活性和药物分子结构参数间的量变规律并建立相应的 数学模型,进而研究药物的作用机理,从而用于预测未知化合物的生物活性,探讨药物的作用机理,指导新药的设计和合成,在药物和农药的研究与设计中已经显示出广阔的应用前景1。以往QS AR 的建模方法大多基于统计原理,局限于线性模型,只进行简单的非线性处理,由此所建立的模型很难契合实际构效关系,并且其处理过程都比较繁琐2。神经网络通过学习将构效关系知识隐式分布在网络之中,适用于高度非线性体系。 在药物QS AR 中采用神经网络(NN )始于20世纪80年代末3,此后得到迅速的发展,目前已发展为除多重线性回归和多元数据分析之外的第3种方法4。通常多层前传网络采用BP 算法,通过误差反传,按梯度下降的方向调整权值。其缺点是可能陷入局部极小点,且对高维输入收敛速度非常缓慢。 粒子群优化算法(particle swarm optimization ,PS O )是K ennedy 等5源于对鸟群、鱼群和人类社会行为的研究而发展的一种新的进化型寻优技术。PS O 已成为进化寻优算法研究的热点,其最主要特点是简单、收敛速度快,且所需领域知识少。本实验拟将该方法初始化前传神经网络为苯乙酰胺类农药建立良好适用的QS AR 模型。 2 苯乙酰胺类农药的Q SAR 问题 苯乙酰胺类化合物是除草农药,其除草活性与其分子结构密切相关。所有的N 2(12甲基212苯乙基)苯乙酰胺都可用相应的羧酸酰胺通过霍夫曼反应生成。N 2(12甲基212苯乙基)苯乙酰胺的基本结构式为 : 其中X 为Me 、F 、Cl 、OMe 、CF 3和Br 等,Y 为Me 、Cl 、F 和Br 等,由不同的X 和Y 取代基可构成不同的化合物。常用以下7个理化参数描述化合物的分子组成和结构:log P 、log 2P (疏水性参数及其平方项)、 σ(电性效应参数)、E s (T aft 立体参数)、MR (摩尔折射度),1χ、2 χ(分子连接性指数)。于是这类化合物的QS AR 就转化为上述理化参数与除草活性间的关系。为研究这种关系,选用具有代表性的50个化合物, 他们的活性值取自文献1,见表1。 第32卷2004年12月分析化学(FE NXI H UAX UE ) 研究报告Chinese Journal of Analytical Chemistry 第12期1590~1594

标准粒子群算法(PSO)及其Matlab程序和常见改进算法

一、粒子群算法概述 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy博士提出,源于对鸟群捕食的行为研究。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。 PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个”极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 二、算法原理 粒子群算法采用常数学习因子,及惯性权重,粒子根据如下的公式更新自己的速度和位置。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 三、算法步骤 1、随机初始化种群中各微粒的位置和速度; 2、评价个粒子的适应度,将各粒子的位置和适应度储存在各微粒的pbest(Q bi)中,将所有pbest中适应度最优的个体的位置和适应度存储在gbest(Q bg)中。 3、更新粒子的速度和位移。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 4、对每个微粒,与其前一个最优位置比较,如果较好,则将其作为当前的最优位置。 5、比较当前所有的pbest和上一迭代周期的gbest,更新gbest。 6、若满足停止条件(达到要求精度或迭代次数),搜索停止,输出结果,否则,返回2。

粒子群算法通用matlab程序

% 优化函数以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m 就可 %------基本粒子群优化算法(Particle Swarm Optimization, PSO)----------- %------初始格式化-------------------------------------------------- clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962; %学习因子1 c2=1.4962; %学习因子2 w=0.7298; %惯性权重 MaxDT=1000; %最大迭代次数 D=4; %搜索空间维数(未知数个数) N=10; %初始化群体个体数目 eps=10^(-6); %设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------ x=0:0.1:1,y=[-.447,1.978,3.11,5.25,5.02,4.66,4.01,4.58,3.45,5.35,9.22] %------先计算各个粒子的适应度,并初始化Pi和Pg---------------------- for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:); %Pg为全局最优 for i=2:N if fitness(x(i,:),D)

粒子群算法详解-附matlab代码说明

粒子群算法(1)----粒子群算法简介 一、粒子群算法的历史 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。 所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据): 首先,主体是主动的、活动的。 主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。 环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。 最后,整个系统可能还要受一些随机因素的影响。 粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。 粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value ),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。Reynolds对鸟群飞行的研究发现。鸟仅仅是追踪它有限数量的邻居但最终的整体结果是整个鸟群好像在一个中心的控制之下.即复杂的全局行为是由简单规则的相互作用引起的。 二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。下面通俗的解释PSO算法。 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下:

粒子群算法原理及在函数优化中的应用(附程序)

粒子群算法原理及其在函数优化中的应用 1粒子群优化(PSO)算法基本原理 1.1标准粒子群算法 假设在一个D 维的目标搜索空间中,有 m 个代表问题潜在解的粒子组成一 个种群x [X i ,X 2,...,X m ],第i 个粒子的信息可用D 维向量表示为 X i [X ii , X i2,..., X iD ]T ,其速度为V i [V ii ,V i2,...,V iD ]T 。算法首先初始化m 个随机粒 子,然后通过迭代找到最优解。每一次迭代中,粒子通过跟踪2个极值进行信息 交流,一个是第i 个粒子本身找到的最优解,称之为个体极值,即 P i [P il , P i2,...,厢]丁 ;另一个是所有粒子目前找到的最优解,称之为群体极值, 即P g [P gi ,P g2,..., P gD 「。粒子在更新上述2个极值后,根据式(1)和式(2)更新自 己的速度和位置。 t 1 t t t t t\ V i WV i C 1「1(P i X i ) C 2「2(P g X i ) 式中,t 代表当前迭代次数,「1,「2是在[0,1]之间服从均匀分布的随机数,C 1,C 2 称为学习因子,分别调节粒子向个体极值和群体极值方向飞行的步长, w 为惯性 权重,一般在0.1~0.9之间取值。在标准的PSO 算法中,惯性权重w 被设为常数, 通常取w 0.5。在实际应用中,x 需保证在一定的范围内,即x 的每一维的变化 范围均为[X min ,X max ],这在函数优化问题中相当丁自变量的定义域 1.2算法实现步骤 步骤1:表示出PSO 算法中的适应度函数fitness(x);(编程时最好以函数的 形式保存,便丁多次调用。) 步骤2:初始化PSO 算法中各个参数(如粒子个数,惯性权重,学习因子, 最大迭代次数等),在自变量x 定义域内随机初始化x ,代入fitness(x)求得适应 度值,通过比较确定起始个体极值P i 和全局极值P g 。 步骤3:通过循环迭代更新x 、p i 和p g : ① 确定惯性权重w 的取值(当w 不是常数时)。 ② 根据式(1)更新粒子的速度V :1,若速度中的某一维超过了 V max ,则取为 V max - ③ 根据式(2)更新自变量x ,若x 的取值超过其定义域,则在其定义域内重新 初t 1 X i t t 1 X i V i

粒子群算法源程序

二维粒子群matlab源程序 %function [pso F] = pso_2D() % FUNCTION PSO --------USE Particle Swarm Optimization Algorithm % global present; % close all; clc; clear all; pop_size = 10; % pop_size 种群大小 ///粒子数量 part_size = 2; % part_size 粒子大小 ///粒子的维数gbest = zeros(1,part_size+1); % gbest 当前搜索到的最小的值 max_gen = 200; % max_gen 最大迭代次数 %best=zeros(part_size,pop_size*part_size);%xuan region=zeros(part_size,2); % 设定搜索空间范围->解空间 region=10*[-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3]; % 每一维设定不同范围(称之为解空间,不是可行域空间) rand('state',sum(100*clock)); % 重置随机数发生器状态 %当前种群的信息矩阵,逐代进化的群体 % 当前位置,随机初始化 % 一个10*3的随机的矩阵(初始化所有粒子的所有维数的位置值),其中最后一列为 arr_present = ini_pos(pop_size,part_size); % 初始化当前速度 % 一个10*2的随机的矩阵(初始化所有粒子的所有维数的速度值) v=ini_v(pop_size,part_size); %不是当前种群,可看作是一个外部的记忆体,存储每个粒子历史最优值(2维数值):根据适应度更新!

粒子群算法matlab(算法已经调试)

程序1 当22111==c c ,5.12212==c c ,2.1=w 。 a)%主函数源程序(main.m ) %------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法 %------初始格式化 clear all ; %清除所有变量 clc; %清屏 format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------ N=40; %3初始化群体个数 D=10; %初始化群体维数 T=100; %初始化群体最迭代次数 c11=2; %学习因子1 c21=2; %学习因子2 c12=1.5; c22=1.5; w=1.2; %惯性权重 eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------ x=zeros(N,D); v=zeros(N,D); for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------显示群位置---------------------- figure(1) for j=1:D if (rem(D,2)>0)

subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始位置') tInfo=strcat('第',char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维'); end title(tInfo) end %------显示种群速度 figure(2) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始速度') tInfo=strcat('第,char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维); end title(tInfo) end figure(3) %第一个图 subplot(1,2,1)

粒子群优化算法

PSO算法 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为 例如floys 和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计. 在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上. 粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具. 3. 算法介绍 如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索

粒子群优化算法及其参数设置

附录 程序1 当22111==c c ,5.12212==c c ,2.1=w 。 a)%主函数源程序(main.m ) %------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法 %------初始格式化 clear all ; %清除所有变量 clc; %清屏 format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------ N=40; %3初始化群体个数 D=10; %初始化群体维数 T=100; %初始化群体最迭代次数 c11=2; %学习因子1 c21=2; %学习因子2 c12=1.5; c22=1.5; w=1.2; %惯性权重 eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------ x=zeros(N,D); v=zeros(N,D); for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------显示群位置----------------------

figure(1) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始位置') tInfo=strcat('第',char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维'); end title(tInfo) end %------显示种群速度 figure(2) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始速度') tInfo=strcat('第,char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维); end title(tInfo) end figure(3)

相关文档
最新文档