screwspec-螺丝规格说明分析

screwspec-螺丝规格说明分析
screwspec-螺丝规格说明分析

」、螺丝通用技术条件

如无其它规定,则按本公司以下要求:

1.外观质量检查:

表面镀层/氧化层均匀致密,无露底、脱落、变形、缺口、裂纹和披锋等不良

2.盐雾腐蚀试验:35°C/5%NaCI水溶液/2hrs.

3.可针对具体要求,对样品作扭力装配试验

、分类

本公司涉及的螺丝分类如下:

2.1PA--圆头尖脚螺丝

2.2PB--圆头平脚螺丝

2.3PT--圆头介脚螺丝

2.4BA—大头尖脚螺丝

2.5BT--平脚介脚螺丝

2.6KA--平头尖脚螺丝

2.7KB--平头平脚螺丝

2.8KT--平头介脚螺丝

2.9PWA/ WA--带介子尖脚螺丝

2.10PWB /WB--带介子平脚螺丝

2.11PWT/ WT--带介子介脚螺丝

2.12PM--圆头机牙螺丝

2.13KM--平头平脚机牙螺丝

2.14六角机牙螺丝

代号说明:A-尖脚;B-大头,平脚;M-机牙;K-平头;P-圆头;T-介脚;W-带介子. 电镀种类

入:::5

镀铬镀古铜不锈钢清洗

■基本头型

------- ■■ a

LJ W 甲I? T-ri

P头B头V头喇叭头z^x

XT u n- Jl -

1

R头T头O头H头

I ■ ■

~1

■ ■—■」

C头F头I头IP头■基本槽型

1.精密小螺丝(1.4 <= d <

2.6 )

2.特殊极微小螺丝(d < 1.4 )

螺丝公差

十字槽卜一槽一字槽

梅花槽内六角槽米字槽

空精密机械牙小螺丝

*种类

2.1 PA--圆头尖脚螺丝

实物图片结构示意图

PA--圆头尖脚螺丝标准化参数范围un it: mm

注:设计和使用中应优先选用下表中已有的螺丝规格;如无,则应使选用的螺丝符合上表的规定参数.

2.2 PB--圆头平脚螺丝

螺栓理论重量表

螺栓理论重量表一览 螺栓理论重量包括不带螺母及带螺母的螺栓重量,可通过分段计算的方法来计算。螺栓理论重量表如下: 规格(直径×长 度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M10×302940M14×80117142 M10×403546M14×90129154 M10×504152M16×4092126 M10×604758M16×50106140 M12×304157M16×60122156 M12×404965M16×70138172 M12×505874M16×80154188 M12×606783M16×90170204 M12×707692M16×100185219 M12×8085101M20×50183245 M14×406994M20×60205267 M14×5081106M20×70230292 M14×6093118M20×80255317 M14×70105130M20×90279341 M20×100304366M22×160548624 规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M20×110329391M24×80388500 M20×120354416M24×90424536 M20×130378440M24×100459571 M22×60250326M24×110495607 M22×70280356M24×120531643 M22×80310386M24×130566678 M22×90339415M24×140602714 M22×100369445M24×150637749

螺栓夹紧力报告

Summary Purpose The ISDe engine local cylinder head capscrew preload was performed to validate whether preload could meet the requirement of assembly specification (81KN±6KN). This file documented the ISDe engine local cylinder head capscrew preload measurement result. 目的 为了验证ISDe发动机国产缸盖螺栓拧紧后产生的预紧力是否满足安装规范要求(81KN±6KN),本次试验对ISDe发动机国产缸盖螺栓预紧力进行了测试。本文件归档ISDe发动机国产缸盖螺栓预紧力测试结果。 Conclusions 1: According to assembly specification, the thread below the hex flange of cylinder head capscrew only should be lubricated .But the actual condition was that the bottom surface of hex flange was lubricated wrongly in the first group. The bottom surface of the hex flange was what was called bearing surface .It leaded the decrease of friction coefficient. So the data of the first one was unauthentic. 2:By analysing the data of preload w hich don’t include the data from the first one,Cpk of preload for the next five engines were , , , , and . The data of the case show that the engines assembled the same local cylinder head capscrews matching local cylinder gaskets had better process capability than the ones matching imported cylinder gaskets. 3:Because the local cylinder head cap screw’s bottom surface of hex flange was lubricated in the first group w hich didn’t match the asse mbly specification. So by analysing the data of preload which didn’t include the first group, the average preload was ,the variation of preload was between 75KN and 87KN. The preload met the assembly specification. 结论 1:根据安装规范,缸盖螺栓应仅润滑六角法兰以下的螺纹区域, 但实际情况是,

案例一螺栓失效分析

案例一螺栓断裂失效分析 某螺栓生产厂家生产的螺栓在用户使用过程中发生断裂,为分析螺栓断裂原因,进行了化学成分测试、金相组织观察、螺栓断口观察、能谱测试以及硬度测试等,并对螺栓断裂做出了结论。 1、化学成分分析 螺栓成分分析采用成分分析仪,正常断裂、异常断裂螺栓成分见表1,从表中可以看出正常断裂螺栓与异常断裂螺栓成分都符合GB/T3077-1999《合金结构钢》中对45Mn2钢的要求。 表1 材料化学成分分析结果(质量分数,%) C Si Mn P S Cr Ni Fe 正常断裂螺栓0.421 0.250 1.498 0.011 0.001 0.078 0.021 余量 异常断裂螺栓0.425 0.269 1.534 0.011 <0.001 0.068 0.019 余量标准值0.42~0.49 0.17~0.37 1.4~1.8 2、金相组织分析 取平行于断裂截面的试样,打磨、抛光并观察其组织形貌。下图1(a)、1(b)所示为正常断裂螺栓与异常断裂螺栓的金相组织形貌,从图中可以看出螺栓金相组织均为回火马氏体。 (a)正常断裂螺栓;(b)异常断裂螺栓 图1 螺栓金相组织形貌 3、宏观断口形貌分析 正常断裂螺栓、异常断裂螺栓宏观断口形貌如图2(a)、2(b)所示。由图可知

两个螺栓均从中心起裂,裂纹向四周扩展。正常断裂螺栓与异常断裂螺栓断裂截面都具有裂纹源、扩展区、瞬断区三个部分,正常断裂螺栓扩展区面积比异常断裂螺栓大,瞬断区面积则比异常断裂螺栓小。这与异常断裂螺栓应力(165KN )比正常断裂螺栓断裂应力(215KN)小相吻合。同时正常断裂螺栓断裂截面较为平整,异常断裂螺栓在裂纹源附近呈凹陷状。 (a)正常断裂螺栓; (b)异常断裂螺栓 图2 螺栓断裂截面 4、 微观断口形貌分析 图3所示为正常断裂螺栓与异常断裂螺栓断裂截面裂纹源附近的微观形貌,从图中可以看出正常断裂螺栓组织较为平整,而异常断裂螺栓中心附近可见含有夹杂物的微孔。图4所示为夹杂物所在位置,图5为夹杂物能谱分析图,表2为其对应的元素分析表,从表中可以看出夹杂物中主要元素为O 、Si ,并存在少量的Mg 、Al 、Ca 元素,其中O 元素的含量很大,故较杂物主要为SiO 2,存在少量的MgO 、Al 2O 3、CaO 。 裂纹源 扩展区 裂纹源 扩展区 瞬断区 瞬断区 a) b)

螺栓拧紧方法

以下均以(牛.米)为单位。 温馨提示:当准备拧紧螺栓时,需要在螺栓的螺纹上涂少许机油,以便我们拧紧的时候减少多螺栓的损害;注意:机油不能涂太多,如涂太多后会造成“液锁”现象。 螺栓的拧紧方式及拧紧的质量评估 在汽车制造业中,将各种汽车零部件装配成整车的过程,需要很多种不同类型的联接,比如焊接、螺栓联接和粘胶联接等。其中螺栓联接是最重要的联接方法之一。由于螺栓联接可以获得很高的联接强度,又便于装拆,具有互换性,通过标准化实现了大批量生产,成本低而且价格便宜,经常被应用到发动机、变速箱和底盘等重要位置的装配中。所以,螺栓的拧紧质量直接影响到产品的安全性和可靠性。 螺栓联接质量控制原理 螺栓联接的实质是通过将螺栓的轴向预紧力控制到适当范围,从而将两个工件可靠地联接在一起。为了确保螺纹联接的刚性、密封性、防松能力和受拉螺栓的疲劳强度,联接螺栓对预紧力的精度要求是相当高的。所以,轴向预紧力是评价螺栓联接可靠性的重要指标。轴向预紧力的最低限是由联接结构的用途决定的,该值必须保证被联接工件在工作过程中始终可靠贴合。轴向预紧力的最高值必须保证螺栓及被联接工件在预紧和工作过程中不会发生脱扣、剪断和疲劳断裂等损坏。

怎样控制和监控预紧力的数值,使之能够达到产品要求显然是一个值得研究的课题。 螺栓拧紧方法 螺栓拧紧方法主要有两类,分别是弹性拧紧和塑性拧紧。弹性拧紧一般指扭矩拧紧法,塑性拧紧主要包括转角拧紧法、屈服点拧紧法等。 1.扭矩拧紧法 扭矩拧紧法的原理是扭矩大小和轴向预紧力之间存在一定关系。通过将拧紧工具设置到某个扭矩值来控制被联接件的预紧力。在工艺过程、零件质量等因素稳定的前提下,该拧紧方式操作简单、直观,目前被广泛采用。 根据经验,在拧紧螺栓时,有50%的扭矩消耗在螺栓端面的摩擦上,有40%消耗在螺纹的摩擦上,仅有10%的扭矩用来产生预紧力。由于外界不稳定条件对扭矩拧紧法的影响很多,所以通过控制拧紧扭矩间接地实施预紧力控制的扭矩法将导致对轴向预紧力控制精度低。 而且有极少数的螺栓联接,扭矩已达到规定值,而螺栓头还未完全与被联接件贴合或间隙有时很小,目视不容易发现。此时扭矩值是合格的,但预紧力很小,甚至没有,所以在这种情况下,如果仅仅提出保证扭矩合格,那么保证装配拧紧质量就成了一句空话。 图1 转角拧紧法的拧紧曲线

螺栓理论重量表

螺栓理论重量表 Prepared on 22 November 2020

螺栓理论重量包括不带螺母及带螺母的螺栓重量,可通过分段计算的方法来计算。 螺栓理论重量表如下: 规格(直径×长 度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M10×302940M14×80117142 M10×403546M14×90129154 M10×504152M16×4092126 M10×604758M16×50106140 M12×304157M16×60122156 M12×404965M16×70138172 M12×505874M16×80154188 M12×606783M16×90170204 M12×707692M16×100185219 M12×8085101M20×50183245 M14×406994M20×60205267 M14×5081106M20×70230292 M14×6093118M20×80255317 M14×70105130M20×90279341 M20×100304366M22×160548624 规格(直径×长度)每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M20×110329391M24×80388500 M20×120354416M24×90424536 M20×130378440M24×100459571 M22×60250326M24×110495607 M22×70280356M24×120531643

M22×80310386M24×130566678 M22×90339415M24×140602714 M22×100369445M24×150637749 M22×110399475M24×160673785 M22×120429505M27×80519687 M22×130459535M27×90564732 M22×140489565M27×100609777 M22×150519595M27×110654822 M27×120699867M30×17011541388 M27×130744912M30×180******** M27×140789957M30×19012661500 M27×1508341002M30×20013221556 M27×1608791047M30×21013781612 规格(直径×长度)每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M27×1709241092M30×22014341868 M27×1809691137M36×11012461617 M30×100765999M36×12013261697 M30×1108201054M36×130******** M30×1208751109M36×14014861857 M30×1309311165M36×150******** M30×1409861220M36×16016462017 M30×150********M36×17017262097 M30×16010981332M36×180******** M36×19018862257M42×23030953694 M36×20019662337M42×24032043803 M36×21020462417M42×25033133912 M36×22021262497M48×150******** M36×23022062577M48×16031474104 M36×24022862657M48×17032894246 M42×150********M48×180******** M42×16023322931M48×19035734530 M42×17024413040M48×20037154672 M42×180********M48×21038574814 M42×19026593258M48×22039994956 M42×20027683367M48×23041415098

螺栓理论重量表一览

螺栓理论重量表一览 时间:2011-05-03 10:10:44 编辑:amethyst来源:世界工厂泵阀网点击数:59 螺栓理论重量表是制造厂商参考的重要资料,是对不同规格螺栓重量的详细记录。为帮助大家掌握螺栓理论重量表,世界工厂泵阀网特汇总以下内容,以供查阅参考。 螺栓理论重量包括不带螺母及带螺母的螺栓重量,可通过分段计算的方法来计算。 螺栓理论重量表如下: 规格(直径×长 度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M10×302940M14×80117142 M10×403546M14×90129154 M10×504152M16×4092126 M10×604758M16×50106140 M12×304157M16×60122156 M12×404965M16×70138172 M12×505874M16×80154188 M12×606783M16×90170204 M12×707692M16×100185219 M12×8085101M20×50183245 M14×406994M20×60205267 M14×5081106M20×70230292 M14×6093118M20×80255317 M14×70105130M20×90279341 M20×100304366M22×160548624 规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M20×110329391M24×80388500 M20×120354416M24×90424536 M20×130378440M24×100459571 M22×60250326M24×110495607 M22×70280356M24×120531643

Abaqus螺栓有限元分析

1.分析过程 1.1.理论分析 1.2.简化过程 如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。 A.法兰部分不是分析研究的重点,因此将其简化掉; B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0; C.忽略螺栓和螺母的圆角等细节; 1.3.Abaqus中建模 查阅机械设计手册,得到牙型如下图所示,在Abaqus中按照下图所示创建出3D模型,如图1-1所示。同样的方式,我们建立螺母的3D模型nut,如图1-2所示。

图1-1 图1-2 建立材料属性并将其赋予模型。在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数。在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为0.3,如图1-4所示。 建立截面。点击Section->Manager->Creat,建立Solid,Homogeneous的各向同性的截面,选择材料为Bolt&Nut,如图1-5所示。 将截面属性赋予模型。选择Assign->Section,选择Bolt模型,然后将刚刚建

立的截面属性赋予它。如图1-3所示。同样,给螺母nut赋予截面属性。 图1-3 图1-4

图1-5 然后,我们对建立的3D模型进行装配,在Abaqus中的Assembly模块中,我们同时调入两个模型,然后使用Constraint->Coaxial命令和Translate和Instance 命令对模型进行移动,最终的装配结果如图1-6所示。 图1-6 第四步,对模型进行网格划分。进入Abaqus中的Mesh模块,然后选择Bolt 零件,使用按边布种的方式对其进行布种,布种结果如图1-7所示。在菜单Mesh->Control中进行如图1-8所示的设置使用自由网格划分,其余设置使用默认。在菜单Mesh->Element type中选用如图1-9所示的设置。按下Mesh图标,对工件进行网格划分,最终的结果如图1-10所示。同样的方式对螺母模型nut 进行网格划分,最终结果见图1-11所示。

螺丝怎样拧紧

螺丝怎样拧紧 ----试论弗洛伊德眼中的亨利?詹姆斯及其中篇小说《螺丝在拧紧》 广东财经大学外国语学院 李睿 摘要:对亨利?詹姆斯的中篇小说《螺丝在拧紧》的解读在国内外学术界备受争议,其原因在于作品本身的含混性与作者创作时的无意识的映现。文章拟沿着弗洛伊德的精神分析法的轨迹,应用心理空间理论来解释鬼魂出现的原因以及作者创作的初衷,指出女教师出现对鬼魂的幻觉源于其心理空间中框架间元素的映射使其多元交融空间能量无法达到守恒造成的;而作者创作的初衷并非是创作一部心理小说,使该作品成为一部成功心理小说典范的深层原因是作者无意识空间在作用。 关键词:心理空间理论;精神分析;无意识;含混性 Abstract: The interpretations of Henry James’s Novella The Turn of the Screw have been highly controversial in the academic circles both at home and abroad. The reasons lie in the ambiguity of the work on its own and the unconscious mapping of the author in his creative process. This paper is planning to follow the trajectory with Freud’s psychoanalysis, applying Mental Space Theory to explore the underlying reason of the emerging ghosts and the author's origin al intention. This paper finally points out that the governess’ illusion towards ghosts is caused by nonconservation of energy of her megablended spaces which reflected by elements in their frames of mental spaces from each other. Meanwhile, the author's original intention of writing is actually rather than creating a psychological novella. The underlying cause that makes the novella the apotheosis of psychological novel in literature is just the effect of his unconsciousness. Key words: Mental Space Theory; psychoanalysis; unconsciousness; ambiguity 1.引言 《螺丝在拧紧》(1898)是亨利?詹姆斯最匪夷所思和备受争议的作品。作品中的诸多―疑点‖使这部小说变得扑朔迷离,大大增添了其神秘色彩。一方面是围绕小说中两个鬼魂的真实度的争议,另一方面是关于这部心理小说的作者本人对该小说心理涵义的否定。 《螺丝在拧紧》自出版以来,经久不衰,在这一百年间一直有着极大的反响。原因在于作品中两个看似并不可能存在的鬼魂却―存在‖得如此真实,而这种既―存在‖又不存在的矛盾冲突使得作品本身充满着含混性和神秘感,也使之成为众多学者争论的焦点。艾德娜?肯顿(Kenton 1924:245-255)率先用弗洛伊德的精神分析法解读了故事中的两个鬼魂,指出这并非是一篇鬼故事,而是一部心理小说。肯顿(1924:254)认为:恰恰相反,被鬼魂―萦绕‖的不但不是孩子,而是年轻的女教师。这一观点在埃德蒙德?威尔逊的一篇重要论文《亨利?詹姆斯的含混性》(1934:358-406)中得到了积极响应,并在托马斯?克兰菲尔和罗伯特?克拉克的《<螺丝在拧紧>的剖析》(1965)中得到了全面透彻的论证(转引自古尔灵1999:144-145)。而内森?布莱里恩?费金等则反对精神分析法的解读,认为詹姆斯几乎不可能读过弗氏学说,他把故事看作是霍桑式的沉溺于善恶冲突的寓言(吴琴华,殷企平2007)。争论还有来自诸如结构主义、马克思主义等方法的多种不同解读。 本文拟沿着20世纪心理学大师弗洛伊德经典的精神分析法的轨迹,结合21世纪认知科学发展的新成果—心理空间理论,以及对经典框架语义学的一反传统的诠释与应用,通过层层深入与剖析,去挖掘出深埋于这部匪夷所思的哥特式小说之中的秘密,揭开亨利?詹姆斯其人及他的这部困扰了读者和文学评论家一个多世纪的中篇小说的真实面目。

螺栓理论重量表

螺栓理论重量包括不带螺母及带螺母的螺栓重量,可通过分段计算的方法来计算。 螺栓理论重量表如下: 规格(直径×长 度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M10×302940M14×80117142 M10×403546M14×90129154 M10×504152M16×4092126 M10×604758M16×50106140 M12×304157M16×60122156 M12×404965M16×70138172 M12×505874M16×80154188 M12×606783M16×90170204 M12×707692M16×100185219 M12×8085101M20×50183245 M14×406994M20×60205267 M14×5081106M20×70230292 M14×6093118M20×80255317 M14×70105130M20×90279341 M20×100304366M22×160548624 规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M20×110329391M24×80388500 M20×120354416M24×90424536 M20×130378440M24×100459571 M22×60250326M24×110495607 M22×70280356M24×120531643

M22×80310386M24×130566678 M22×90339415M24×140602714 M22×100369445M24×150637749 M22×110399475M24×160673785 M22×120429505M27×80519687 M22×130459535M27×90564732 M22×140489565M27×100609777 M22×150519595M27×110654822 M27×120699867M30×17011541388 M27×130744912M30×180******** M27×140789957M30×19012661500 M27×1508341002M30×20013221556 M27×1608791047M30×21013781612 规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M27×1709241092M30×22014341868 M27×1809691137M36×11012461617 M30×100765999M36×12013261697 M30×1108201054M36×130******** M30×1208751109M36×14014861857 M30×1309311165M36×150******** M30×1409861220M36×16016462017 M30×150********M36×17017262097 M30×16010981332M36×180******** M36×19018862257M42×23030953694 M36×20019662337M42×24032043803 M36×21020462417M42×25033133912

高强螺栓预紧力的计算方法

高强螺栓预紧力的计算方法 基本介绍 所谓螺栓预紧力,就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力有关。对于一个不确定的螺栓而言,一个螺栓可使用的最大预紧力与螺栓材料品种、螺栓材料热处理、螺栓直径大小等都有关系。 假设螺栓在压力容器密封端盖上起到密封预紧的作用,并且这个端盖上有均布同规格的若干只螺栓,那么,这若干只螺栓所能承受的最小预紧力之和必须大于密封容器中工质最高压力所产生的反作用力,否则压力容器端盖与器体之间的密封就无法保障。 在工程领域中,测定螺栓预紧力通常有一些技术方法。对于精度要求高的螺栓预紧力的测量,往往采取螺栓弹性变形量大小来测量并计算出预紧力大小。对于中等要求的螺栓预紧力的测量,通常选用力矩扳手(力矩扳手的种类目前较多,在此不作具体介绍),按照规定的力矩大小拧紧螺母即可。对于一般要求的螺栓预紧力测量,用的最多的方法就是根据手力拧紧螺母,便从此时开始,按规定要求用扳手拧转螺母若干个角(一个角为60度)来估测预紧力是否已经达到。 预紧的目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 高强螺栓预紧力的计算方法 Mt=K×P0×d×10-3 N.m K:拧紧力系数 d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds2/4 ds:螺纹部分危险剖面的计算直径 ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) 摩擦表面状况 K值 有润滑无润滑

螺栓理论重量表

螺栓理论重量表是制造厂商参考的重要资料,是对不同规格螺栓重量的详细记录。为帮助大家掌握螺栓理论重量表,世界工厂泵阀网汇总以下内容,以供查阅参考。 螺栓理论重量包括不带螺母及带螺母的螺栓重量,可通过分段计算的方法来计算。 螺栓理论重量表如下: 规格(直径×长 度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M10×302940M14×80117142 M10×403546M14×90129154 M10×504152M16×4092126 M10×604758M16×50106140 M12×304157M16×60122156 M12×404965M16×70138172 M12×505874M16×80154188 M12×606783M16×90170204 M12×707692M16×100185219 M12×8085101M20×50183245 M14×406994M20×60205267 M14×5081106M20×70230292 M14×6093118M20×80255317 M14×70105130M20×90279341 M20×100304366M22×160548624 规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M20×110329391M24×80388500 M20×120354416M24×90424536 M20×130378440M24×100459571

M22×60250326M24×110495607 M22×70280356M24×120531643 M22×80310386M24×130566678 M22×90339415M24×140602714 M22×100369445M24×150637749 M22×110399475M24×160673785 M22×120429505M27×80519687 M22×130459535M27×90564732 M22×140489565M27×100609777 M22×150519595M27×110654822 M27×120699867M30×17011541388 M27×130744912M30×180******** M27×140789957M30×19012661500 M27×1508341002M30×20013221556 M27×1608791047M30×21013781612 规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤)不带螺母带螺母不带螺母带螺母 M27×1709241092M30×22014341868 M27×1809691137M36×11012461617 M30×100765999M36×12013261697 M30×1108201054M36×130******** M30×1208751109M36×14014861857 M30×1309311165M36×150******** M30×1409861220M36×16016462017 M30×150********M36×17017262097 M30×16010981332M36×180******** M36×19018862257M42×23030953694

螺栓螺母质量计算公式

园钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 钢板重量(公斤)=7.85×厚度×面积 园紫铜棒重量(公斤)=0.00698×直径×直径×长度 园黄铜棒重量(公斤)=0.00668×直径×直径×长度 园铝棒重量(公斤)=0.0022×直径×直径×长度 方紫铜棒重量(公斤)=0.0089×边宽×边宽×长度 方黄铜棒重量(公斤)=0.0085×边宽×边宽×长度 方铝棒重量(公斤)=0.0028×边宽×边宽×长度 六角紫铜棒重量(公斤)=0.0077×对边宽×对边宽×长度 六角黄铜棒重量(公斤)=0.00736×边宽×对边宽×长度 六角铝棒重量(公斤)=0.00242×对边宽×对边宽×长度 紫铜板重量(公斤)=0.0089×厚×宽×长度 黄铜板重量(公斤)=0.0085×厚×宽×长度 铝板重量(公斤)=0.00171×厚×宽×长度 园紫铜管重量(公斤)=0.028×壁厚×(外径-壁厚)×长度 园黄铜管重量(公斤)=0.0267×壁厚×(外径-壁厚)×长度 园铝管重量(公斤)=0.00879×壁厚×(外径-壁厚)×长度 注:公式中长度单位为米,面积单位为平方米,其余单位均为毫米

螺丝加工流程

螺丝加工流程 学院:电气与控制工程学院 班级:电气09—3 姓名:衣显达 学号:0905040324

螺丝生产工艺(一)--退火 一、目的:把线材加热到适当的温度,保持一定时间,再慢慢冷却,以调整结晶组织,降低硬度,改良线材常温加工性。 二、作业流程: (一)、入料:将需要处理的产品吊放炉内,注意炉盖应盖紧。一般一炉可同时处理7卷(约1.2吨/卷)。 (二)、升温:将炉内温度缓慢(约3-4小时)升至规定温度。 (三)、保温:材质1018、1022线材在680℃-715℃下保持4-6h,材质为10B21,1039,CH38F线材在740℃-760℃下保持5.5-7.5 h。 (四)、降温:将炉内温度缓慢(约3-4小时)降至550℃以下,然后随炉冷却至常温。 三、品质控制: 1、硬度:材质为1018、1022线材退火后硬度为HV120-170,材质为中碳线材退火后硬度为HV120-180。 2、外观:表面不得有氧化膜及脱碳现象。 螺丝生产工艺(二)--酸洗 一、目的:除去线材表面的氧化膜,并且在金属表面形成一层磷酸盐薄膜,以减少线材抽线以及冷墩或成形等加工过程中,对工模具的擦伤。 二、作业流程: (一)、酸洗:将整个盘元分别浸入常温、浓度为20-25%的三个盐酸槽数分钟,其目的是除去线材表面的氧化膜。 (二)、清水:清除线材表面的盐酸腐蚀产物。 (三)、草酸:增加金属的活性,以使下一工序生成的皮膜更为致密。(四)、皮膜处理:将盘元浸入磷酸盐,钢铁表面与化成处理液接触,钢铁溶解生成不溶性的化合物(如Zn2Fe(Po4)2·4H2o),附着在钢铁表面形成皮膜。 (五)、清水:清除皮膜表面残余物。 (六)、润滑剂:由于磷酸盐皮膜的摩擦系数并不是很低,不能赋予加工时充分的润滑性,但与金属皂(如钠皂)反应形成坚硬的金属皂层,可以增加其润滑性能。 螺丝生产工艺(三)--抽线 一、目的:将盘元冷拉至所需线径。实用上针对部分产品又可分粗抽(剥壳)和精抽两个阶段。 二、作业流程 盘元经酸洗之后,通过抽线机冷拉至所需线径。适用于大螺丝、螺帽、牙条所用线材。 螺丝生产工艺(四)--成型 一、目的:将线材经冷间锻造(或热间锻造),以达到半成品之形状及长度(或厚度)。 二、作业流程: 1、六角螺栓(四模四冲或三模三冲) (1)、切断:通过可动的剪刀单向移动,将卡于剪模内的线材切成所需胚料。 (2)、一冲:后冲模顶住胚料冲模挤压胚料,初步成型,之后后冲模将胚

螺栓各型号重量个数换算

规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤) 不带螺母带螺母不带螺带螺母M10×30 29 40 M14×80 117 142 M10×40 35 46 M14×90 129 154 M10×50 41 52 M16×40 92 126 M10×60 47 58 M16×50 106 140 M12×30 41 57 M16×60 122 156 M12×40 49 65 M16×70 138 172 M12×50 58 74 M16×80 154 188 M12×60 67 83 M16×90 170 204 M12×70 76 92 M16×100 185 219 M12×80 85 101 M20×50 183 245 M14×40 69 94 M20×60 205 267 M14×50 81 106 M20×70 230 292 M14×60 93 118 M20×80 255 317 M14×70 105 130 M20×90 279 341 M20×100 304 366 M22×160 548 624 规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤) 不带螺母带螺母不带螺母带螺母 M20×110 329 391 M24×80 388 500 M20×120 354 416 M24×90 424 536 M20×130 378 440 M24×100 459 571 M22×60 250 326 M24×110 495 607 M22×70 280 356 M24×120 531 643 M22×80 310 386 M24×130 566 678 M22×90 339 415 M24×140 602 714 M22×100 369 445 M24×150 637 749 M22×110 399 475 M24×160 673 785 M22×120 429 505 M27×80 519 687 M22×130 459 535 M27×90 564 732 M22×140 489 565 M27×100 609 777 M22×150 519 595 M27×110 654 822 M27×120 699 867 M30×170 1154 1388 M27×130 744 912 M30×180 **** **** M27×140 789 957 M30×190 1266 1500 M27×150 834 1002 M30×200 1322 1556 M27×160 879 1047 M30×210 1378 1612 规格(直径×长度) 每千个螺栓重量(公斤) 规格(直径×长度) 每千个螺栓重量(公斤) 不带螺母带螺母不带螺母带螺母M27×170 924 1092 M30×220 1434 1868 M27×180 969 1137 M36×110 1246 1617 M30×100 765 999 M36×120 1326 1697

螺栓螺母常用单件重量明细表

常用单件重量明细表 名称规格重量名称规格重量名称规格 GB/T5782-00Kg/100mm 重量GB/T6170-00Kg/1000 个 GB/T93-87 螺栓M80.037螺母M8 4.22弹簧垫圈8螺栓M100.066螺母M107.94弹簧垫圈10螺栓M120.094螺母M1211.93弹簧垫圈12螺栓M160.178螺母M1629弹簧垫圈16螺栓M200.289螺母M2051.55弹簧垫圈20螺栓M240.431螺母M2488.8弹簧垫圈24螺栓M300.722螺母M30184.4弹簧垫圈30螺栓M36 1.099螺母M36317弹簧垫圈36 GB/T853-19881/1000个GB/T853-19881/1000个GB/T853-1988 槽钢用方斜垫圈8 5.79槽钢用方斜垫圈109.31槽钢用方斜垫圈12槽钢用方斜垫圈1628.22槽钢用方斜垫圈2047.43槽钢用方斜垫圈24槽钢用方斜垫圈30128.3槽钢用方斜垫圈36187.7热轧等边角钢 热轧等边角钢理论重量 / kg.m 热轧等边角钢理论重 量 / kg.m L70×70×4 L50×50×3 2.332L63×63×4 3.907L70×70×5 L50×50×4 3.059L63×63×5 4.822L70×70×6 L50×50×5 3.770L63×63×6 5.721L70×70×7 L50×50×6 4.465L63×63×87.469L70×70×8

L75×75×5 5.818L45×45×3 2.088热轧槽钢(GB/T707- 88) L75×75×6 6.905L45×45×4 2.736[100×48×5.3 L75×75×77.976L45×45×5 3.369[120×53×5.5 L75×75×89.030L45×45×6 3.985[140×58×6.0 L75×75×1011.089热轧工字钢 (GB/T706-88) 理论重 量/Kg..m [160×65×8.5 I 160×88×6.0 I 16 20.513I 180×94×6.5I 18 24.143 [200×75×9.0 I 200×100×7.0 I 20a 27.929 I 320×130×9.5 I 32a 52.717 □ 40×40×2.5 3.14kg WA253/2-G 17.5kg1〞外径Φ33.5 2.42kg 1/2〞外径Φ21.3 1.25kg □ 60×40×2.5 3.93kg

螺栓预紧力计算

螺栓预紧力 ! 螺栓预紧力就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力相关。 . .目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 计算方法 预紧力矩Mt=K×P0×d×0.001 N.m K:拧紧力系数d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds×ds/4 ds:螺纹部分危险剖面的计算直径

ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) σs查表:

As查表:

法兰连接中螺栓预紧力及垫片密封性的研究对压力管道法兰连接中螺栓的受力、预紧力的计算方法进行了分析,研究了垫片的密封性能,包括基本密封特性、压力-回弹特性、垫片的厚度和宽度效应。得出了法兰连接时,连接点的泄漏与螺栓预紧力、密封面状态、使用工况、垫片等有关的结论。 螺栓预紧力检测 采用电阻应变计测量应力的方法,目前主要有测力螺栓和环形垫圈两种形式的测量方式,测力螺栓是直接替换现有螺栓,直接将螺栓预紧力测量出来的传感器,能准确的测量螺栓的预紧力的大小,可以精确到公斤。尤其更适合大型压力容器气密试验前的螺栓的预紧力的检测。

相关文档
最新文档